
REXX - A PRACTICAL APPROACH TO PROGRAMMING

M. Cowlishaw l

Rapporteur: M.J. Elphick

73

L

,. ,. ,.

REXX - A Practical Approach to Programming

Mike Cowlishaw. IBM UK Scientific Centre, Winchester, S023 9DR

Abstract

REXX is a flexible personal language that was designed with particular attention to feedback from users.
The electronic environment used for its development has evolved a tool that seems to be effective and
easy to use, yet is sufficiently general and powerful to fulfil the needs of many professional applications.
As a result REXX is very widely used in IBM, and has been implemented for a variety of operating sys
tems and machines.

The philosopby of the REXX language reflects the environment in which it was developed. A strong
emphasis on readability and usability means that the language itself provides a programming environ
ment that encourages higb productivity while reducing the occurrence of errors.

REXX is useful for many applications, including command and macro programming. proto typing, and
personal programming. It is a suitable language for teaching the principles of programnting, since it in
cludes powerful control constructs and modern data manipulation. It lets the student concentrate on the
algoritluns being developed ratber than on language mechanics.

Introduction

There are two parts to a programming environment. There are the tools that support and assist the
programmer to create programs. a nd there is the programming language that the program mer must use.
Each of these parts is important. In this paper I am going to concentrate on the role of the programming
language. by describing one that is specifically designed to improve the environment of the user - the
programmer.

The REXX programming language has been designed with just one objective . It has been designed to
make programming easier than it was before, in the belief that the best way to encourage high quality
programs is to make writing them as simple and as enjoyable as possible. Each part of the language has
been devised with this in mind: providing a programming language that is by nature comfortable to use
is more important than designing for easy implementation.

The first section of this paper introduces the REXX language. and the othe r two sections describe the
concepts and design environment that shaped the la nguage .

Summary of the REXX Language

REXX is a language that is superficially similar to earlier languages. Howe ve r. most aspects of the lan
guage differ from previous designs in ways that make REXX more suited to ge neral users. It was possi ble
to make these improvements because REXX was designed as an entirely new language. without the re
quirement that it be compatible with any earlier design .

The structure aLa REXX program is extremely si mple . This sample program. TOAST. is complete.
documented. and- executable as it slands .

TOAST

f* Tills wishes vou the best of health . Of
:-;ay I Chee rs! I

TOAST <:onsists of two lines: the lirst is a commen t tha t descrihes the purpose;: or Ihe rr~)gram. and the
se<.:ond is an instance of the SA Y instruct ion . SAY simply displays the result or (he t: .'(pressiull rv llowing
it - in this case a literal string.

74

,< ,.

Of course, REXX can do more than just display a character string. Although the language is composed
of a small number of instructions and options, it is powerful. Where a function is not built-in it can be
added by using one of the defined mechanisms for external interfaces.

The rest of this section introduces most of the features of REXX.'

REXX provides a conventional selection of control constructs. These include IF ... THEN ... ELSE,
SELECT ... WHEN ... OTHERWISE ... END, and several varieties of DO ... END for grouping and repe·
tition. These constructs are similar to those of PL/ I, but with several enhancements and simplifications.
The DO (looping) construct can be used to step a variable TO some limit, FOR a specified number of
iterations, and WHILE or UNTIL some condition is satisfied. DO FOREVER is also provided. Loop
execution may be modified by LEAVE and ITERATE instructions that significantly reduce the com
plexity of many programs. No GOTO instruction is included, but a SIGNAL instruction is provided for
abnormal transfer of control, such as error exits and computed branching.

REXX expressions are general, in that any operator combinations may be used (provided, of course, that
the data values are valid for those operations). There are 9 arithmetic operators (including integer divi·
sion, remainder, and power operators), 3 concatenation operators, 12 comparative operators, and 4 log·
ical operators. All the operators act upon strings of characters, which may be of any length (typically
limited only by the amount of storage available).

