
•

THE ASPECT INFOFMATICN BI\SE

P. Hi tchcock

Rapporteur: Mr. R. Weedon

137

Introduction

Aspect is a project funded by the Alvey Directorate . The
collaborators are System Designers Limited, MARl, ICL and the Universities
of York and Newcastle upon Tyne. The project started officially in April
1984, with initial funding for three years.

The objectives of Aspect are to provide an integrated project support
environment which will run on distributed host machines that are
geographically separate. It will support programming i n Ada, Pascal and C
and give the ability to develop code for distributed target machines. Two
interfaces are defined: a public tool interface which allows new tools to
be written and included in the system, and an open tool interface. The
open tool interface allows the use, as far as possible, of the existing
body of Unix tools. This need to support a wide variety of tools, and the
provision of the Public Tool Interface, led to the concept of Aspect being
an ipse-kit. That is to say, it is a general purpose framework that can be
populated with a particular tool set and become a customised ipse.

Architecture

The structural architecture of Aspect consists of a set of kernel
software components which cannot be by-passed. This kernel software is
accessible via the Public Tool Interface. The kernel is built on top of
the Unix operating system, and the open tool interface is seen as part of
the public tool interface . It is not a direct route to the underlying Unix
system . Distribution at the host level will be handled by the Aspect
kernel and normally hidden from the tool writer. However, the PTI includes
facilities to configure the system and to control distribution.

The functional architecture is shown in the following diagram. There
are three main functional areas accessible accross the public tool
interface. These are the Information Base, the User Interface, and the
Target Interface. Aspect has the notion of activities which are analogous
to transactions in a commercial database system. Activities are controlled
and coordinated by an activity manager which provides the context within
which tools run.

The Information Base

The information base is the central repository for all Aspect
information. We have chosen to use Codd' s extended relational model RM/ T
as the data model to provide the framework within which to store
information. The Information Base also exhibits a variable granularity. In
the software engineering environment the objects that are atomic to the
information base may often be files. In Aspect, the value of a field in a
record can be a pointer to a file .

The Information Base is also intimately connected with the process
model. Activities are the unit of 'work' for the Aspect System and rules
can be defined which control and check the progress of activities.
Activities carry out their operations in the context of an abstract
environment provided by a view of some subset of the information base .

•

t:ser
rnterface i

l::-IIX

Toola

Public Tool

Interfae.

Information BasI

fnt.erfilci

l::-IIX

Tarlet
Interface

l::-IIX

I----i

Distributed

Target System

The extended ~elational model ~as chosen p~incipally because the
classical ~elational model is a subset. This gives a ~ell unde~stood que~y
language ~hich besides being an essential pa~t of an ipse also p~oved to
be an invaluable tool during the const~uction of the info~mation base.
Using the ~elational model also meant that ~e could use a comme~cially

available database system as the basis of ou~ p~ototyping activities.

The ~elational model is extended in the sense that it captu~es mo~e

of the semantics of the data. RM/ T identifies some ~elations as
~ep~esenting entities and thei~ p~ope~ties and othe~ ~elations

~ep~esenting ~elationships o~ associations between entities. It enfo~ces

entity integ~ity, that the~e shall be no duplicate instances of an entity
type, and ~efe~ential integ~ity, that the entities referred to in an
association must exist. The~e is a Catalog ~hich describes the structure
of the info~mation base and this Catalog is itself held as relations thus
allowing the same que~y language to be used. The model can also handle a
sub-type hie~archy, something ~e conside~ to be important in a software
engineering environment.

Objects in the information base are identified by sur~ogates. These
are system generated entity identifiers, permanently aSSOCiated ~ith the

object and are never reused. The external naming is achieved via the
'known as' relation. This links a surrogate ~ith its external name in the
context of a name space. Name spaces themselves have surrogates, and this
leads to a naming scheme analogous to Unix files. Entities need not have
external names, but might be selected by their properties .

The Mpect Process Model

In the I\spect Process model, activi ties, rules and vie~s form a
coherent IIhole. I\ctivities are the focal point for rule applications and
provide the units of lIork that are to be performed in the context of a
vie~.

I\spect extends the traditional database notion of a vie~ into that of
an I\bstract Environment . This provides not only data objects, but also
operators and rules . I\bstract EnVironments are related to each other as
members of a hierarchy. Each environment is defined in terms of its
immediate parent , lIith the base environment at the root of the hierarchy .
There are separate definitions for data, operations and rules, and a chain
of definitions is foUolled IIhen an environment is materialised. This may
be interpreted or compiled.

