
•

•

•

•

1. 21

A COTS INFRASTRUCTURE FOR DOMAIN
SPECIFIC DIAGRAM SEMANTICS

R Balzer

Rapporteur: Avelino Zorzo

I. 22

«

A COTS Infrastructure for
Domain Specific Diagram Semantics

Bob Balzer

lSI

balzer@isi.edu

H

N
W

Abstract (1 of 2)

We have extended PowerPoint to provide a COTS framework for
enabling external programs to incrementally track and respond to
changes being made by a user to a diagram. The responses can:
- annotate the diagram with domain specific errors, suggestions, and/or

analysis results

- make further changes to the diagram which compensate for, or are derived
from, the user's changes (ala Sketchpad)

- make changes in the external environment to reflect the changes and state of
the diagram (i.e. the diagram is a controller for the external environment)

PowerPoint provides the graphic user interface, editing engine,
and persistent storage for the diagrams being constructed.
Instrumented Connectors provide the means for monitoring user
changes to these diagrams.

- - - -

H

N
".

•

Abstract (2 of 2)

A protocol communicates these changes to external programs so
that they can track and respond to them. This protocol also
allows those programs to annotate the diagram and/or make
further changes. Both parties can create atomic transactions so
that "intermediate" states are neither analyzed nor displayed. It
also provides synchronization mechanisms so that these external
programs can track the user's focus as it changes among diagrams
in the same or different documents.

Three different graphic design and analysis domains have been
created using this infrastructure:
- Software Architectures
- Satellite Networks
- Survey Authoring

They will be demonstrated in this presentation.

H

'" en

1. 26

ACME Architecture Editor

c++

OLl
Lessons Learned

• PC COTS Functionally Rich

• PC COTS Highly Adaptive

• Inst. Connectors Crucial (Visibility)

• No Architecture Mismatch

.•
~

Persistence

Visual Basic

POPART/Lisp

H

N
--J

Effort to Build

• Elapsed Time 2.5 Weeks
• Development Time

- PowerPoint Driver 7 Days
H

- Instrumented Connectors 1 Days N
00

- ACME Analyzer 5 Da~s
Total 13 Days

• Code Size
- PowerPoint Driver 15 Pages
- Instrumented Connectors 2 Pages
- ACME Analyzer 10 Pages

Total 27 Pages

I. 29

, ~ (j)
(j) ~

> ~
(j) ~ » 0 U
~ S (j)

I ~ » (j) .~ ., ~

~ » ~ Q , ~

~ u
~

<
. L

•

Doctrine

Refining an Architecture
r'" • i I..... I,....,·

pcnment
l

II
Control ::::;:::::::,r < __

pc nme n!
Contro l
~

GeoServer i" ' I I 1 Reasonmg I
•

A • New diagram contains (empty)
sub architecture for selected
component

for Track Server

• Sub architecture wired to outer
architecture through refined
component

• Shadow on refined component
indicates it has a sub architecture

.. ' B

u
c iLE.J -

H

W
o

•

Doctrine

JJJ"pJay

1 'Il Server n 1' ''''·
GeoServer i -- am U Doctrine 1

• Several components abstracted
into a single one

• New diagram contains selected
components as a subarchitecture

• Subarchitecture wired to outer
architecture through abstract
component

- -----~~-~- - -{!i]

H

W
>--'

Experiment

~

1.33

o

•

1. 34

H
0

+-J
.~

~
Q)
()

~
~
Q)
rj)

~. . .-
S

rj)
~
Q)

~

~
H
b1)
~
.~

Q
u
~
.~

U
C)

~
(/J

~
.~

~

S
0
Q

1.35

'r;

Features

• COTS Graphic Editor
- Components & Connectors
- Persistence
- Multi-Level Architectures Value Added

• Graphical Refinement
• Graphical Abstraction

• User Defined Styles
• Interactive Style-Based Analyses

- Incremental or Snapshot
• Interactive Style-Based Behavior Animation

- Simulation or instrumented execution
- - - -

H

W

'"

1.37

ft

? . ,--

Netwalk Style Specification rl Attribute
Validity • •••• • • • •

IL-J'

Satellite ~

Translati
on Box

I

U

Comsat ~ ~ __ .• ,-:J"'i!

-~. :~{~t.-~/--

'--- •. (J.~
fI"

Sensor 1---« . ~
I

'\, .:... .
.-C.:\):

SpaceStation r -... -~ 1., .~~~t~rl
• :::c::::::::::: j lM.

I I

, 1 I--l Authorizatior I I • I I
DesIgner

L S~ H Security

L...j Topology

. Latency
I

L
L _

Organization's
Path Studies 1 LJ--H View

Throughput --
leCurity Lev+ pataTyp1

I

~f:,.~
<lO~

/$v'C!..
D D I ~f.~ I Jfj __ ""r;; rrotoco] cprganization I~

- - -

H

w
(j)

-

•

ACME Architecture Editor

c++

Persistence

aLl
Visual Basic

Lessons Learned

• PC COTS Functionally Rich

• PC COTS Highly Adaptive

• Inst. Connectors Crucial (Visibility) POPART/Lisp

• No Architecture Mismatch

H

w

""

"Architecture Mismatch"
Arch.

