
A CUTe< OVERVIEl'I OF THE GANDALF SYSTEM

A. N. Habe!m3.nn

Rapporteurs: Mr . L. Mancini
Mr. A.H. Koelnans

185

•

1. Introduction
The purpose 01 this paper is to give the potential user 01 the Gandalf environment generation system

a quick oveNiew 01 whit is available and how the system is to be used. The paper seNes as an

introduction to the tutorial and the reference manuals. It does not address the research issues that

were explored in the Gandalf project. nor does it describe the development history of the project.

Recent war!< in the project has been reported in a special issue of the Journal for Software and

Systems [JSS). which also cites most of the preceding work.

The Gandalf system is a wor!<bench for the creation and devetopment of interactive programming

environments. The system consists of several components that an implementor t uses for designing

and fine tuning a user environme~ t with task· specific too ls and facilities. Most 01 the environments

produced with the Garr:\ !1 system so far are intended to support software system devefopment. For

example. the GandaJl Prototype environment [GP82) provides assistance for program development.

system version control and prOject management.

User environments are generated with the Gandalf system following the scheme depicted below.

DeSCriPtion of Compoler
f-

Soeclfic Facili ties LinK.r

Program. & T abl ••
Ie<

Soecific Facilit i ••
G enerator Target User

f-
Programs Program Environ ment

Common Facifnies

The common facilities form the core of a wide range of target environments. These facil ities are

general enough that parameterization suffices for environment· specific design. The three major

seNices provided by the common facilities are:

• operating system and file system interface

1we re4er to the deSigner, bUilder, and maintainer of an environment as an Impl.m.ntor.

106

• user interface. including terminal 110, cursor motion and help

• database management for the representation of all information in Ihe user environment.

The common facilities constitute a large part of a target user environment. The Gandalf system

alleviates the implementor'S job by providing the code for these common facilities, requiring the

implementor to be concerned only with providing the description of specific facilities.

In order to facilitate fine · tuning and variation, the process of generating the specific facilities for a

target environment has also been automated to a large degree. An implementor does not write the

specific facilities directly in C, but instead writes a conc ise high level specification which is

transformed into C programs and tables by a generator program. These specifications are much

easier to modify and expand correctly than ordinary C code. The implementor must be familiar with

the formalism in which these specifications are written , but needs no insight into how the generator

program works. The current Gandalf System runs on UNIX2 UCB 4.2 and is written in C. User

environments produced with the Gandalf system do depend on UNIX, but not on C. The functionality

deSigned into user environment is determined by the support needs of the task to be performed and

not by the language in which th is support is represented. Environments produced with the GandaJf

system can support any language the environment builder chooses.

2. The Implementor's Task
The Gandalf environment generation scheme is based on the model of generic data structures. The

essence of that model is that one can define the format of a structure and the operations on it without

specifying the actual type of the data elements that will be placed in that structure. Well-known

examples are generic definitions for Btrees, Queues. stacks, etc. The stack operations push and pop,

for instance, can be defined for all stacks without being specific about the type of the data objects

that will be placed in a stack. The common fac ilities of the Gandalf system (the lower middle box in

Fig. 1) define a generiC tree as the general database structure for every target user environment. That

is, the objects created in a Gandalf user environment wi ll be stored in a tree-structured database.

whose nodes can be single objects (atomic or structured) or can be lists of such objec ts. The typical

primitive operations defined on a tree structure are insertion and removal of individual elements or

subtrees. tree traversal and comparison tests.

The essential role of the implementor in Gandalf's generic scheme is to produce a description of the

actual types of the objects that will be created in the target user environment. These type

2UN1X is a registered trademark at Bell Laboratories, N.J.

10 7

descriptions determine the kind of objects a user will be able to put in the generic database and how

the objects will be displayed to the user. The description of these data types corresponds to the

specification of the specific facilities (the left upper box in Fig. 1).

A description of the specific facilities consists basically of two parts. each divided into two subparts:

• syntax

o abstract syntax

o concrete syntax

.semanti~

o static semanti~

o runtime support

The abstract syntaJ(is a BNF·like description that determines the logical structure of the data

objects for the user environment and also defines their relationships. For example. if we were to

design a user environment for electronic mail. we would specify the structure of mailboxes and

mailmessages and we would express the fact that a mailbox can hold a number of messages. The

concrete syntaJ(determines the textual representation of the data objects in the target user

environment and how those objects are displayed on the user's terminal screen . The concrete syntax

drives the process called unparsing which maps the tree representat ion of data objects into text. A

major feature provided in the Gandalf system for describing concrete syntax is .. multiple unparsing

schemes" which means that the implementor can specify more than one textual representation for an

object. For example. the implementor could specify two unparsing schemes for mailboxes. one that

shows the entire mailbox and one that shaWl! all the message headers while leaving out the text.