The relational algebra i s used to define data objects, lIith links to
programming language procedures IIhere required. Operations are also
defined in terms of the algebra, again lIith recourse to procedures where
necessary.

The rules governing data val ues should be centralised and not
embedded in tools . This should minimise the amount of bad data that might
be entered into the information base by a tool. I\spect prov ides the
facilities for tool-~riters to define rules in addition to the ones built
in by virtue of using the RM / T data model . The relational al gebra is used
t o define rules. False is associated lIith the empty relation and true ~ith
a non-empty relat ion. This gives the same express i ve po~er as the first
order predicate calculus and , because it is the same mechanism used for
vie~s and queries, gives great economy in implementation .

Rule application is tied to the activity structure. Executing
activities form a hierarchy in an analogous ~ay to nested transactions.
These executing activities control the application of rules.

Rules may be divided into t~o types, those that relate t o a
particular state of the information base, and those that relate a before
state to an after state . These are known as static and transition rules. 1\
set of applicable statiC and transition rules is associated ~ith each
activity. These are inherited by the children of the activity and provide
a context ~ithin ~hich the children of the activity are carried out. The
applicable sets. are enforced on every state change.

Rules are also applied as pre-and post- conditions on every activity.
These enable activities to be controlled on a project ~ide basis .

Basic operations are provided at the PTI to create and delete rules
and to include or remove rules from applicable sets.

I\ctivities define the limits of lIork to be carried out, they are, in
general, long-lived and can span sessions. They are nested and form
natural units for recovery . I\ctivity definitions are objects held in the

1.2.0

information base. They can be used for the planning and coordination of a
project. The pre-and post-conditions attached to activity definitions
constrain the definitions and could prevent, for example, the execution of
a quality assurance step if the previous step did not meet its post­
conditions, for example, if the documentation \oIas incomplete. Activity
definitions are essentially descriptive, stating \oIhat has to be done,
rather than exactly ho\ol it is to be carr ied out. The language used to
define these activity schemes allo\ols for the sequencing, iteration,
refinement and choice of activities.

Executing activities carry out the transformation of the information
base under the control of the pre-and post-conditions associated \oIith the
activity definitions and under the constraints of the appropriate sets of
applicable rules. Executed and executing activities have a tree structure
\oIhose nodes are PTr primitives or calls to other tools. This execution
tree records the past and current activities and can be used for a
derivation history and for recovery.

Operations are provided at the PTr level to create/ delete activity
definitions and to associate them \oIith rules. Executing activities can be
created, started and completed.

Tools define and carry out sequences of Aspect operations, and can be
vie\oled as extensions to the PTI. They can themselves invoke other tools
and start / complete activities. Their invocation form part of the executing
activity tree. At the PTr level tools can be invoked, complete execution
or start and complete activities. Tools are added to the PTr by a process
knOIoIO as tool registration.

The Application Display rnterface

The objectives of the application display interface, or adi, are to
provide a simple intuitive model for the tool \oIriter. The adi primitives
should not constrain i / o style although individual ipses might develop a
house style. There should be a maximum amount of display and input device
independence and, as far as possible, generic input / output functions, such
as editing, echoing, etc., should be handled by the system.

These objectives are realised in a system component called the
presenter. This acts as a buffer bet\oleen tools and the terminal. Display
objects are considered to have a single logical structure. The presenter
manages the mapping of this structure onto particular deVices, and
responds consistently to requests that came from tools or that came from
the users of tools.

The logical structure of a graphics object is held as an ordered
n-ary tree, \oIhose leaf nodes are logical characters or graphical areas.
The other nodes are regions \oIith attributes, such as size. position etc.,
which determine the behaviour of the nodes below them in the tree. ",or
example sizes are always relative to those of the parent region.

The primitive operations at the PTr are for the manipulation of the
logical structure of the tree. There are operations to, for example, open
a subtree, create a leaf, delete and cut. Other operations allow the
attributes of regions· to be queried and set. These attributes include
sizeable - size may be changed in x, y direct ion, moveable - moveable in
x,y direction, float - regions expand or contract to contain text.

1 .! 1

A tool called 'double view' has been developed which alloW3 one to
see the logical tree and to query and change3 it3 attributes and at t he
same time to see what effect this has on the actual displayed picture.

