
•

W. Harrison

RaR=lQrteurs: Miss J. Pennington
Miss M. J. West

119

Issues in the Construction of Development Environments

How We Got Here

William Harrison
ffiM Thomas 1. Watson Research Ceater

Yorktown Heights. N. Y. 10598
harrisa@ibm.com

Prior to uamicicg a aumber of tbe important tecbcical problems presected ia the construction of
modem software developmeat enviroameats. it would pay to look at the evolution of oa-line software
environmeats to tbe present. The earliest of the on-line environments were tbose inberent in the
design of the earliest of tbe general-purpose time-sbaring systems in the middle 196O·s. Typically. tbe
time-sbaring system itself provided a basic monitor which controlled and cc>ordinated access to the
input-output equipment. It provided services by which applications could communicate with tbeir
users. Tbe time-sbaring system itself also provided a primitive command shell. typically one whicb
would accept tbe name of an application and some additional parameters to the application and would
arrange for tbe application to be run. Among the first applications were tbe familiar aon-interactive
applicatiOns like compilers. Iickers. etc. Ie addition. however. some new tn(erac(i~ applicatiOns like
file editors and de buggers were also provided. These applications each provided an environment for
tbe user: a syntax. a function set. an Output fonnat. etc. In addition to providing tbe bebavioral
cbaracteristics seen by tbe user. tbese environments typically both defined the format in wbich tbey
cbose to represent the user's informatioa and comrolled tbe repository of the information. Editors,
for example defined file contents and their mode of storage in the file system. while interpretive ex
ecutors did tbe same for program structuring infonnation. We find examples of tbis in tbe early CTSS
time-sharing work at M1T witb tbe TYPESET and DEBUG environments and witb most implemen
tations of APL [ApI76.Cor62].

Over time. tbe interactive systems in use came to be differentiated by the differeat buman-factors
made available tbrougb different treatmeat of communication equipmeat. Keystroke capture systems
(often called full-<luplex although that term more appropriately refers to a co mmunications protocol)
like UNIX have emphasized the system's ability to respond to each ke ys troke . Command-bundling
systems (often called balf-<luplex althougb that term more appropriately refers to a communications
protocol) Uke CTSS or ffiM's VM/ CMS encouraged applications which maximized the user's return
for eacb command entered. Over time. botb of these types of syste ms developed capabiUties for
writing "canned" command sequences (often called "exec files " or a "sbe ll scripts "). One of tbe
results of tbe stress on maximizing tbe utilization of a "command-bundle " was the development of a
system structure tbat provided botb sopbisticated languages for e.ec files and the facility for the
writer of tbe exec file to direct commands to any of several active "subcollunand" environments
[Cow84]. Thus. for example, tbe exec file might invoke the " insert" and "Change" editor commands
to cause tbe desired cbanges to its data wbicb is stored as the file being edited. The marriage of tbese
"subcommand" system structures witb interactive applications simplified the extension of command
systems enougb to cause a local explosion in the functionality available on the systems. Some of tbe
editiag environments bave become so rich that they are used as the base for completely aew eavi
ronmeats. like symax-<lirected editing, word processiag, poster and file manage meat. These new
environmeats ani implemeated as functional enensions of the editor. exercising tbe editor's command
set. data management and display managemeat from within exec files to carry out tbeir own extended
command set. This begins to provide users witb a coherent interaction framework (provided by the
editor) within wbicb specialized and widely varied functional environments are provided.

The growth of data-base / data-communications oriemed systems occurred in paraUel with the devel
opmeat of tbese "classical" command and subcommand sbell environments. These systems empha-

120

sized greater flexibility in the content and format of data. with that information choice more in the
application than in the data base shell itself. The data base sbeU provided facilities (or managing tbe
data repository. for coordinating communication with the user. and for more sopbisticated output
formatting for use by the individual applications. Over time. complete control over the physical data
layout moved to the data base sbeU itself while the logical structure of tbe data continued to be owned
as "views" by the application. The variety of different data models made available constitute. in a
sense, a large number of varied environments witbin the coherent interaction framework provided
by the data base shell itself.

Where We Are

These environments formed tbe bulk of tbe interactive computing milieu at tbe advent of tbe era o(
display-()riented high-power workstations. The subcommand-style environments exploited classical
sbells and ltigbly extensible editors to make possible the creation of a large number of different ap
plication environments manipulating information stored as line files. The data-base environments
exploited a central repository and more powerful display management coupled with many more dif
ferent data structures and representations to also provide a wide variety of application environments.
There have been two primary responses to the advent of display-()riented workstations: unstructured
use via windows. and structured use via structure-<lirected environments. Although heavy use of
windows did not appear prior to the workstation. the mode of operation in which a user context
switched among several similar tasks did appeared both in mUlti-process form and in subcommand
environment form on shared interactive systems. A number of display-()riented data base and editing
systems [Emacs.MaI8I.Xed85] also made their appearance prior to the workstations. but their use
was bampered by either tbe absence of support for keystroke-capture interaction or the absence o(
cursor/ mouse positioning constructs.

