
,. 

THE OBJECl'IVES OF THE SOF'IWARE ENGINEERING INSTI'lUl'E 

A. N. Habermann 

Rapporteurs: Mr. L. Mancini 
Mr. A.M. Koelroans 

,. 

85 

,. ,. 



.L Introduction 

Our society is becoming more and more dependent on computer software. The production of 

software systems has increased by an order of magnitude but the demand has increased even 

more and keeps rising [gJ . This situation puts severe pressure on the software manufacturing 

community which is plagued by a severe shortage of well-educated and well-trained softw are 

engineers. An additional aggravating factor is the fact that customers demand much higher 

standards of quality and reliability than ten years ago. 

It is generally recogn ized that the software production practices have not kept up with t he 

rising demands for quantity, size and quality. Many software systems are produced with 

technology that dates back to the sixt ies and early seventies . Systems are often written in spec ial 

purpose programming languages, depend on pecul iar hardware features and make little use of 

software engineering princ iples such as information hid ing and data abstraction [aJ . Such systems 

are not portable, error-prone when modified and critically dependent on what their implementor~ . 

can remember. 

The U. S. Department of Defense, a major consumer of software systems, has taken the 

init iative t o improve the software production process [bJ . The DoD Software Initiati ve started in 

the mid-seventies w ith the design of the Ada programming language [cL which largely solves the 

portability problem . The language also provides direct support for so ftwa re engineering principles 

through its package mechanism . 

The Ada language was primarily designed for supporting the individual programmer in writing 

programs that depend on program modules written by others [dJ. In contrast to Ada's elaborate 

support for what is generally known as "programming-in-the-small", the language provides only 

limited support for ' programming-in-the-Large " and practically no support for " programming- in­

the-many" [eJ . Programming-in-the-Iarge is the term for the integra ti on of program modules into 

systems and for matters such as version control and configura ti on management. Programm ing-in­

the-many refers to the fact that software systems are typically generated by teams of people which 

necessitates task coordination and project management. 

It has frequently been stated that improving the software production process is largely a 

matter of developing good methods for programming-in-the-Iarge and · for programming- in-the­

many. This insight made the DoD fol low up on its Ada initiative with various efforts to stimulate 

the use of good software eng ineering principles, methods and tools in practice. One of these 

efforts gave rise to the Software Engineering Institute at Carnegie-Mellon University. 

86 

,. ,. ,- ,. 



" . 

The main objective of t he Software Engineering Insti tu te is technology transition . Its main 

occupation is not basic research, but the transition of ex ist ing technology into routine practice . 

The SEI w ill have achieved its goal if it succeeds in reducing the time lag between the development 

of software production methods and tools in the research environment and their app lication in 

practice. Thus, the main task of the Software Engineering Institute is to fi nd ou t w hat ki nd o f 

prom ising methods and tools exist in the research envi ronment, to understand the producti on 

environment and explore which of the methods and tools are applicable and , last but not least, to 

demonstrate their feasibility through the construct ion of prototype programm ing environmen ts 

and through the training of personnel. 

The Software Engineering Insti tute is to a lim ited extent involved in basic research and 

education. Its role in these areas is primarily one of st imulating research and educa t ion in software 

eng ineering by inviting visitors for extended periods of ti me and by coordinating projects 

undertaken w ith affil iat es f rom government, industry and academ ia. Although these activi t ies do 

not constitut e the major occupa ti on of the SEI , t hey do amount to an effort that is comparable i n_ 

size to that of an average computer science department in the U. S. 

The SEI has establ ished a f ive year plan and has started a number of projects that address the 

issues described in t hat plan . The following sections present the essence of that plan and describe 

in a little more detail the state of Ada-related projects of the SEI. The basic ideas behind the f ive 

year plan are described in an earlier paper written when the projects were just started [fl . That 

paper also describes the SE I's organization and its project planning procedures. 