• Object Oriented DB

• GUI Builder
• Event Broadcast

• RPC

ACME Editor
C++

aLl

Acme Editor
Multiple DB
Documents
Powerpoint
~Msg .

OLE
...

,

Persistence

Visual Basic

POPART/Lisp

... ...

H

"" o

ACME Editor
C++

aLl

"Architecture Mismatch"l Acme
Problems Encountered

• Excessive Code Size

• Poor Performance
• Need to Modify COTS
• Error Prone "Make"

90kb ed/IC
150kb anyl
+ ppt + lisp
< Isec.
None
N/A

Persistence

Visual Basic

POPART/Lisp

H

"" ~

ACME Editor
C++

OLl
"Architecture Mismatch"l Acme

Assumotions Mismatch
• Nature of Components

• Nature of Connectors
• Global Arch. Structure
• Construction Process

Ppt. controls
Syn. events
No interfere
None
N/A

- - - -

Persistence

Visual Basic

POPART/Lisp

- ..

H

".
N

•

•

•

•

•

1.43

DISCUSSION

Rapporteur: A vel ino Zorzo

Lectures One and Two

During his talks Professor Balzer presented several li ve demons trations of hi s approach for
mediating interactions between different software components. [n his first talk he mentioned
the importance of the app roach with some demo nstrations, and in the second talk he
concen trated on the demonstration of the inclusion of ex tra capabil ities fo r PowerPoint.

He started the presen tation inquiring about how to deb ug the connec tions between several
components (software) . Promptly a member of the audience asked what Professor Balze r
meant by deb ugging an arch itec ture? Professor Balzer answered saying that it is done by
checking runti me structures, the ones that implement the design architecture. Professor
Balzer also sa id that it is important to know if an architecture is doing what it is supposed to
do, so it is desirable to be able to observe a certain se t of things: contro l fl ow, the
in termediate values that are being computed, and so on. Traditionally this is done by
debugging usi ng trac ing tech niques, inse rting breakpoints, Another point is the
possibility of inserting faults in the components to check if they are really robust. Professor
Balzer men tioned two kinds of fa ul ts that one might be interested in checking: arch itec tu re
faults, if the connections between components are functioning the way they are supposed to;
and environment fa ults, if the component is performing according to a set of expectations.

To perfo rm this type of checking is not easy because components are usually black boxes
(written in several different languages) , Professor Balzer said. One cannot check the inside
of components, but one can know what is happening in the architecture by checki ng what is
happening in the connectors of the componen t. Professor Balzer pointed out that we have to
focus on technologies that allows us to see what is happening in the architecture level, on the
interactions that happen between a vari ety of different kind of connectors. Professor Balzer
mentioned that he has an abstraction of architecture connectors, which is a conduit for all
interactions that occur between components modules, e.g. network sockets , remote
procedure calls, CORBA, etc. He is working on a technology that allows the insertion of a
program in the middle of that connector. The program is an arbitrary program that can do
things like instrument and check the data that is flowing between components, e.g checking
data, inserting additional computation.

Professor Shaw asked if one shou ld do this. Professor Balzer answered it later, when
discussing one of the examples, saying that one might want some form of protection for his
data, so he could leave this data encrypted in the file system, and insert a program that would
decrypt the data for someone with the rights of accessing that data.

Professor Balzer inquired of the audience about what one could see about an architecture,
and then mentioned that if all we have is an API of a component, then we can see some of its
behaviour. On the other hand if yo u can see the operating sys tem interface that the
component has to the sys tem, then you can see more. If you can see the connectors the
component has with other components , then you can see even more. If you can see the
graphical user interface of the component, then yo u can see the entire behaviour of the
component.

Professor Balzer said that, basically, Windows and Unix, are built around Dynamic Load
Libraries (DLLs). So several serv ices (operating system, network services, CORBA, ...) are
packages provided by a manufacturer. Components use some modules of those libraries.
The approach Professor Balzer presented was a way of pasting an ex tra program in front of
particular elements. The only req uirement was that the program (mediator) had to have the
same API. Professo r Balzer said that thi s becomes very powerful. In both Unix and
Windows, the des igners have decided to pack everything has a DLL. Professor Balzer
mentioned that he can mediate operating system services, network services, and so on.

1. 44

Professor Balzer said that this is not a new idea. It is an old idea, and the earli est he could
recall about thi s idea was from an advice system in LISP in the earl y seventies. That system
would allow you [0 put you r own code around fun ctions call s. In LISP everything was a
fUllction.They used thi s for deb ugging or for creating extra capabilities .

Professor Randell asked if at the heart this was not what nowadays is called reflection.
Professor Balzer did not agree with that. Professor Randell then said he was not saying it
was reflection, but it cou ld be part of the mechanism that is being used for achieving
reflec ti on. Professor Balzer said then if there was reification then thi s certai nl y wou ld
provide the means for doing that.