The unstructured use of large displays relies upon the interposition of a new element. the window
manager. betwee n tbe application and the monitor level 110 support. The window manager supports
tbe existence of a multiplicity of concurrent activities. each of wltich bas tbe same structure as earlier
application environments: a primitive shell involOng an application or environmen~ The window
manager composes the "virtual" output streams from eacb activity to form the display seen by the
user. In addition. the window manager routes the interactions from tbe user to the appropriate ac
tivity. The window manager tends to be quite dependent on device characteristics. This bas tended
to mask much of the device-independence provided by the monitor and we can expect tbat effort will
be placed in tbe near future on attempts to incorporate a device-driver-like interface into window
managers so that ins tallations can apply tbem to a variety of devices.

The structured use of large displays is an area of great activity. In response to the recognition tbat tbe
existence of large numbers of specialized environments wil l become crucial to improving the usability
of computer systems. a number of groups began to exp lore ways in which the cost of producing a new
specialized environment could be reduced. Systems like the Cornell Syntbesizer [Rep84] and tbe
GANDALF environment [NotS3] represent early explorations in tltis area These systems were ori
ginally targeted at providing environments for programming. and as sucb. tbey focused on support
of a variety of programming languages. rather on a more general view of structural editing. However.
tbis focus also led to tbe recognition that a structured environment must provide mecbanisms for
managing consistency and inconsistency in tbe infomlation base. [Rep84].

We can begin to see a new synthesis of these approaches emerging in the architecture of structure
based environments. One of the key elements of this integration is tbe object-oriented methodology
[e.g. Hen86) which aUows the partitioning of the design of an application into independent mini
applicatiOns called objects. As in the data-base environment, each object determines its own view
of the data. However. tbe shell. let us caU it a structural she ll must provide tbe framework into wbich
tbe various types of objects fit in order to federate them together to form bigher level world-views.
The Framework must provide the input routing and output composition functions analogous to that

121

provided by tbe window manager. Like syntax-directed editors. it must also provide information
propagatioa mecbanisms to support cross-object consisteacy issues. and like the data-base environ
meat it must provide data repository functions. However. unlike many of these more closed systems.
the structure-based environmeat must provided an opea-ended structure into which aew applications
can be easily fit. These new applications will take the form of collections of object types. Let us
consider several examples.

\. In syntax-<iirected program editing the objects correspond roughly to tbe major aonterminal
symbols in the program structure. For various reasons. it may be appropriate to make the
smallest objects be expressions or statements ratber tbaa individual cbaracters. but the sense of
the decomposition is uncbanged. Each syntactic element has a formatting rule or procedure as
sociated with it whicb interacts witb tbe geaeral structural layout algorithms in the Framework.
It also provides a procedure for bandliag alteratioa. whetber by command or by keystroke
interaction. These procedures are caUed upoa by tbe Framework ia respoase to user or sub
command drivea interactions. In addition. tbe object requires cbecking metbods which rely
upon tbe inforreatioa propagatioa mechanisms of tbe Framework in order to track the internal
consistency of groups of related objects.

2. In the realization of a spreadsheet system. tbe objects correspoad to tbe spreadsbeet itself aad
to the various items in tbe rows and columns of tbe spreadsheet. lateractions betweea these
objects aad the Framework are used to organize the display and to handle interactions as de
scribed above. and agaia tbe infonnatioa propagatioa mecbanisms are brougbt into play to carry
out tbe propagatioa rules.

3. [n the editing and display of aa organizatioa cbart. the objects are tbe various bierarchy aodes
and the individuals. Display aad command interactions are as above. although tbere may be less
need for consistency managemenL

Existiag lines of exploratioa of the use of object data bases are being followed ia tbe PECAN and
GARDEN Projects (Rei84]. One of the major emphases in these efforts is tbe use of an object data
base embodying a commoa semantic model as the base for widely varying views of the information.
The RPDE project (Har86] is exploriag tbe developmeat of a structural Framework and tbe realiza
tion of a software development system usiag it. The emphasis bere is on facilities to forre environ
meats as the federation of large aumbers of mini-envirooments.

Where are we going?