L The SEI 's Basic Themes 

The Software Engineering Institute wil l focus on issues involvi ng the production and 

maintenance of large software systems. The SE I has decided not to promote a particular software 

development methodology or philosophy, bu t to review the various issues involving the 

production process and product quality. The SE I's major t ask is to demonst rate the available 

software development support technology and show how it can be applied . A major decision has 

been to achieve improvement of software production and maintenance by becoming more 

technology-intensive instead of labor intensi ve. We at the SEI bel ieve that product ion and 

maintenance can be improved cons iderably if they are directly supported by the programming 

environment that provides the software development tools instead of having to rely on labor 

intensive management procedures and tenuous conventions applied by humans. One of the major 

benefits of the technology-intensive approach is that the programming envi ronment can app ly 

consistency checks and can enforce management rules w hich is a time-consum ing task for humans 

and hard to do consist ently, instantl y and accurately all the ti me. 

87 

l 



,. 

For the initial five year period of its existence, the SEI has chosen three areas and three topics 

which together constitute the six themes that serve as guidelines for selecting projects. Subdivided 

into areas and topics, the six themes are : 

Areas of Interest 

1. Technology Identification 

& Assessment 

2. Nature of the Transition Process 

3. Education & Training 

Ll Areas of Interest 

Topics of Interest 

1. Reasoning about the Software 

Production Process 

2. Tools & Environments for 

Software Development 

3. Reusability & Automation 

All three amas concern the essence of the SEI : technology transition . The first area includes the 

task of finding promising software development technology, of exploring who may benefit from it 

and of showing how it can be applied . We emphasize that the SEI's task is assessment and not 

evaluation. The SEI has the task of showing which existing technology can be applied when and 

where, but not of publishing consumer reports of commercia l prod ucts. The motivati on for the 

second area of interest, the Nature of the Transition Process, is that there is ample evidence that 

new technology is often not applied because of reasons that have nothing to do with the merits of 

the technology itself, but with the organization of the site of its potential users. Existing 

management procedures are often difficult to change and project deadlines must be met, while 

application of t he new technology may have legal implications and requires retraining of 

personnel. 

The SEI has set a task for itself in education and in training. The purpose of the education 

program is to increase the number of qualified software engineers in the U. S. The purpose of the 

training program is to provide potential users of specific new techniques with hands-on 

experience in the use of the new tools or methods. The two tasks are clearly distinct. The first has a 

long range goal that cannot be achieved by the SEI alone. The SEI can take the initiative and playa 

major role in the coordinator of educational activities, but the work must be done in close 

collaboration with academic institutions. In order to make this happen, the SEI has started an 

academic affiliates program in which a dozen institutions work with the SEI on the development 

of educational material for software engineering. The status of the SEI's ongoing education 

88 

,. ,. 

,. 

, 

I · 

,. 



.. 

project is d iscussed further on in this paper in the Section describing the currrent projects. In 

contrast to the broad scope of the education program, the SEl's task in training is directed to 

teaching the use of specific techniques that are ready for transition . Training is provided for the 

methods, tools and environments that the SEI prepared for transition and that are on display in 

the SEl's software laboratory. 

2.2 Topics of Interest 

The three main topics of interest concern the existing tools and environments for software 

development, t he issues of management and qual ity control and the development of a 

programming attitude that has the potential of saving a considerable amount of programmers' 

time. The three topics are not particularly intended to lead to specific projects that separately 

explore the issues involved, but are thought of as desirable aspects of projects undertaken by the 

SEI. The fi rst two topics relate to existing technology that can be demonstrated by the SEI in 

prototype programming environments. 

Reusabil ity and automation are at this time the most promising techniques that in combination 

with effective tools and programm ing environments, may substantially increase program 

productivity . Reusability is routinely practiced by sharing of operating system facilities and by the 

use of tools and libraries. However, most software systems contain large sections of code with very 

sim ilar functi onality that are written for each system from scratch . Reusability is often difficu lt to 

achieve because of poor documentation or programming language pecu la rit ies or because of 

dependencies on the underlying operating system . These problems are difficult to avoid when 

programs are directly written in a programming language. Research into the topic of reusabi lity 

tends to move in the direction of program descriptions at a level of abstraction that does not force 

the detailed bindings of a program ming language. Tools, programming envi ronments and 

automation play .n important role in transforming such abstract deScriptions into concrete 

programs that can be compiled or interpreted by ex isting language systems. 

