
W. Harrison 

Raworteurs: Miss J. Pennington 
Miss M.J. West 

129 



Trends in the Development of Development Environments 

William Harrison 
mM Thomas 1. Watson Research Cenler 

Yorktown Heights. N. Y. 10598 
barrisn@ibm.com 

Theory and Practice in Software Development 

We must aU be familiar by now witb tbe "walerfall" simile for describing the process of developing 
software on a large scale. This image depicts tbe downhill proc.ss of development as taking place in 
several stages: requirements. spocification. structural design. functional design. implementation. and 
maintenance. The stages are consecutive througb time . and tbe information built up during earlier 
stages nows into tbe later ones. In fact. the image migbt perbaps have been more accurately drawn 
as a stairstep. however. because each pbase of a project must be accompanied by significant work to 
lift tbe total information about tbe system to higher and bigber levels. 

The actual practice of software development today is less pleasant tbao portrayed by the theoretical 
wat.rfall simile. The informatioo deve loped during each development phase must bav. its expressioo 
in sam. languag • • wbether formal or informal. Tbus requirements are expressed in a requirement.\ 
language. specifications io a specification language. etc. until the implementatioo is finally dooe in 
tbe implementation language. In some cases tbe " language" may merely be an expected structuring 
of iofonnation in a document wrinen in natural language. This is often true at the requirements. 
specification and design phases because tbe information developed up to that point is intentiooaUy 
imprecise. Further precisioo would have required tbe greater effort reserved for a later phase. and 
tbe informatioo from tbe earlier phase is intended as direction to a practitioner in the art in whom tbe 
designer has some coofidence of his ability to continue the elaboration of tbe desigo. The use of • 
multiplicity of languages means tbat in order to make the transition from one phase to tbe next. tbe 
information produced in tbe earlier phase must be re-cast in tbe language to be used io tbe neu phase . 
So in addition to the work required during eacb phase to raise the level of the system 
design/ implementation. additional work is req uired to continuaUy retranslate the 
designs / implementation information from language to language . 

Use of the "waterfaU" diagram of development also bas anotber subtle effect. It tends to focus our 
att.ntion on the succession of phases. isolating the information prod uced in each pbase fro m tbat 
produced in tbe next. This manifests itself in tbe partitioning of tbe outputs of eacb pbase into a se­
quence of sets of files: tbe requirements files. the specification files. etc. through the ' implementation 
files. This has the unfortunate effect of breaking tbe "borizontal " links tbat relale tbe consequent 
cboices in later pbases to their roots in the earlier phases. This horizontal information is generally 
kept, tben. in the minds of tbe development team and lost as time passes. This horizontal infomlation 
is especially useful wben cbanges at an earlier level of abstraction are needed at a later time. Often. 
the cbanges are made ooly in tbe later documents rendering tbe higher-level (though earlier) docu­
ments inaccurate. 

Over all. it might be better to present tbe "waterfall" rather as a tree . wbose growtb and branching 
represents the continuous elaboration of decisions made during the des ign and development process. 
From root requirements througb specification. structuring. design and implementation. work is always 
dirocted to growth of tbe tree. 

In fact, the "tree-growth" model can be used to illustrate more clearly the cause of the "e'tra effort" 
that sbows up in today's realization of tbe waterfall. When we in co mputer science define languages 
for the expression of ideas. we try to make the languages "self-complele" . That is. we try to make 

130 



eacb unit of information to be expressed in the language contain a full enough description tbat it can 
stand alone. Thus programming languages tend to embed interfa~ definition languages and system 
structuring languages. We do not encourage a style of design in which a program just reflects tbe 
logical function but not its name, description, or interface. Wben we embed this tendency in con­
ventional software systems, it tranSlates into requiring eacb file which is pan of tbe development of 
a system to stand alone. Thus, what we are doing in tbe "waterfall" style of design is covering tbe 
tree-growtb of the actual information with regions of information determined by tbe languages we 
use. The regions overlap because tbey must each be self-complete, and tbe overlap represents tbe 
extra labor tbat goes into re-describing tbe same decisions in each different language. 