There are many important technological de velopments that will take place in tbe development of
Framework-style Structural Editiag Eaviroameats. We will focus bere oa tbe issues aad problems in
a few:

• StrUCtural Repositories
• Structurallnforreation Propagation

• Structural Output Composition

• Structural Algoritbms

For each existing approach. a number of potentiaJ or real disadvantages must be addressed before its
viability can be established. These iavestigations will constitute important work over the aear future .

mIleS in Sfrllctural Repositories

The repository is the focus for residence of all of the objects maaipulated by tbe environment. It
contains information representing large complex structures. whicb may be trees or grapbs stored with

12 2

a great variety of types of objects at the nodes of tbese structures. These nodes exhibit variety in
storage needs. connectivity. and containment relationships. In tbe construction of the repository we
must be concerned about tbe granularity of tbe information being stored. about tbe ease of adding
new object types or of modifying types of objects tbere. aad about tbe performance of. tbe data base
under new kinds of usage loads.

Assuming that the source for a moderate size program is around 5000 objects. tbe classical file system
has adequate performance to initiate editing of the program. However. the grain size (the size of uaits
which bave permanent names) is quite large and cannot satisfy tbe needs for connectivities between
elements of prograras like code-pan to declaration-pan linkages or design to implementation link
ages.

Under similar assumptions. the evidence [lin84] indicates that conventional re lational data bases.
wbile they support an appropriate granularity and degree of connectivity. have inadequate perform
ance to satisfy the load imposed when a program is edited. In addition. the simple entity model may
not adequately support the great variety of types of objects needed for tbese environments.

Object data bases represent an attempt to deal with tbe granularity. connectivity. and variety re
quirements. and it is boped tbat mixed-granularity storage schemes [Mai8S] will provide the necessary
performance.

Issues in SfnlctulTl/lnfomwtion Propagation

When an appUcation is decomposed into objects. the burden of dealing with consistency and cbecking
issues falls upon an information propagation strategy. It must provide communication paths must
within large complex information structures. whicb may be trees or graphs stored with a great variety
of types of objects at the nodes of tbese structures. The nodes in tbis structure exhibit variety in their
needs for information from other objects and in tbeir abiUty to supply information to otber objects.
In tbe propagation of information we must be concerned about tbe ability to hide information struc
tures from other objects. about the localization of tbe descriptions of information nows. and about
tbe tbe ease of adding new object types or of modifying types of objects already tbere.

There are two styles of information propagation strategies in use : data-oriented and control-oriented.
In the data-oriented models. eacb node in tbe structure is characterized by naming the information
needs and supplies of tbe node and writing a series of functions to corupute tbe supplies from tbe
needs. The functional nature of the description allows a data-flow driven style of evaluation whicb
proceeds until tbe values of tbe data stabilize. Examples of this style of model include Attribute
Grammars [Dem8 1]. Message-Augmented Attribute Grammars [OemSSJ. and Attribute Grammars
witb Non-local Productions [JonSS]. These examples are distinguished by the locaUty of tbe individ
ual propagation steps. A1tbough the data-oriented models present a simple style in which the infor
mation nows may be described. tbeir functional nature leads to serious performance problems whicb
are under study [Rep82]. In addition. many of the data-oriented styles are monolithic in that for
performance reasons pre-computations are needed which require complete descriptions of the object
types and their data requirements. This severely limits tbe ease of extension of object bases using this
style of information propagation ruodel.

In the control-oriented models. each node in tbe structure is characterized by naming some events
wbicb must cause tbe node to be activated. The activation of an event may cause changes or seek
information by activating other events with the event sequence governing the outcome. Examples of
control-oriented models can be found in ALOE and DOSE [FeiS3]. in action-equations [KaiSS1. in
the broadcast messages of PECAN [ReiS41. and in the structure-bound messages of RPOE [Har86].
These examples are distinguished by tbe locality of tbe individual propagation steps. Althougb this
style allows simpler expression of sequence dependent information requirements and avoids the need

123

for global structural iaformation. the fact tbat designers must concern themselves with coatrol rather
than data nows increases the effort aeeded to build an applicatioa and makes it more opaque.

Issua in SlrIIdIIrai Output Composition

Output compositioa provides the federating mecbanism for composiag tbe individual display elemeats
of tbe objects being manipulated into a cohereat whole. The composed images represeat portions of
large complex structures. wbicb may be trees or graphs stored with a great variety of types of objects
at tbe aodes of these strUctures. These codes exhibit great variety ia their connectivity. and perbaps
in their base representation as text. image. or voice as weU. In tbe search for composition algoritbms
we must be concerned about tbe degree of control allowed to the definer of objects. about the ease
of adding new object types or of modifying types of objects tbere. about tbe adaptability of the a1-
goritbms to varyiag information volume and display capabilities. and about tbe performance of tbe
display coostrUction.