1. The SEI Plans 

At this time it may be too early for the SEI to pursue reusability and automation because thi s topic 

has only recent ly received the attention of the research community . Instead, the SEI has scheduled 

its activities according to t he relative maturity of the available technology. This criterion has led to 

the following sequence of phases planned for the initial five year period : 

89 

,. ,. 
,. 



phase 1 : 

phase 2: 

phase 3: 

phase4: 

the use of the Ada language and associated tools; 

techniques for integrating Ada and Ada tools with existing tool s of o ther 

programm ing environments; 

the transformation of programming environments to intelligent programm ing 

assistants; 

the application of reusability and automation . 

The phases will undoubtedly overlap in time. Each phase needs a period of preparation before 

specific projects can be started that lead to technology transiti'on . We envisage that the focus of 

the SEI's activities will gradually shih from one phase to the next during the five year period. 

Phases will also not die out abruptly. It is for instance almost certain that the transition of Ada 

technology is still of great interest at the end of the five year period . 

The SEI has started its activities with a series of workshops on the sohware factory concept 

which led to a broad discussion of the nature of software engineering. The first two workshops 

took place in March and April of 1985 with a group of approximately ten well-known scientists 

and engineers. The third workshop was held in October of 1985 with an attendance of 

approximately 50 people. The fourth and last workshop was held in February of 1986 with 

approximately 250 people attending. 

One of the major results of the first two workshops was the decision to stand firmly behind the 

Ada language and to work on issues of programming-i n-the-Iarge related to Ada. The attendants 

of these workshops generally agreed that no major breakthrough is to be expected similar to the 

invention of the transistor for computer hardware that will all of a sudden solve the production 

problems associated with the development and maintenance of large systems. This opinion was 

shared by the attendants of the Oct ober and February workshops. It is generally believed that 

improvements must come from improved programming environment su pport combined with 

specific techniques that enables us to write reu sable code and automate the program generation 

process. 

Although there is general agreement among the experts in the field that a revolu tionary 

breakthrough is not t o be expect ed in the foreseeable futu re , there is no general agreement on 

the direction in which to push for an evolutionary improvement of the sohware production 

process. The va rious opinions were clearly stated by the members of a discussion panel at the 

February workshop. That particu lar panel consisted o f two representatives o f industry, one from 

90 

.. .. .. 

t 

.. 



the government and one from academia. The first panel member, representing the large software 

producers working on government contracts, took a strong position in favor o f Ada based on the 

strong desire to make software portable. The representat ive of the government did not oppose 

the use of Ada, but was much more interested in the successi ve phases of the software prod ucti on 

process, starting w ith requirement specifications and moving through design and functional 

specifications to cod ing, testing and maintenance. The government representat ive expressed as hi s 

strongest desire the standardization of the various phases of the production process. The 

representative of the software industry took a strong position in favor of development too ls and 

integrated programming environments for programming- in-the-Large. The represen tat ive of the 

academic world took a position close to that of the represent ati ve of t he software industry, but 

made a strong pitch in favor of Artificial Intell igence Technology, particularly for the rich 

int erpreti ve environment of Lisp. 

The best course is for the SEI to combine these ideas into a strategy that is based on the use o f 

Ada, but emphasizes programm ing-in-the-Large and that moves the evolution of programming 

envi ronments in the direction of the inte ll igent assistant in the style of Artifici al Intelligence. The 

large software producers are right in stressing portabi li ty . The use of a standard Ada is a step in the 

right di rection to ach ieve portabili t y. Standardizati on is undoubtedly desirable, but may come too 

early for issues that have not stabilized . Standardization is possible for t he Ada language and its 

compilers. It is, however, too early to standardize programm ing envi ronments or the phases o f the 

software production process. There are important developments taki ng place in the design of 

programm ing env ironments for Ada that each should be given a chance to mature. Regarding the 

Li sp envi ronment, there is no reason why an Ada environment cannot provi de a sim ilar 

functionali ty and a similar smoot h user interface. The issue is not whether creating such an 

environment is possible for Ada, but whet her someone will do the w ork. The Lisp environment 

took more than ten years to evolve! 