However, the tree-growth model of software design also suggests an alternative to tbe current prac­
tice of the waterfall approacb to system development. We should allow tbe system builders to work 
in a continuous refinement fashion, always growing tbe tree of decisions toward tbe desired imple­
mentation. The need for periodic documentary cbeckpoints to mark phase boundaries, can be satis­
fied by way of "projection" programs tbat extract tbe relevant phase-related information for 
presentation and review. The early projection programs construct stylized natural language document 
sets, while the later ones construct tbe programming language source for compilation. In addition, it 
better accommodates the fact that in reality, a system design does not proceed evenly because not 
all of tbe components of the design can be accepted witb equal coofiden~. U tbe design calls for a 
"table-driven-parser", professionals do not need furtber elaboration to accept its viability. However 
if the design calls for a "natural-language-recognizer" , more detailed design and. perhaps implemen­
tation, work will need to be done to demonstrate tbat the overall design is viable. The tree-growtb 
model allows different portions of tbe elaboration tree to be pursued to wbatever deptb is ne~ssary 
to establisb tbe soundness of tbe design. 

Technological Requirements for a Shift in MC4el 

In order to make tbe transition from tbe discrete refinemellt waterfall model to tbe continuous re­
finement tree-growtb one, we must make a series of tecbnological advan~s in parallel: from linear 
parsable languages to structured internal forms. from independent systems of files to integrated re­
positories, and then from flat file editors to direct structural editors. 

The continuous refinement style of development embodies tbe gradual elaboration of material from 
early speCification througb implementation as an ever growing tree of detail. Several difficulties occur 
in attempting to use linear parsable languages for that purpose. In many cases, a designer or imple­
menter will need to make an informal "sketch" of his plans before elaborating on tbem in detail. 
These plans can include diagrammatic or textual descriptive material. or a mixture of both. In any 
case , tbe design and implementation of a system contains a great mixture of linguistic concerns, from 
functional design througb planning, performance. design points verification and testing. In addition, 
many different paradigms for the refinement of a problem may be employed, some problems de­
composed as communicating processes, some as functional layers, some as sequential code, even 
some as rule-driven cboices. None of tbese needs are addressed well by the classical model for linear 
parsable languages. This need not surprise us. From a bistorical perspective, we entered an era of 
large scale programming during the \950's. Programmers needed to express complex structures in 
such a way tbat they could be executed by machines. 111is meant. in effect, tbat tbe machine needed 
to construct internally a representation of the structure in the programmer's head. However at tbat 
time , the only common medium for man-machine communication was tbe paper tape or tbe punched 
card, both of whicb are essentially linear media. Computer scientists. faced with the problem of bow 
to pass complex structures from the minds of programmers to the internal structures in tbe macbine 
tbrough alinearizing medium, devised formal language tbeory. This allowed tbe description of rules 
by whicb a programmer could linearize bis structures readably and machines could reconstruct tbe 
structures via parsing algorithms. The linearization works well for the imperative and declarative 
parts of the language . but works less well for tbe structures: pr~ss intercoaoection, program 
structuring, scoping, loops and conditional flow and commentary-related code. However, tbe entire 

1 31 



motive for linearizatioc bas disappeared with tbe advent of display-oriected systems. We can cow 
allow designers to work directly with projectioes of an intercocnected structural form for the infor­
mation that is sbared by both tbe buman and tbe machine. 

The linear language paradigm served well as programmers moved from batch to interactive syste ms. 
The card decks or tapes became files witbin a file system. File systems. bowever. are very large-grain 
storage units; it is impossible to point retiably to elements (the individual records) within the files. 
This makes the retention of a variety of important cocnectivities difficult or impossible : connectivity 
witbin the nested elements of a structure like those wbicb lick modules within a process. concectivity 
along patbs of decision making and refinement like those which link specification to pseudo-code and 
pseudo-code to implementation. and connectivities through tbe version history of a unit like those 
wbicb sbow tbat a cbange from support of small tables to large was accomplished by replacing a 
bubble sort with a better one. We must replace the storage of program material as independent files 
by one wbicb empbasizes its storage in a bighJy structured. integrated repository. 

These goals cannot be accomplished. bowever, without also developing a tecbnology for presenting 
and modifying the information in tbe structured repository. Unlike conventional file editors. or even 
syntax-directed editors assisting with tbe maintenance of a fundamentally linear representation. we 
need editing environments that support the presentation and modification of views of a wide variety 
of objects. These objects wiU employ diagrammatic. textual. audio or otber representatioes and will 
evidence a wide variety of command functionalities. 

A number of technological bases can be brougbt togetber to bear upon tbese traositioes. Object­
oriented data bases [Zd086J prov ide a way of dealing witb tbe variety of types of information wbile 
addressing perfonnance conceres. The objected-oriented style of system structuring [Hen86] ad­
dresses tbe data independence and dece ntralized control needed for federating tbe separated ele­
ments of applications. Efforts defining new linguistic structures for module interconnection [Oss84] 
and re-use [Kru84] will yield the conceptual models needed for knitting tbe higber-Ievel constructs 
togetber. Data conversion. sharing and transmission protocols [81a86J will be used to integrate sol­
utioes implemented by different programming paradigms. 