Several techniques have been explored for image composition: paooing or scrolling over a large vir
tual field of view. explicit control by tbe user. and automatic elision of contextual iaformation. Pan
niag and scrolliag are common techniques and have tbe best performance cbaracteristics. ualess a
large virtual field must be completely elaborated. However it affords the user minimal coatrol over
tbe display. geaeraUy displayiag only contiguous portions of tbe virtual field. In additioa. there is no
automatic compeosatioa for the user 's focus as iaformatioa volume grows.

A Dumber of systems also allow explicit inclusioa and exclusioa [Tei84.Spf85] of material to be dis
played. This technique also perfonns weU and affords the user a greater degree of control over bis
information display. but also suffers from degradatioa of results as information volume grows or dis
play size sbrinks. The manipulation of windows can belp aUeviate this problem somewhaL

Elision-based display algoritbms [Mi.k81] can offer a great deal of user control over the display con
teat and by design are intended to deal automatically witb growth ia the volume of informatioa. AI
tbough more expensive to rua. workstations of sufficieat power to use these algOrithms weU appear
to be becoming available DOW. Siace tbe system exercises more coatrol over tbe formatting. it re
mains to be seea whetber sufficieat frame-to -frame consistency can be achieved to make the auto
matic layout aoa-intrusive.

Struclllrai AlgoritJuru

A number of tbe tecbaologies under development for structure-oriented environmeats share a com
mon need for tree and grapb processing algoritbms. A1tbougb the past decade has seea significant
work on the developmeat of good performing graph algorithms. many of them bave been predicated
on precomputations over the grapb to be processed. In structure-orieated enviroaments. the graph in
question may occupy many files aad may evea be distributed over many nodes ia a network. makiog
algorithms using sucb global computations infeasible. The requiremeat for good algoritbms over large
graphs can be satisfied by a class of algorithms whose bouad is related to the number of nodes actu
ally needed to determine tbe result ratber tban to tbe total size of tbe grapb.

[ApI76] VS APL for CMS. IBM Publicatioa Number SH20-9067

[Cor62] Corbato F., eL a1 .. The Compatible Time Sbaring System. MIT Press, Cambridge. 1962

[Cow84] Cowlisbaw. M. F., The Design of tbe REXX Laaguage. IBM Systems Journal, Volume 23 .
No. 4 (1984).

124

[Dem81] Demers A.. Reps T. . Teitelbaum T .. Incremental Evaluation for Attribute Grammars witb
Application to SyntaX-Directed Editors. Conference Record of the 8th Annual Symposium on Prin
ciples of Programming Languages. Williamsburg Va.. Jan 1981 . pp. 105-116

[Dem85] Demers A.. Rogers A .. Zaded: F.K.. Attribute Propagation by Message Passing. Pro
ceedings of ACM SIGPLAN 1985 Symposium on Language Issues in Programming Environments.

June 1985

[Emacs] Stallman R .. EMACS - The Extensible Customizable. Self-Documenting Display Editor. MIT
A1 Memo 519a

[Fei83] Feiler. P .. Kaiser G .. Display-Oriented Structure Manipulation in a Multi-Purpose System.
Proceedings IEEE Seventb [ntemational Computer Software and Applications Conference. Novem
ber 1983

[Har86] Harrison William. A Program Development Envirooment for Programming by Refinement
and Reuse. Proceedings of Nineteeoth Hawaii [ntemational Conference on System Scieoces. January
1986. pp. 459-469

[Hen86] Hendler James A .. Viewing Object-Orieoted Programming as an Enhancement o f Data
Abstraction Methodology. Proceedings of Nioeteeotb Hawaii International COnfereoce on System
Scieoces. January 1986. pp. 11 7 -126

[Jon85] Johnsoo G .. Fisher c.. A Meta-Language aod System for NooJocal locremental Attribute
Evaluatioo in Language -Based Editors. Proceedings of Twelfth ACM Symposium on Principles of
Programming Languages. Jaouary 1985

[Kai85] Kaiser G .. Semantics for Structure Editiog Environments PhD tbesis. Carnegie-Melloo Uni
versity. May 1985

[Lin84] Linton M.. Implementing Relational Views of Programs. Proceedings of ACM
SIGSOFT I S1G PLAN Symposium on Practical Software De velopment Environments. April 1984 .
pp. 132-140

[Mai85] Maier D .. Otis A .. Purdy A.. Object-oriented Database Development at Servio Logic. Data
base Engineering 8:4. December 1985