~ Current Projects 

The SE I has organized· most of its activi t ies in the form of projects that are based on the areas and 

topics of interest and on the phases which determ ine the shifting emphasis over t he years. In the 

eighteen months of its existence, the SEI has started eight projects on t he fol lowing subject s: 

1. the Software Factory concept 

2. the Showcase Environment (with the Ada Browser) 

3. Software Licens ing 

4. Software Engineering Curriculum 

5. Ada Appli cati ons 

91 

,. 
,. ,-



6. Ada Technology 

7. Ada Environments 

8. Intelligent Programmer Assistants 

The Software Factory concept was the central topic at the series of workshops discussed in the 

preceding section. The workshops have been very helpful for the SEI to shape its five year plan and 

to determine its areas and topics of interest. 

II The Showcase Environment 

The Showcase Environment and the Software Licensing project were started soon after the SEI 

was established. The showcase project is a continuing effort to build up and maintain a software 

laboratory in which software development tools and environments are on display. The laboratory 

is used for demonstrations and for training. It has been used to show the merits of software 

development environments such as DSEE [hI. the planning tools on Macintosh, the object oriented 

programming style of SmallTalk [iJ. the evolution of user interfaces as in Andrew [jJ. etc. A project 

particularly worth mentioning is the Ada 8rowser which provides editing and tracing facil it ies for 

the visible parts of Ada packages. The designer of a software system written in Ada can look at his 

or her design in different views that show the interdependency of packages and can zoom in on 

packages to inspect detai ls such as the types of subprogram parameters. 

4.2 Software Licensing 

The legal issues project is a first step in the area o f the Nature of Technology Transi ti on . The 

government is for instance faced w ith the fact that software it owns was written with too ls it does 

not own. Questions arise as to how the government can assure that these tools will remain in 

existence for system maintenance. Serious problems exi st with regard to intellectual property 

rights, software licensing, copyrights, etc . The f irst year of th is project was concluded wi t h a 

workshop held in April 1986 which was attended by many of the legal experts on software in the 

U. S. The results of the project are presented in a report that has been submitted to the SE I' s 

sponsors. 

4.3 Software Engineering Education 

The Software Engineering Curriculum project is the main project in the academic affil iates 

program . Its initial purpose is the design of material that can be used in software engineering 

courses. In a later phase, the project wi l l focus on programming environments for software 

engineering education. The team work ing on the course material consists of a small permanent SEI 

staff and a number of visiting faculty from various uni versities who spend a sabbatica l semest er or 

92 

" " 
,. ,. 



,-

the summer at the SEI. The relationship between these visitors and the SEI will be extended over a 

number of years which provides the opportunity for visitors to work on long-range plans. 

The team working on the curriculum design came to the conclusion that specialization in 

software engineering fits best at the sen ior undergraduate and at the master's graduate level. The 

course material is des igned for a masters degree in software engineering. The conclusion is based 

on the observation that software engineering must rest on a solid undergraduate education in 

computer science that contains components of discrete mathematics and electrical engineering . 

The design includes a description of the prerequisites for the software engineering curriculum . 

The initial plans of the education team were discussed in detail with a group of approximately 

2S experts at a workshop in April 1986. The attendants were unanimous in their opinion that an 

important part of a software engineering curriculum must consist of hands-on experience with 

real software systems. Small homework problems are of little interest because their solut ions 

hardly ever extrapolate to large systems. Students should part icipate in an on-going project for arl 

extended period oftime during the summer or while taki ng the software engineering courses . 

It was generally agreed that a software engineering curricul um should not be based on an 

enumeration of topics, but on lasting principles. The attendants distinguished between the 

general scientifi c priniciples of theory and experiment and the discipline-specific principles that 

characterize the activities in a field . A collection of the princ iples that are believed to distinguish 

software engineering from disciplines such as physics, mathematics and psychology are: 

a) the embedded character of software systems 

b) the discrete character of software 

c) the limited knowledge of the resources 

d) the decomposability of software problems 

Software engineering may share each of these principles taken separately with some other 

discipline, but the collection is what makes it clearly d istinct from other disciplines. 

Software systems usually perform a particular function in a larger organization that exists 

outside of the software world . Th is embedded character im poses evaluation criteria on software 

that depend on extraneous factors determined by the larger organization in which the embedded 

software system may play only a minor part. Software engineering is in this respect quite different 

from physics which expl icitly states as one of its princi ples that its laws are universal. (There is in 

this respect more resemblence with biology if one considers the relat ionship between a particular 

animal and its habitat.) 