We can begin to see a new synthesis of these approaches emerging in the arcbitecture of structure­
based environments [Rei86J. In this structure. a structural she ll provides the framework into which 
the various types of objects fit in orde r to fe derate the m together to form higher level world-views. 
The framework provides input routing and output co mposition functions . infonnation propagation 
mecbanisms, and data repository functions. The structure -based environment will provide an open­
ended structure into wbicb new applications can be fit easily. 

Impact of the Availability of New Environments 

This fundamental reorganization in the data and interaction models can be expected to have a major 
impact on software development processes and styles of working . We can expect tbat over the next 
decade tbere will be increased interest and activity in: 

• emphasizing reuse / rework over new construction 

• emphasizing mixed-paradigm construction 

• relaxing language constraints arising from linearization 

• simplifying the creation of extended environments 

• facilitating tbe maintenance of coesisteccy 

132 



R~/Rework 

The reuse of program material is a key to the productivity improvements needed in software in tbe 
future. lbe importance of simple reuse bas beeo recognized to the e~tent that re-use promoting 
constructs like inheritence [Ing78J aod geoeric procedures and packages [00083 J are now appearing 
io many modern programming languages. However the reuse of preplanoed unilS is only tbe tip of 
tbe iceberg of improvemeot available. The reuse of software elements by reworking to fit otber similar 
needs bas a much greater potential impact. We already employ reuse/ rework scbemes wben we create 
multiple versions of a design or program for successive releases or to support user configuration 
cboices. but tbe coordinated control of multiple versions wiU simplify our ability to manage a multi­
plicity of variant user audiences. We can foresee the appearance and growth of approaches to inter­
action in whicb existing designs or programs are identified as the base for the creation of big her order 
templates allowing sharing of a base substrate witb controlled substitutions obeying axiomatic con­
straints. In addition. the growth of a large repository of coordinated description/ refinemem pairs wiU 
encourage the development of systems whicb searcb for candidate matches witb descriptive material 
and tben use tbe matcbes to suggest implementations for similar newly described problems. These 
matcbes migbt be made using any of a number of information-retrieval strategies. from keyword or 
feature matcbing to semantic matching driven by conceptual models [Bar8SJ. 

Mired-paradigm Constrflclion 

The growtb and availability of a library of problem/ solution pairs will bring pressure to bear on al­
lowing the reuse / rework of solutions implemented in mixed paradigms. since the identified imple­
mentations may not always match in their paradigm or language. In addition. tbe appearance of a 
framework supporting mixed-paradigm system construction will enable software builders to more 
easily select tbe paradigm wbich simplifies the problem at hand. The use of a grapbical/diagrammatic 
notation for program presentation also simplifies tbe mixing of languages witbin a paradigm. (The 
linearization of languages bas caused no end of disagreement on tbe cboice of a least undesirable 
syntax.) However a system which stores program material structuraUy and aUows the presentation 
form to vary from user to user can enbance tbe cross -readability and modifiability of programs by 
biding tbese syntactic cboices. 

New lAnguage Constrflctt 

We will also see new exploration in tbe language construct arena made possible by the structural 
manipulation ratber than the textual manipulation of design and program material [Har86J. A classic 
case iUustrating the limits tbat linearization places on language cboices is tbat of decision tables 
wbicb. altbough widely recognized for decades as a conveniem way of decomposing some comple~ 
decisions bas never found its way into any programming language for lack of Iinearizability. Howe ver 
tbere are otber e~amples tbat indicate tbe potential for a wide variety of new notions. Today's pro­
gramming languages make use of rules detennining tbe meaning of names that are fundamentally 
structural: that is. the meaning depends on the position of the name in a scoping stnlcture. In an 
environment beavily supporting reuse. we migbt expect to see historical resolution of naming as weU: 
tbat is. a name migbt be resolved to tbe meaning it was Originally gi ven. no malter how Dlany times 
the software fragment containing the name has been reused in other contexts. We can also expect 
to see multidimensional name inheritance schemes. addressing tbe fact that a software fragment may 
be part of A. serving role B. in system context C and therefore nam!!s might be resolved in each of 
tbose dimensions even thougb they themselves have no nesting structure. 