Static semantic s describes the consistency rules that apply to the objects in the user environment.

A typical example of static semantiCS for programming languages is that a variable declaration must

precede the use of that variable in an expression or statement. An example of static semantics that

might be specified for the mailbox example is that the name of a sender must be known to the system

or that the date of a message cannot refer to some day in the future.

Runtime support is sometimes called dynamic semantics. It concerns the particular collection of

object values in the user environment that depends on the history of the user's interactions wi th the

environment. A typical example for a compiler based system is the propagat ion of changes that

determine whether or not particu lar modules must be recompiled. Another example is the

108

instantaneous notilicatiQn of the arrival of a mail message for logged·on users. In all cases, dynamic

semantics involves the particular development history of the task performed in the user's

environment.

3. Gandalf System Components
The Gandalf system provides a collection of lacilities that the implementor uses at various times for

the description and generation of user environments. These facilities are grouped in five system

components:

• the modular version control environment. SMILE

• the syntax development environment, ALOEGEN

• the semantic description formalism, ARL, with its standard library

• the interface description generator, DBGEN

• the ALOE kernel, providing the common database and I/ O facilities,

SMILE supports programming· in·the ·large. It is a multi · implementor, multi· module environment that

provides faci lities for access control , version control and automatic recompilation. ALOEGEN is an
environment for programming·in·the·small produced by applying the Gandalf ideas to its own design.

It assists the implementor with generating the description of abstract and concrete syntax. ARL is an

imperative tree· oriented programming language that is used for semantic analysis and primitive

operations on data objects in a database. ARL is used in con junction with an extensive library of

routines to access the user interface, I/ O, and file system . DBGEN fine tunes the user interface and

other editor functions unrelated to the database. The ALOE kernel contal'ns the implementation of

the database primitives and of the terminal I/ O routines. It al so contains the standard command

interpreter for the user environment and the mechan ism for ac tivating the run time support routines.

Each of the five Gandalf system components is described in more detail in subsequent sections,

4 . SMILE
SMILE is the environment in which an implementor designs, bu ilds, and maintains target user

programming env ironments (for details see the SMILE user's manual in the GANDALF System

Reference Manuals [GSRM]) . SMILE maintains all the information about a target environ merit and all

the descriptions an implementor has written in a SMILE darabase. A SMILE database is partitioned

into a collection of modules which can be used to encapsu late information. SMILE provides a mutual

exclusion mechanism for situations when more than one implementor is working on an environment.

10 9

This guarantees that changes made by one implementor will not interfere with the war!< 01 others. For

each environment being built with SMILE there will be a common pool 01 modules and a number 01

local user wO/1lspacee as depicted in Fig. 2.

Local

VoTupau

Local

WOTkapace
Local

WOTupace

Local

WoTapac:e

1':'9.2 The SMILE OeveloQment Environment

The common pool contains all the shared module versions 01 an environment design project. All

implementors have access to the shared modules. but at most one implementor at a time has

modification rights to a particular module at a time. When an implementor gets modification rights to

a shared module. that module is frozen in the common pool and a copy is made available in the

implementor'S local wor1<space. The frozen state gives other implementors read or compile access,

but forbids replacement until the implementor who gained write access either replaces the module or

explicitly relinquishes the right to modify.

The components an implementor creates in a SMILE module are typically of three kinds:

• ALOe grammars for the syntax descriptions

• AAL routines for the semantiCS descriptions

• DB grammars for ffne tuning environment behavior

When the implementor decides to create or modify a component. SMILE invokes the appropriate

programming·in·the·small environment for that type of component.

11 0

SMILE provides automatic source and object code control and system configuration. Whenever a

component in a SMILE database is modified, that component and all those which depend on it will be

recompiled in a background process. At the request of an implementor. SMILE will automatically

configure the link of an executable target environment using the appropriate modules from the

common pool and possibly local versions of frozen modules being modified.