93 

,- ,- ,-

\ 

l 

I. 
l 



· , 

Another distinction between software engineering and physics is the discrete character of 

software engineering problems in contrast to the continuous view physicists have of the natural 

world , The discrete character of software enineering brings the discipline closer to mathematics 

with which it has in common the basic concepts of formal models, enumeration, abstraction and 

inductive proof, Software engineering is, on the other hand, quite distinct from mathematics in 

that its objects do not have complete control of the resources they use, System behavior may 

depend on operating system facilities and hardware that was designed independently, or on the 

degree of concurrency which may vary from time to t ime, Such factors do not playa role in 

mathematical theories, 

Decomposability might also be called the principle of divide and conquer , In this ' respect 

software engineering is again comparable to mathematics, but different from physics or 

psychology, Mathematician and software engineers believe that they can decompose a problem, 

solve the parts separately and combine the solutions of the subproblems into a solution of the 

initial problem, Physicists and psychologist work under the hypothesis that the whole is larger than 

the sum of the parts which implies that there is always an aspect of the initial problem that has 

escaped consideration when one attempts to partition a problem of their domain . 

The discussion on the principles of software engineering has given the education team a 

guidance as to how to present various topics in the curriculum , Other sources of information that 

contributed to shaping their plans were the experience at Wang Institute and the perspective on 

future developments which largely coincides with the observations of the Software Factory 

workshops. A digestion of all the material and ideas collected by the education team has led to a 

contract with a well-known publisher for a series of monographs on a variety of topics in software 

eng ineering, 

4.4 Ada Appli ca tions 

The Ada Application project resulted from the October workshop on the Software Factory 

concept, A review of the state of Ada at that workshop resulted in a three part conclusion: 

1) The initial difficulties with writing compilers for Ada have been overcome, More than a 

dozen Ada compilers have passed the validation test. Although Ada compilers now compile 

correctly, a lot of work is still needed in making the object code more efficient and in building 

optim izing compilers, 

2) The Stoneman Report on the APSE Ada envi ronment is based on outdated technology 

of the midseventies, It is too early to freeze the design of programming env ironments for Ada, 

There are several developments going on that shou ld be tested on the commerc ial market. 

94 

,. 
,. 



3) There is a lack of good teaching material for Ada. There are several beginners texts, but 

most take a bottom up approach . The Ada reference manual is of good quality for the expert Ada 

compiler writer, but not suitable as instruction manual. Teaching material is needed that takes a 

top down approach starting with the central modularity concept of Ada implemented by 

packages. 

It seems that software producers have trouble introducing Ada, because the time can hardly be 

spared for teaching programmers the proper use of Ada. The lack of time for Ada instruction is 

primarily caused by the firm time commitments to government contracts that exclu.de all activities 

from the budget that do not directly contribute to the goal of that contract. 

A working group at the October workshop discussed a plan to create a government contract 

specifically for the purpose of introducing Ada. The discussion resulted in an SEI project in 

collaboration with the STARS program (which is another component of the DoD 's Softwar@ 

Initiative) . The project involves the introduction of Ada in a number of industries that are 

interested to compare the use of Ada with other languages they have used and are willing to 

experiment with Ada support tools or Ada environments. The industries w il l write a proposal for 

rewriting a system of more than 100,000 lines of code in Ada. Part of the task is to observe what 

kind of development tools are used to support Ada and how effective these have been. The task of 

the SEI consists of monitoring the projects, organize meetings to let the participants "compare 

notes" and to summarize the results. 

4.5 Ada Technology 

The SE I tries t o make use of its comparative advantage that it has because of being part of 

Carneg ie-Mellon University and because of the particular expertise of the people at the SEI. A field 

in which the SE I has particular expertise is in compiling techniques and automatic compi ler 

generation. Since there is still room for improvement in the area of bu i lding Ada compilers, the SEI 

has started an Ada technology project that focuses on compiling techniques and tools for compiler 

construction . 