This sample program shows both expressions and a conditional instruction:

GREET

1* A sho r t program to greet you. *1
1* First display a prompt: *1
say 'Please type your name and then press ENTER:'
parse pull answer 1* Get the reply into ANSWER *1

1* If nothing was typed, then use a fixed greeting, *1
1* o therwise echo the name politely . *1
if answer= I' then say 'Hello Stranger ! '

else say 'Hello' answer I ! I

The expression on the last SAY (display) instruction co nca tena tes the string ' He 110' to the variablt
ANSWER with a blank in between them (the blank is here a valid operator. meaning "concatena te Wi'.1
blank"). The string , ! ' is then directly concatenated to the result built up so fe- . . _ dnd
unobtrusive conca tenation operators make it very easy to build up strings and ' "mmands. and may be
freely mixed with arithmetic operations.

In REXX, any string or symbol may be a number. Numbers are all "real" and may be specified in expo·
nential notation if desired. (An implementation may use appropriately efficient internal representations,
of course.) The arithmetic operations in REXX are completely defined. so that different implementations
must always give the same results. .

The NUMERIC instruction may be used to select the arhitrarl' precision of ca lculations (you may cal
culate with one thousand significant digits , for example) . The same instruction may also be used to set
the Ju:: to be used for comparisons. and the exponential notatio n (scientifi c or engineering) that REXX
will use to present results. The term /u== refers to the number of significant digits or aror pt:rmilted
when making a n~merical compariso n.

Variuh/es all hold strings of characters. and cannot have aliases under any circumstances. The simple
compound ,'a riable mechanism allows the use of arrays (many·dime nsional) that ha ve the property of
being indexed by arbitrary character strings. These are in effect content-add ressable data structures.
which can be used for building li sts and trees. Group, of va riables (arrays) with a common stem to their
name can be set. reset. o r manipulated b~ references to that stem a lone.

Thi ~ summary is largely eXlra(..:tt!d from The Design of the REXX Language . \".;' op ynghl 11:1:>0:4 Intt!rnotlom .. t1
Huslnt!ss Ma~hint! s Corpo ration . Reprinted with pernll ~~ I()n from tht: IBM SI"S/(;"II/ ,\' Journol, Volume 23. N~) .
4 (tQR4) . .

75

"
,.

This example is a routine that removes all duplicate words from a string of words:

JUSTONE

/* This routine removes duplicate words from a string, and */
/ * illustrates the use of a compound variable (HADWORD) */
/ * which is indexed by arbitrary data (words). * /
Justone: pro cedure /* make all variables private * /

parse arg wordlist /* get the list of words */
hadword.=O / * show all possible words as new */
outlist=" /* initialize the output list */
do while wordlist~c" /* loop while we have data */

/* split WORDLIST into the first word and the remainder */
parse var wordlist word wordlist
if hadword.word then iterate / * loop if had word before */
hadword.word=1 /* record that we have had this word .*/
outlist=ou tl ist word /* add this word to output list */
end

return outlist / * finally return the result */

This example also shows some of the built-in string parsing available with the PARSE instruction. This
provides a fast and simple way of decomposing strings of characters using a primitive form of pattern
matching. A string may be split into parts using various forms of patterns. and then assigned to variables
by words or as a whole.

A variety of internal and external calling mechanisms are defined. The most primiti ve is the command
(which is similar to a message in the Smalltalk-80' system). in which a clause that consists of just an ex
pression is evaluated. The resulting string of characters is passed to the currently selected external envi
ronment, which might be an operating system. an editor. or any other functional object. The REX X
programmer can also invoke functions and subroutines. These may be internal to the program. built-in
(part of the language), or external. Within an internal routine, variables may be shared with the caller.
or protected by the PROCEDURE instruction (that is, be made local to the routine). If protected. se
lected variables or groups of variables belonging to the caller may be exposed to the routine for read or
wri te access.

Certain types of exception handling are supported. A simple mechanism (associated with the SIGNAL
instruction) allows the trapping of run-time errors, halt conditions (external interrupts). command errors
(errors resulting from external commands). and the use of uninitialized variables. No method of return
from an exception is provided in this language definition .