133 



Simplifying Extensions 

The appearance of structural frameworks for software material will also simplify the creation of sys· 
tern extensions wllich transform program material because tbe material wiU already exist in structured 
form. The interfaces between the environment and the extension language will need to be carefully 
tbought out because tbe extension language can no longer presume that it is dealing with nat files. 
Use of an object-oriented methodology for interfacing object definitions witb tbe structural frame· 
work will also simplify tbe creation of new environments whicb can be easily integrated with or in· 
terspersed into existing coilections of objects. A user could. for example. add a new programming 
construct Uke a specialized loop without re-creating an entire language processor. but merely by 
adding a aeW object to some existing collection. 

Consistency Maintenance 

Structural environments must. by nature . provide mechanisms for communicating informatioa among 
the individual constructs. These same chaanels can be used to introduce tighter coupling between the 
specification and the implementation. [n fact. a deSCription/ refinement cycle easily decomposes into 
a description/ (specification/ implementationl which tightly couples tbe descriptioa to the specifica· 
tion and the specification to tbe algorithm. Matchiag not only descriptions but specifications will al· 
low the reuse of evea more material. but more importantly. wbea software fragments are copied. tbe 
specification and implementation are copied jointly, along witb their consistency relationships. The 
same mechanisms that apply to re·resolving symbols aad type checking are triggered to make sure 
tbat the specification axioms are valid in their new contexL Furtbermore. otber framework·supplied 
facilities for management of ve rsions and sharing will apply naturaUy to versions of specifications or 
of specification/ code pairs. 

[Bar85] Bartschi M .. Aa Overview of Information Retrieval Subjects. IEEE Computer Magazine. 
May 1985. pp. 67·84 

[Bla86] Black A.. Hutcbinson N .. Jul E .. Levy H .. Carter J.L.. Distribution and Abstract Types in 
Emerald. University of Washington TR 86·02·04. Fenruary 1986 

[DoD83] go Ada Reference Manual. ANSIli'vfTL·STD·1815A·1983 

[Har86] Hamson W .. Rosenfeld J .. Wang C·C .. WestOn B .. Strtlctured Editing with RPDE. Com· 
puter Language Vol 3 No 9. Sept 1986. pp. 93 ·100 

[Hen86] Hendler J .• Wegner P .. Viewiag Object·Oriented Programming as an Enhancement of Data 
Abstraction Metbodology. Proceedings of Nineteentb Hawaii International Conference on System 
Sciences. January 1986. pp. 117·125 

[lng78] Ingalls D., The Smalltalk·76 Programming System. Proceedings of Fiftb ACM Symposium 
on Principles of Programming Languages. January 1978. pp. 9·16 

[Kru84] Kruskal V .. Managing Multi·Version Programs with an Editor. IBM Journal of Researcb and 
Development Vol 28 No I, January 1984. pp. 74·81 

[Oss84] Ossber H .. Grids: A New Program Structuring Mecbanism Based on Layered Grapbs. Pro· 
ceedings of Eleventb ACM Symposium on Principles of Programming Languages, January 1984. pp. 
11·22 

[Rei86) Reiss S .. An Object·Oriented Framework for Graphical Programming. Submitted for Publi­
calion 

134 



• • • 

[Zd086] Zdonick S., Wegner P., Language and Methodology for Object-Oriented Databas<! Envi­
ronments" Proceedings of Nineteentb Hawaii International Conference on System Sciences, January 
1986, pp. 378-387 

135 



DISCUSSra.l 

Professor Habermann pointed out that on the issue of scale, 
abstraction fran small to large problans, and thus techniques in 
problem solving, is difficult, and stressed that the opposite is also 
true. He invited the speaker to ccmnent as to whether the rrcdel 
discussed VoQuld at:'ply to small as ~ll as medium and large ob jects. 
The speaker stated that it is necessary to draw a l ine where the 
object is ~lete by itself. nus VoOuld probably be where the ob ject 
gives the correct primitives for manipulating structure. He 
elaborated further suggesting that fran the pcint of view of people 
and preference one doesn't want to look at each character and probably 
not each staterrent as an object, but at the best structure for 
ccmnunication. 

Professor Henderson invited the speaker to camment ·on the extent 
ccmnercial Smalltalk implerrentations adhere to the rrcdel. The speaker 
suggested that Smalltalk environments suffer as they only present to 
users a Smalltalk programning pcint of view, and he wanted an 
environrrent that coul d present all (functional, etc . ) pcints of view. 

136 