The tools provided by this project center around the IDL description language that has been 

used to write the well-known DIANA description of Ada . The project is undertaken in 

collaboration with the University of North Carolina. The results w il l be made available to compiler 

writers and training in the use of the tools will be provided by the SE I. 

95 



4.6 Ada Environments 

The Request for proposal that came out in the spring of 1984 asked for an eva luation of the ALS 

and AlE Ada environments that had been cont racted by the U. S. Army and the U. S. Airforce 

respectively. At the time the proposal was submitted in the summer of 1984, it became clear that 

the ALS system would still be in its early stages and that the AlE system would not be available at 

all. (The AlE Ada Compiler has finally been announced for September 1986 without an Ada 

Environment!) Since by this time several Ada compilers were reaching the market, we proposed to 

explore the environments that these compilers were using instead of evaluating a particular 

environment. Final discussions resulted in the SEI's Ada Environment Evaluation project that has as 

its main goal to create a method for evaluating these vastly different environments. 

The term "evaluation" in the project title is somewhat misleading, because no specific 

evaluation is contremplated, but a study is planned of how Ada env ironments can be evaluated 

[kJ . The project has just concluded its first year with interesting results and plans to continue with a 

study of how Ada runtime and dynamic debugging environments could be evaluated . The Ada 

environments project has primarily focused on issues of programming-in-the-Large. It did not 

want to repeat the elaborate validation process that Ada compilers have to go through to get 

official approval. The project did also pay little attention to issues of code efficiency or 

optimization . The project looked at an Ada compiler as just one of the tools in a programming 

environment. If one looks at a compiler that way, issues of importance are things such as the 

quality of the error messages, the compilation speed, the linking procedures, etc. The general 

issues of primary interest in the project were those of system version control , configuration 

management, access control and project management. 

It was clear from the start of this project that programming environments are hard to compare . 

Instead of basing the study on a comparison , we categorized the issues into four areas that 

respectively concern 

1) functionality 

2) user interface 

3) context util i zation 

4) performance 

One can easily generate a list of functions that an environment must provide in order to handle 

source versions, documents and object code. One can also speci fy in general terms what kind of 

facilities must be available for system configuration management and for system construction . 

96 



Environments may offer these funct ions in different forms or in different sets, but expert 

programmers will soon find out whether or not the necessary facilities are present. 

The situation is slightly different with the user interface. There are some general characteristics 

that every user interface must have, but in contrast to the functionality, user interfaces tend to 

have specific characteristics that strongly depend on the type of input-output device used . Among 

the general characteristics are properties such as "the response to an editing command must be 

less than a second", "the interface must distinguish between an expert user and a novice" or "for 

long operations, the interface must show at regular intervals that the system is still alive" . The 

specific characteristics, however, depend on factors such as having a bitmap display or character 

terminal, whether mouse control is included, etc. Although the facilities offered by these. devices 

differ too much to make a useful comparision, it is not hard to list for each system separately some 

properties one expects a good user interface to have. We did that in the preliminary report of the 

project that was submitted to the SEI 's sponsors (II. 

Another criterion that determines the quality of a programm ing environment is the degree to 

which the available hardware and sohware resources are utilized . A good programming 

environment will make use of the potential execution speed of a large machine, will not do 

superfluous paging when suffic ient memory space is available, will make use of existing software 

and existing network facilities, etc. For each host machine and each host operating system one 

must determine which specific facilities are provided and how well the programming environment 

makes use of these facilities . 

Performance has already been mentioned in passing in the paragraph on user interfaces. It is of 

course a matter of concern for every part and every aspect of a programming environment. Our 

study shows that at this stage of the development of programming environments special attention 

should be paid to the performance of linking procedures. Some compilers make the impression of 

being fast because programs are compiled in small pieces, but the advantage is lost when it comes 

to linking modules into systems which for some language processors is not much fa ster than if all 

modules were compiled together. 

In the study of Ada programming environments, we found that designers have introduced 

three different models which are represented by the Rational machine, the DEC-Ada system and 

the ALS system . The philosophy of the Rational approach is that everything is Ada and hardware is 

specifically designed to make this approach feasible. Ada is not only used as the language for 

writing programs, it is also used for programm ing-in-the-Large. The interactive command 

language for is Ada, the user can write Ada command procedures, version control is done with Ada 

libraries. The only other thing besides Ada is the concept of text which is needed for 

documentation. 