The INTERPRET instruction (intended to be supported by interpreters only) allows any string of REXX
instructions to be interpreted dynamically. It is useful for some kinds of interactive or interpretive en
vironments. and can be used to build the following SHOWME program - an almost trivia l "instant
ca lculator":

SHOWME

/ * Simple calculato r ,
expression */

numeri c digits 20
parse arg input
interp r et ' Say' input

in terp rets input as a REXX

/* Work to 20 signifi c ant digits * /
/ * Get user's expression into INPUT */
1* Build and execute SAY instruction */

This program first se ts REXX arithmetic to work to 20 digits. It then assigns the first argument string
(perhaps typed by a user) to the variable INPUT. The li na l in st ructi on evalua tes the expression follow ing
the keyword INTERPRET to build a SA Y instruction whic h is then exec uted . If you were to call th is

See. for example: Xerox Learning. Rl!search Group , The Smalltalk-80 system, Byte 6. No . ~L ppJ6-47 (August
In l).

76

,- ,- ,-

program with the argument "22 /7" then the instruction "Say 22/7" would be built and executed. This
would therefore display the result

3.14285 7 142 85 714285 7 1

Input and output functions in REXX are defi ned only for simple character· based operations. Included in
the language are the concepts of named character streams (whose actual source or destination are deter·
mined externally). These streams may be accessed on a character basis or on a line·by·line basis. One
input stream is linked with the concept of an external data queue that provides for limited communication
with external programs.

The language defines an extensive tracing (debugging) mechanism, though it is recognised that some im·
plementations may be unable to support the whole package. The tracing options allow various subsets
of instructions to be traced (Commands, Labels, All, and so on), and also control the tracing of various
levels of expression evaluation results (intermediate calculation results, or just the final results). Fur
thermore, for a suitable implementation, the language describes an interactive tracing environment. in
which the execution of the program may be halted selectively. Once execution has paused. you may then
type in any REXX instructions (to display or alter variables, and so on), step to the next pause, or re
execute the last clause traced.

Fundamental Language Concepts

Language design is always subtly affected by unconscious biases and by historical precedent. To mini·
mize these eITects a number of concepts we re chose n and used as guidelines for the design of the REXX
language. The foll owing list includes the major concepts that were consciously followed during the design
of REXX .

Readability

If there is one concept that has dominated the evo lution of REXX syntax, it is readability (used here
in the sense of perceived legibility). Reada bility in this sense is a rather subjective quality, but the
general principle followed in REXX is that the tokens which form a program can be written much
as one might write them in European languages (English. French, and so fo rth). Although the se·
mantics of REX X is. of course. more formal tha n that of a natura l language. REXX is lexically
similar to normal text.

The structure of the syntax means that the language readi ly adapts itself to a variety of program·
ming styles and layouts. This helps sa tisfy user preferences and allows a lexica l familiarity that also
increases readability. Good readability leads to enhanced understandability . thus yielding fewe r
erro rs both while writing a program and while reading it for debug or maintenance . Important
facto rs here are:

I. There is deliberate support throughout the language fo r upper and lower case letters. both for
processing data and for the program itself.

2. The essentially free fo rmat of the language (and the way blanks are treated a rou nd toke ns a nd
so on) lets you layout the program in the sty le that you fee l is the most readable.

3. Punct uation is required o nly when absolutely necessary to remove a mbi guity (t hough it may
often be. added according to personal preference. so long as it is syn tactically co rrect). This
relatively tolerant sy ntax proves less frustrat ing than the syn tax of languages such as Pascal.

4. Modern concepls of structu red programming are available in REXX. and can undoubtedly lead
to programs that are easier to read than they might otherwise be. The structured programming
const ructs also make REXX a good language for teaching the concepts of structured program·
mlng.

5. Loose binding between lines and program source ensure that even though pnJgrams are affet:tcJ
by line cnos. they are not irrevocably so. You may spread a clause over several lines or put it
on just one line. Clause separalOrs are op tiona l (except where more than one clause is put on
a line). again lett ing you adjust the language to your own preferred styk.

77

,. ,.

,.