From this point on, Professor Balzer presented a set of examples of using hi s approac h.

l. Professor Balzer first used Microsoft Word to show what ca ll s are used by the edi tor. He
showed a mediator that would allow, prohibit, or check around 460 calls to the Windows
kernel. During the demonstration Professor Balzer, using the mediator, checked the
allocating memory service (global, local and virtual memory allocation). The mediators were
placed between the application (Microsoft Word) and the operating system (Windows).
When Word was made act ive on the screen, a bunch of allocation call s was used by Word,
and the mediator showed what were the alloca tions Word asked the operating system.
Professor Balzer showed al so what wou ld happen when some services of Word were used
(it was poss ible to see, in the mediator, that Word was using the services for a llocating
memory). Professor Balzer pointed out that one could prohibit the allocation of memory
from Word, and the result would look as if the machine was overload.

2. The second application Professor Balzer started to demonstrate was the Microsoft C++
Development Environment. He compiled a small program with 2 errors on it. During the
demonstration of this environment Professor Balzer faced some technical problems and was
not able to finish hi s demonstration. Professor Balzer mentioned that the idea was to show
the in teraction between the components of the Microsoft C++ Development Environment,
e.g. the Compiler talking to the Environment, and so on.

3. Professor Balzer said that he also has a spy program that allows him to know which
interfaces a program is using, and if wanted he could also extend the arc hi tectu re interface.
The third application of a mediator he presented was an encryption archive system. He used
Netscape to access some files fro m a directory on his computer di sk. But what he could see
was just a table of conten ts and an archive. The archive contained all files in an encrypted
format. So he could not access the files. Between the Netscape and the File System there is a
connector that is a piece of instrumentation that allows you to see the files in the archive, as if
they were part of the file system. Professor Balzer said that he could do the same thing for
the Emacs, but this would not be interesting because it is not graphical. He showed the same
kind of access using Windows Explorer. In reality the files that Explorer was showing were
not in the file system, but the Explorer believed they were there. Professor Balzer said that
basically he created a virtual file system.

Professor Balzer pointed out that the same idea could be used to integrate COTS products.
As an example he mentioned that he has integrated Eudora and Emacs using this approach.

4 . The fo urth live presentation made by Professor Balzer was to show the integration of
Netscape navigator and Microsoft Access. Netscape was used as a tool for collecting
information (a survey) and the data was inserted in a data base, using Access. Professor
Balzer asked Professor Randell to fill in the survey. After the form had been completed and
the data submitted, the mediator would grab that information and insert it in the database.
Professor Balzer showed also that one could insert some kind of logic to check if the data
that was being filled in was correct.

c

•

c

f

,

•

I. 45

A member of the audience asked if Professor Balzer had the docu mentation for the
specification of the interfaces between the components. Professor Balzer said he believed
everyth ing was documented.

After an inquiry if someone e lse dec ided to have a brigh t idea of inserting a new mediator
whe re there was a mediator, Professor Bal zer said it would work.

Professor Balzer said that thi s technique could be used for ex tending COTS products as we ll
as to res trict COTS products. Professor Balzer is interested in safe execution environments.
One of the things he is looking at is bui ld ing an implementation of connectors that are non
bypassable. He mentioned that he is very close to hav ing a security manager fo r Windows
NT that is essentially programmable by a user. Professor Balzer explained that basically thi s
safety execution environment put a program inside a cocoon, and looks at all its interactions
with the outside. The idea is to make too ls like web browsers safer, e.g., avoid informati on
from being taken from your machine. The main interfaces Professor Balzer is worried about
are the operating sys tem interfaces, and he mentioned that there are onl y a few of them. For
instance there are few functions that allow you to access files (under a dozen).

When Professor Balzer was sayi ng that operati ng system interfaces are well documented, but
you st ill have to make sure you have thought all the ways people could find security flaws on
them, Professor Randell pointed out that the who le history of people finding security fl wws,
or at least a very large amount of it, is by people realizing the implications of things that were
thought not poss ible to do.

Professor Balzer said that the advantage of using hi s approach is that the con trol is outside
the operating system, and someone does not need to wait for the manufacturer to go and fix
it. For example, if yo u find there is a problem somewhere yo u can disallow the use of that
service until you have found a way of solving it. The point Professor Balzer was trying to
make is that it is under your contro l, so yo u can do whatever you want . At this point Mr
Jackson mention that a very conservative way of doing this would be not to allow a program
to use anything, and then start to allow things progressively.

5. The last demonstration Professor Balzer presented was to show how he extended
Microsoft PowerPoint. His PowerPoint has extra functionality, and he showed some
examples of this extra functionality, e .g. topology analysis. Professor Balzer mentioned that
compared to PowerPoint what was included is tiny. Basically PowerPoint provides the
syntactical part of a domain and the analyser connected to the PowerPoint includes some
semantics to it, e.g. satellite domain, survey domain, data flow animation .

Professor Balzer said that some of the COTS interfaces were very well documented, and
everything a user can do, a program can do as well.

1.46