97 



The opposite approach was taken by the designers of DEC-Ada. Here the philosophy was to 

integrate Ada facilities with an existing environment which already provides extensive support for 

programming-in-the-Large and also offers the benefit of extensive program libraries. Th is 

approach makes it possible for the user to live in a multi-language envi ronment in which 

subprograms written in various languages such as Ada, Pascal and FORTRAN can be used in each of 

the language systems. The user of DEC-Ada does not work in the uniform Ada world as the user of 

the Rational machine, but has the benefit of using a rich environment of mature software. 

The ALS approach is in the tradit ion of operating system design . It is based on the view that an 

Ada environment should be an interface between an operating system and its users in the style of 

a Database Management System. In this approach, each user command can be treated as a 

transaction that is controlled by the environment which performs all the necessary actions that 

have to do with version control, access control, etc. The idea behind this approach is reflected in 

the name ALS which stands for Ada Language System . The ALS differs most from the other two i" 

the automatic checks it performs and in including management procedures as part of the 

standard user interface. A consequence of this approach is that ALS forms a layer on top of an 

existing system that hides this underlying system from the user. 

4.7 Intelligent Program Assistants 

We expect that programm ing environments of the future wi ll show a more intell igent behavior 

than today's rigid env ironments. The term "intelligent" is used here in the behavioral sense of 

"what one expects an intelligent being to do" . We expect that the development of t he field will 

lead to a type of environment that interacts with its users more in the style of an assistant than of a 

toolbox. One of the main differences between an assistant and a toolbox is that the assistant will 

need only little instruction and apply his own judgement as to what should be done automatically, 

possibly without involvement of the boss. Another main difference is that the assistant has a large 

tolerance in understanding his boss. He is able to interpret commands depending on properties of 

the communication language and on factors such as the context and the history of the interaction 

between the assistant and the boss. 

The technology is emerging that makes this kind of environment possible. It is, however, not 

yet ready for transition into routine practice. We do believe that this technology has the attention 

of the research community and that the SEI should prepare for technology transition in this area 

during the last phase of the current five year plan. An important part of the preparation is planned 

as an SEI project in which we explore what technology already exists that may lead to the desired 

goal . It is not surprising that the SEI looked in the first place at AI technology. At this t ime the 

project studies in particular the various Lisp environments and the extensive assistance provided by 

98 



these environments for program development. The intermediate results are made available in the 

SEI's software laboratory. 

The strength of a Lisp environment is not so much in the language, but in the rich collection of 

facilities provided by the envi ronment. We bel ieve that the functionality of a Lisp environment 

could also be provided by an Ada environment. However, Ada is ten years behind t he Lisp 

development. It will take a major effort to create an Ada environment that is as rich as a Lisp 

environment. We believe that such an effort should be given high priority because programmers' 

productivity will not increase enough without it . 

One feature of the Lisp environment does not easily carryover to an Ada environment: the 

interpretive nature of Lisp. The great advantage of the interpretive approach is t hat one does not 

need a dynamic debugger that operates on the object code. In a Lisp environment one can 

immediately test a function in the same envi ronment in which it is written. Efficient object code is 

produced at a later stage by a Lisp compiler when debugging with the interpreter has beeR 

completed . 

Summary 

The Software Engineering Institute was started as the result of the DoD's Software Initiative. The 

primary purpose of the SEI is the t ransition of promising software development technology from 

the research environment to routine practice. The SEI has put together a five year plan and has 

scheduled successi ve phases in which it will introduce increasingly advanced technology. The first 

phase involves the Ada language and the tools that are needed for constructing large software 

systems. 

The SEI discussed its plans extensively with the leaders in the fie ld o f software engineering and 

with the software producers and users at large. As a result of these discussions, t he SE I staff found 

its vi ewpoint confirmed that it should not adopt a particu lar software development methodology. 

Instead, the SEI will show how improvement of t he product ion process can be achieved by 

replacing the traditional labor-intensive approach to managing a software project by a 

technology-intensive approach . The SE I demonstrates the technology t hat is ready for transition in 

its software laboratory in which it also offers opportunity for training. 