SMILE was originally conceived as a programming environment for C with automatic recompilation

and support for programming·in·the·large. It was later extended to a complete environment for the

Gandalf system that the implementor can use for designing the syntax and semantics of programming

environments. The option of writing C program modules is no longer of great importance to the

implementors of Gandalf environments,

5.ALOEGEN
The syntax of a user environment is described in an ALOE grammar that defines the data types of

the projected user environment. The task of producing such a description is supported by the syntax

development environment, ALOE GEN. The interface of ALOEGEN is a structure editor that provides

three kinds of structures at the top level: terminals, also called atoms, non ·terminals , also called

operators , and classes . The implementor can instruct ALOEGEN to create one of these structures or

can enter an existing structure for further editing.

The terminal productions typically describe the primitive objects for the user environment such as

identifiers, numbers and symbols. The implementor can attach lexical routines to these terminals,

although ALOEGEN provides default lexical routines for commonly used terminals. Examples are

found in the ALOEGEN user's manual in the GANDALF System Reference Manuals (GSRMj.

The non·terminal productions describe the structured object types in terms of object classes. For

example, a mail message is described by the non·terminal

MESSAGE sender date subject text

where sender, date, subject and text are classes of terminals and non · terminals . The class "date",

lor instance, may include dates in numeric form and dates in literal form . The class " text" might

consist of the options STRING and FILE . A class acts as a placeholder for a set of types that may be

substituted as a component of a non·terminal, allowing the composition of different types into a single

structured type in a more elegant manner than variant records do. (The mechanism resembles that of

ALGOL68 where non· terminals correspond to modes and classes to unions.)

The example description of a non·terminal production above shows the abstract syntax, but omits

111

•

all other parts, the concrete syntax among them. In the current Gandalf system, concrete syntax is

represented by strings, called unparsing schemes, written in a small representation tangu:lge that

allows the implementor to indicate punctuation and format. For instance. two alternative concrete

syntax descriptions for mail messages are

[OJ from: @1@Ndate: @2@Nsubject: @3@N@4@N

[1J subject(@1 on @2) '" @3

Each two character sequence beginning with an '@' is a formatting command . The numbers in the

unparsing scheme refer to the components in the abstract syntax definition. The symbol @N stands

for "newline" , white the identifiers and other symbols are taken literally. The first un parsing scheme

prints the entire message in full and separates the successive parts by a newline symbol. The second

unparsing scheme places an abstracted form of the message header on a single line. It uses a

procedure call format with sender and date as arguments. For instance. if Jane Smith sent a message

about terminal connections on April 10. 1986. the second un parsing scheme would display the

message as

subject (Jane Smith on 10 Apr 86) '" Terminat Connections

Further details about syntax and additional features such as synonyms and separate windows are

found in the ALOEGEN user's manual in the GANDALF System Reference Manuals [GSRMJ.

6. ARL: Language and Library
Semantics, both static and dynamic. are described in the Action Routine Language, ARL. ARL

allows the implementor to declare operations that can be attached to terminal and non ·terminal

productions. The attached operations are called Action Routines or Daemons. Attaching a daemon

to a production in ALOEGEN is accomplished by including its name in a special field in that

production. Daemons can be considered as record fields that are not direClly accessible to the user.

The concept of a daemon is something not found in traditional languages such as Pascal or Ada.

Record fields in those languages are restricted to data fields. and exc lude the possibility of declaring

procedures or functions as record fields. Daemons transform objects from passive to active data.

The ALOE kernel triggers a daemon attached to an object type whenever an object of that type is

created. modified. or visited in the user environment. The effect of executing a daemon depends on

the kind of database operation performed by the user. A daemon must. for instance, do diHerent

things when a new object is created than when one is deleted or simply visited.

A daemon is essentially a case statement that selects on the particular database operation

performed on the object to which the routine is attachtld . Its general format IS

112

[~.
. -

<declarations)

case CREATE:

case DELETE:

case ENTER:

(other casee>

The database operations are sent to a daemon as an event signal. The major database operations

serve as predefined events that are recognized by the ALOE kernel. In addition to these predefined

events. the implementor can also define his/her own signals and program daemons to be activated

when implementor·defined events occur. Details are found in the ALOE Action Routine Language

Manual in the GANDALF System Reference Manuals [GSRM).

Daemons are written separately with the support of the ARL environment for programming ·in·th.

small. ThiS environment is entered automatically when the implementor indicates to SMILE the wish

to write a daemon (see Fig. 3) .