Natural data typing

"Strong typing", in which the values that a variable may take are tightly constrained. has become
a fashionable attribute for languages over the last ten years. I believe that the greatest advantage
of strong typing is for the interfaces between program modules, where errors may be dimcult to
catch. Errors within modules that would be detected by strong typing (a nd would not be detected
from context) are much rarer. and in the majority of cases do not justify the added program com
plexity.

REXX • therefore, treats types as naturally as possible. The meaning of data depends entirely on its
usage. All values are defined in the form of the symbolic notation (strings of characters) that a user
would normally write to represent that data. Since no internal or machine representation is exposed
in the language, the need for many data types is reduced. There are, for example, no fundamentally
ditTerent concepts of integer and real; there is just the single concept of number. The results of all
operations have a defined symbolic representation, so you can always inspect values (for example,
the intermediate results of an expression evaluation). Numeric computations and all other oper
ations are precisely defined, and will therefore act consistently and predictably for every correct
implementation.

This language definition does not exclude the future addition of a data typing mechanism for those
applications that require it. though there seems to be little call for this. The mechanism would be
in the form of ASSERT-like instructions that assign data type checking to variables during exe
cution Oow. An optional restriction, similar to the existing trap for uninitialized variables. could
be defined to provide enforced assertion for all variables.

Emphasis on symbolic manipulation

The values that REXX martipulates are (from the user's point of view. at least) in the form of stri~gs
of charac ters. It is extremely desirable to be able to manage this data as naturall y as you would
manipulate words in other environments. such as on a page or in a text editor. The language
therefore has a rich set of character manipulation operators and functions.

Concatenation is treated specially in REXX. In addition to a conventional concatenate operator
("I I"), there is a novel blank operator tha t concatenates two data strings together with a blank in
between. Furthermore. if two syntactically distinct terms (such as a string and a variable name) are
abutted. then the data strings are concatenated directly. These operators make it especially easy to
build up complex character strings. and may at any time be combined wi th the other operators
a vaila ble.

For example. the SAY instruction consists of the keyword SAY foll owed by any expression . In thi s
instance of the instruction. if the variable N has the va lue' 6 ' then

say n*100/50 ' %' ARE REJECTS

would d isplay the string

12% ARE REJECTS

Conca tenation has a lower priority than the arithmetic opera to rs. The o rder of eva luation of the
expression is there fo re first the multiplication. then the di vis ion. then the direct co ncatenation . and
finally the two "concatenate with bla nk" operations.

Dynamic seoplng

~ ost lang uages (especially those designed to be compiled) rel y on static scoping. where the physical
position of an instruction in the program source may alter its meaning. Languages thal are inter
preted (or that have intelligent compilers) ge nerall y have dynamic scopin!? Here. the meaning of an
inst ruct ion is only affected by the instructions that ha ve already heen executed (ra ther than those
that prel.:ede or fo llow it in the program so urce).

REXX sco ping is purely dynamic. Thi s impl ies that it may be efficie ntl y interpreted hecause ~Hll y
min imal loo k-ahead is needed . I t also Implies that a compiler is harder to implemen t. so the se
mantics includes restrictions that co nsidera bly ease the task or the compiler writer. Y1 0st im por
tantly. tho ugh. it implies that a person read ing the prog ram need onl y be aware of the program

78

,. ,.

above the point which is being studied. Not only does this aid comprehension, but it also makes
programming and maintenance easier when only a computer display terminal is being used.

The GOTO instruction is a necessary casualty of dynamic sea ping. In a truly dynamic seoped Ian·
guage, a GOTO cannot be used as an error exit from a loop. If it were, the loop would never be·
come inactive. (Some interpreted languages detect control jumping outside the body of the loop and
terminate the loop if this occurs. These languages are therefore relying on static seoping.) REXX
instead provides an "abnormal transfer of control" instruction, SIGNAL, that tennina tes all active
control structures when it is executed. No te that it is not j ust a synonym for GOTO since it cannot
be used to transfer control within a loop (for which alternative instructions are provided) .