The SEI has organized most of its work in project form . It has started eight projects that deal 

with legal issues, with existing technology and with future developments. Although basic research 

and education are not the primary concerns of the SEI, they constitute an integral part of the 

program . In education, the focus is on a software engineering curriculum at the graduate level. 

99 



The education project is a joint effort of the SEI and a number of participating academic 

i nstituti ons. 

The first results of the work at the SEI are becoming available . The software licensing project 

has submitted a report that has served as the basis for a public debate on software ownership and 

licensing arrangements. The Ada Environment project has produced a report in which it publ ishes 

the results of the experiments it conducted for the validation of its method for the evaluation of 

Ada environments. The showcase project has built up the SEl's software laboratory in which 

several programming envi ronments and development tools are on display. 

In conclusion, the SEI has started a number of activities that d irectly serve its objective of 

technology t ransition . The fi ve year plan specifies definite goals that are be ing achieved by a 

number of projects that initially focus on technology around the Ada language. The SEI will be 

successful i f it can maintain and extend its contacts with the potential users of the advanced 

software development technology it is able to demonstrate. 

100 



References 

(aJ Parnas. D.L .• 

" On the Criteria to be Used in Decomposing Systems Into Modu les" 

Comm . ACM. VoIU. no 12 (Dec 1972) 

[bl Martin. EW .• 

"Strategy for a Department of Defense Software Initiative" 

Computer. Vol .l.§. no 3 (Mar 1983) 

[cl " Reference Manual for the Ada Programming Language" 

U.S. Department of Defense (Jan 1983) 

(dl DeRemer, F .. H. Kron 

"Programm ing-I n- the-Large versus Programml ng-; n-the-small" 

ACM SIGPLAN NotICes (June 1975) 

(el Kaiser, G.E., A.N . Haberman 

" An Environment for System Version Control" 

Proc. IEEE Spring CompCon, San Franmco (Feb 1983) 

(fJ Barbacci , M .R., A .N. Habermann, M. Shaw 

"The Software Engineering Insti tute : erldg ing Practice and Poten t ia l " 

IEEE Software, Vol £, no 6 (Nov 1985) 

(gJ Boehm, e., 

"Software Engineering Economy" 

Prentice Hall , Englewood Cli ffs (June 1981) 

(hi Leblang. D.B., R.P. Chase, Jr 

"Computer-Aided Software Engineering in a Distributed Workstation Environment" 

Proc. ACM SIGSOFT/SIGPLAN Symposium on Practical Software Development Envi ronments 

Pittsburgh, Pa (April 1984) 

(i l Goldberg, A., D. Robson 

"Smalltalk-80: The Language and its Implementation" 

Addison & Wesley, Read ing, Mass (March 1983) 

1 0 1 



(jJ Morris, L, L Howard, F. Hansen 

"The Andrew Windowing System " 

Techn. Rep. Carnegie-Mell on Universi ty (Jan 1986) 

(kl Weiderman, N.H., A.N . Habermann, M .W . Borger, M .H. Kl ein 

" A Method for Evaluating Envi ronments " 

submitted to the second ACM SIGSOFT/SIGPLAN Symposium 

on Practical Software Development Env ironments 

(II W eiderman , N.H., A .N. Habermann, M .W . Borger, M.H. Kl ein 

" Preli minary E'l aluation of the Ada Language System " 

Techn ica l Repc j EI-86-MR-6, Carnegie-Mellon Un iverSity (Apr 1986) 

102 



DISOJSSICtl 

The discussion was 
Nevertheless same remarks 
v.orth rrentioning. 

postponed to the end of the seccnd lecture. 
arose during the presentation which are 

Professor Randell asked whether, in the speaker's opinion, the 
variance of software quality and expertise across industry is so great 
that increasing the present average v.ould be revolutionary. The reply 
was that indeed such a variance exists, so that different situations 
may be found that accordingly require different rreasures. ranging fran 
managerial rreans to formal techniques. 

Professor Lee asked whether any rreasure of software quality and 
productivity has been developed within the projects carried on at the 
Software Engineering Institute (SEl) at Carnegie-:'1ellon University . 
Professor Habermann stated that particular emphasis is beir.g placed on 
this aspect. 

10 3 



• • • • 