P...,., . in • ~ •• large

SMiLe I \
ALOEGEN

Fig. J TransrtiOn I r~m Syntax ta S.manticl

ARL is a tree· oriented language which operates on the data trees created in the user environment.

The syntax of ARL is similar to languages such as C and Pascal. but instead of operating on data

objects such as records and arrays. ARL operates on abstract syntax trees. Typical statements in

113

•

ARL modify. examine. and create nodes and subtrees. Daemons written in ARL can monitor and

examine programs being written by the user. and they also have equal status to the user in terms of

editing operations. Daemons are. therefore. a very powerful mechanism for implementing intelligent

behavior into a programming environment.

ARL is used in conjunction with an extensive library. While the ARL language is concerned with

operations and state of abstract syntax trees. the ARL library controls the state of the editor. For

example. the library contains primitives for displaying multiple windows. pop·up menus and error

messages to the user.

In the current version of the Gandalf system. the daemons written in ARL are procedural. The plan

is to replace the imperative style of ARL by a declarative language. ACL. in which the implementor

can describe Assertions and Constraints on attributes. ACL is described in G. Kaiser's thesis [GK).

7 . DBGEN
While ALOEGEN and ARL describe the syntax and semantics of an environment, DBGEN is used to

parameterize the portions of the ALOE kernel that deal with user interface and other environment

issues unrelated to the abstract syntax tree. For example. DBGEN .can be used to specify extended

commands. It is not uncommon that the implementor wants to extend the basic set of predefined

database operations with user commands specific for the user envi ronment. Themail system. for

instance. could be extended with a command that gives the number of messages in a mailbox or that

selects all messages in a mailbox that originated with a particu lar sender. Extended commands are

written in ARL and typically make use of the ARL library. The procedure for defining extended

commands and other DBGEN extensions is explained in the tutoriat on using the New Gandaif system

(NGS) and the DBGEN user's manual in the Gandalf System Reference Manuals [GSRM).

8 . The ALOE Kernel
Neither user nor implementor has to know much about the ALOE kernel or about the generator

program that generates C programs and tables from the grammar descriptions. These parts play an

important role in the Gandalf system. but are invoked automatically when needed. The main parts of

the ALOE kernel are

• the command interpreter

• the database operations

• the signal propagation mechanism for daemons

114

• the un parsing scheme interpreter

• I/O and file system access

The command interpreter is not an incremental parser, but a menu·driven template editor. Each

menu corresponds to a particular class defined as part of the implementor's grammar description.

The command interpreter accepts each piece of user input as a command and performs the

necessary operations on the database.

Concluding Remarks

The purpose of the Gandalf system is to make it easy for implementors to design, modify and

enhance programming environments. It is just a matter of a lew days to generate a preliminary

version of an environment that shows the objects the user can create and provides a simple user

interface. This prototype can be demonstrated to its potential users, which gives the implementor a

chance to take the user's feedback into account. Semantics and enhancement can then be

developed incrementally over a longer period of time. The result is a flexible environment that can be

tailored to the particular wishes 01 its users or to the particular requirements of a project.

115

References

[JS5]

[GP82]

[GSRM)

[GK)

"Special Issue on Ihe Gandalf Project"
The Journal of Syslems and Software, S, 2 (May 85)

Notkin , D. S. and G. E. Kaiser
"The Implementation of Ihe Gandalf Software Development Environment"
Second Compendium of Gandalf Documentation
Department of Computer Science, Carnegie· Mellon University (May 82)

Krueger, C. W.
"The Gandalf System Reference Manuals "
Department of Computer SCience, Carnegie· Mellon University (Jan 86)

Kaiser, G. E. and C. W. Krueger
"Using the New Gandalf SySlem (a tutorial)"
Department of Computer Science, Carnegie· Mellon University (Feb 86)

116

DISOJSSICN

Dr . Harrison asked, have you talked about 'tools ' in general,
but does this not consist of many different sub-tools and should the
differences between them not be taken into account in the construction
of enviroments? This is not done in =rent systems and I feel you
soould be rrore specific about this. Professor Habermann answered, I
tend to agree with you. I wan do~~~i.:.Q ~~:: :-:~~.:..~~ (if a. cool
c\s sucn; I want to errphasize the task to be perforrred. and regard the
tool as an ilr;llerrentation of the task.

117

• • • •