[Ma18!] Malhotra A .. pazel D .. Bums L. . BROWSER: A Visual Interactive Database Interface . IBM
Research Report RC 8935. January 1981

[Mik8!] Mikelsons M.. Prettyprintiog in ao Interactive Environment. Proceedings of ACM
SIGPLAN/ SIGOA Symposium 00 Text Marupulatioo. Portland OR. Juoe 198 1. pp. 108-116

[Not83] Notkin D .• Structure -Orieoted Users ' Environments. Proceediogs of the Associated Simula
Users' Worksbop on Program De velopment Tools. Luod. Sweede~ . February 1983

(Rei84] Reiss S .. An Approacb to Incremental Compilation. Proceedings of SIGPLAN 1984 Sym
posium 00 Compiler Constructioo. June 1984. pp. 144-156

(Rep82] Reps T. Optimal-Time [ncremental Semaotic Analysis for Syntax-Directed Editors. Pro
ceedings of Nintb ACM Symposium 00 Priociples of Programming Languages. January 1982

(Rep84] Reps T.. Tei telbaum T.. The Synthesizer Geoerator. Proceedings of ACM
SIGSOFT I SIGPLAN Symposium 00 Practical Software Development Environments. April 1984. pp.
42-48

125

• •

[Spf85] [SPF / PDF Guide, IBM Publication SC-34-40 11

[Tei84] Teitelmao W., A Tour Through CEDAR. IEEE Software Vol I No 2. April 1984, pp. 44-74

[Xed85] VM/ SP Editor User's Guide. IBM Publication SC-34-5220

•
126

•

OISCllSSICN :

Dr. Harrison concluded by errphasising that we are not just
interested in programning environrrents - i. e. enviro!1lT'ents for the
construction of programs and systens. 'fuese are simply an exarrple,
and by no rreans the limit. We are also interested in environrrents for
the construction of other kinds of user rrexiels, such as spread-sheets
and specialised editing systens for organisation charts. In general,
wherever users have a perception of structure, W1e v.uuld like to bring
in these kinds of environrrents - environrrents where the user interacts
directly with the structure, rather than interacts with a description
of the structure in a linear syntactic form. nus is the rrore
important point, and so the sub ject of his following lecture is, "If
W1e had tools like this, what might one do with them?"

Prof. Katzenelson asked if Dr.
enviro!1lT'ent for this.

Harrison was designing an

Dr. Harrison replied that, yes, they have been building a
prototype environrrent. They have already mo.de the second set of
mistakes, and are looking forward to beginning to make the third set
o f mistakes! Basically , the environrrent is oriented towards the
"federation together o f lots o f little objects", with general
algorithms that control the overall structure. Furtherrrore, they have
separately been buil ding, on t op o f this environrrent, a small "world
view", of sorts, that incorporates program rraterial in tenns of nested
rrodules, procedures and ccrnnuni cating processes. In fact, it
inccrporates a number of dif ferent paradigms into the editing nodel.

Prof. Katzenelson asked in what way this was different fran
Smalltalk or a Lisp rrachine .

Dr. Harrison explained that his environrrent was different,
primarily, in that it is ai.rred a t being "open-ended". In contrast,
both Smalltalk and a Lisp rrachine provide both permanent paradigms and
a permanent reflection of those paradigms to the user. On the other
hand, his environrrent rrakes use of the "ob ject-oriented" style as part
of the interface, but this is not even necessarily part of tr.e world
view that the user would see. For exarrple, an organisation chart
editor or a spread-sheet can be buil t, fairly straightforwardly, on
top of the object-oriented frarrework . ~reover, there is much less
emphasis on trying to put forward a parti cular l anguage as a way o f
building things. Of course, there are Ire11bers o f his group who are
interested in language issues . And in the following lecture he will
discuss where one can take serre interesting l anguage issues in the
ccntext of environrrents like his.

Mr. Jackson v.undered about the possibility of adding artificial
intelligence to such environrrents, in order to give advice to the
user.

Dr. Harrison thought that A.1. fitted naturally into his kind
of frarre..ork. Furt.herrrore, in environrrents which federate together
lots of different objects, the different technologies used for
building the different objects can be independent. Of course, he had
not done this, yet. However, over the next 10 years, what is going to
happen?

127

Prof. HaberT!l3.Illl ccmrented on how expert systems fitted into Dr.
Harrison's fraI1\E!l>l:)rk. With an object-oriented approach, e are able
to both distribute and localise the expertise, with the t'l:._ ~s of the
objects. This is in contrast to the current approach :;J expert
systems, where the expertise is fairly global. One can dedicate, or
localise, expertise via typing .

•

128