Target Interface

The target interface is not defined at the PTI as it wa3 found
difficult to define a general tool set that would support all
architectures. In3tead interfaces wll1 be pub113hed for part i cular tool
sets to allow the addition3 of further tools to the family.

D13trlbutlon

The objective of distribution is to provide transparent access to
data at the logical level. In general, tool writers should not have to
know about distribution. There is however the need to define a model for
describing the physical system. Ob 1ects are associated with replicas which
are stored on volumes mounted on per ioherals. Per ipherals and ~ are
associated with devices which are interconnected by channels. The logical,
undistributed model is mapped onto the physical model.

Formal Definition

The Aspect public tool interface was formally defined in Z, a
l anguage developed by the Programm i ng Research Group in Oxford . This had
several benefits . I t gave the project a common technical language wi thin
which to discuss alternative designs. Writing the Z definitions cleared up
many loose ends at an early stage and made subsequent implementation much
easier. From t he point of view of industr ial collaboration a detailed
definition is probably more portabl e t han prototype code.

Implementatlon

The first
December 1986.
underlying RH / T
information base
integrate these
concurrency.

phase of the Aspect implementat i on was completed in
This included the application display interface, the
databa3e engine and the rules and views part of the
superstructure. The next phase of t he implementation wil l
ideas u3ing the activity mechanism and also incorporate

1 <12

---,;...----'DISCUSSIa-I

Dr . Ri tchie 'Nanted to knew more aJ:xxJt the way the Aspect Kernel
v.ould handle (''nix calls.

Although Unix '...ould be used to carry out (''nix calls, .'s;:oect ::ces
not allew this to happen in an uncontrolled 'Nay. To :)rcv ~c:e 3":C~
control we can think of the Aspect Kernel ?roviding a har~ess Ni~~l~

which Unix tools can be registered and r'.Ir.. .:Ul CnlX calls '''ill be
trapped by, and files provided via this harness before allowir.g ::r.:i..'<
to execute the call.

Dr . Harrison speculated that , if the tools

(a) for deriving infor.nation;
(b) for doing rules checking;
(c) for providing the user interface;

were all provided by the System this perhaps c!'1ar.ged our ?E'rception :>r
what tools were designed in a deve lopment environment.

Dr. Hi tchcock agreed.

DISCUSSICN

Professor Whitfield asked to what extent will the history of the
tree of executing activies be recorded.

Dr. Hi tchcock replied that in princ iple the whole history would
be recorded although for implementation and storage purposes this may
need to be selective.

Mr. Jackson asked whether views can be used to restrict access
to tools only to authorised users?

Dr. Hitchcock stated that the answer was yes.
parts , data, operations and rules. Tools are part of
part.

Views have three
the operations

Professor Brown was puzzled as to why the coordinate system
associated with the presenter works on reals between 0 and 1.

Dr. Hitchcock said that the reason is because the
position of each structure in the lcgical rroclel (a tree) used
presenter is defined relative to its parent.

size and
by the

Dr . Harrison '...Qndered ' hether this
imply that the children of certain nodes may
al tcgether.

relative scaling did not
be made to disappear

Dr. Hi tchcock said this was possible but that it was also
~ossible to build in constraints to avoid the problem.

Professor Colouris asked 'Nhether the presenter was linked to
objects in the IB so that the contents may be immediately displayed.

Dr . Hitchcock stated that the answer was no . The presenter is
autonarous. A tool might read values from the IB and display them
under the control of the presenter. Also the presenter itself will
use the IB to hold its own tables etc.

Dr. Good asked who changes the attributes in the nodes of the
presenter ' s logical tree.

Dr. Hitchcock answered that the attributes may be changed by a
tool or by a user , under the direction of a tool.

Dr. Harrison asked about the 'Lock ' attribute associated with the
presenter - how can it be changed without the help of the application
program.

Dr . Hitchcock said that changes will be monitored by the
application and, if suitable filtering were used, the lock command
would be unnecessary. However it is there as a convenience and
enables trees to be stored away or used in another context.

Professor Randell asked what the present status of the Hcr work
is.

Dr. Hitchcock answered that the Hcr part of ASPECT was the llDSt
advanced as far as implementation was concerned. The situation
however was carplicated by the fact that the project is just changing
to the Sun workstation.

1 I!..l

Professor Whitfield asked for more elaboration in regard to the
Target interface, in particular why it was not ,:ossible to generalise
on the target architecture.

Dr. Hitchcock stated that the reason was basically because the
architecture in generalisation did not concern Chip architecture as
such but rather network (bus) architecture.

• • •