NothinG to declare

Consistent with the philosophy of simplicity, REXX provides no mechanism for declaring variables.
Variables may of course be documented and initialized at the start of a program, and this covers the
primary advantages of declarations. The other, data typing, is diseussed above.

Implicit declara tions do take place during execution, but the only true declarations in the R ···X
language are the markers (labels) tha t identify points in the program that may be used as the ta , _, ts
of signals or internal routine calls.

System Independence

The REXX language is independent of bo th system and hardware. REXX programs. though. must
be a ble to interact with their environment. Such interactions necessari ly have system dependent
att ri butes. However. these system dependencies are clearl y bounded and the rest of the la nguage
has no such dependencies. In some cases this leads to added expense in implementation (aM in
language usage), but the advantages are obv ious and well worth the penalties.

As an example. string-of-characters comparison is normally independent of leading and trailing
blanks. (The string " Yes" means the same as "Yes" in most applications.) However, the influence
of underlying hardware has subtly a ffected thi s kind of decision, so that many languages only allow
trai li ng bla nks but not leading blanks. By contrast. REXX permits both leading a nd trai ling blanks
during general comparisons.

Limited span ayntactlc unlta

The fundamen tal unit of syntax in the REXX language is the clause. which is a piece of program text
terminated by a semicolon (usua lly implied by the end of a line). The span of sy ntactic units is
therefore small. usually one line or less. T his means tha t the pa rser can rapidly detect erro rs in
syntax, which in tum means that error messages can be both precise and I..:oncise.

It is dimcul t to provide good diagnostics for languages (such as Pasca l and its derivatives) that have
large fundamenta l syntactic units. For these languages. a small erro r can often have a major and
unexpected effect on the parser.

Dealing with reality

A computer language is a too l fo r use by real people to do real work. Any too l mu st. a bove al l.
be reli able. In the case of a language this means that it should do wha t the lIser expects. User ex
pecta ti ons are generally based on prior ex perience. including the use or vario us programming and
natural la nguages. and o n the huma n abil ity to a bstract and ge neral ize.

It is difficu lt \0 define exactly how to mee t use r expec tat ions. but it hel ps to ask the quest ion "Could
there be a high a:i(onishment facto r associated with this feature?" . If a feat ure. accidentally misused.
gives apparent ly un predictable resu lts. then it has a high aston ishme nt faclOr and is therefo re un
desirable.

Ano ther important (tttributc of a rel iable sortware too! is ('o llsislenp·. A consistent bneuaL:e is bv
definit ion predictable and is often elegant. The danger heft! is to' assume thal becau~e .. ; rule i's
consistent and easily described. it is therefo re simple to understand. UJ1rortunatel~. some or the
most elegant rules can lead to effects that are completely al ien to the intuition and cxpt:'clations of
a user; who. arter all. is human.

79

,. . - , .

I

Consistency applied for its own sake can easily lead to rules that are either too restrictive or too
powerful for general human use. During the design process, I found that simple rules for REXX
syntax quite often had to be rethought to make the language a more usable tool.

Originally, REXX allowed almost all options on instructions to be variable (and even the names of
functions were variable), but many users fell into the pitfalls that were the side-effccts of this pow
erful generality. For «ample, the TRACE instruction allows its options to be abbreviated to a
single letter (as it needs to be typed often during debugging sessions). Users therefore often used
the instruction 'TRACE I" , but when "I" had been used a.s a variable (perhaps as a loop counter)
then this instruction could become "TRACE 10" - a correct but unexpected action. The TRACE
instruction was therefore changed to treat the symbol as a constant (and the language became more
complex as a consequence) to protect users against such happenings. A VALUE option on TRACE
allows variability for the experienced user. There is a fine line to tread between concise (terse)
syntax and usability.

Be adaptable

Wherever possible the language allows for extension of instructions and other language constructs.
For example, there is a large set of characters available for future extensions, since orily a restricted
set is allowed for the names of variables (symbols). Similarl y, the rules for keyword recognition
allow instructions to be added whenever required without compromising the integrity of existing
programs that are written in the appropriate style. There are no globally reserved words (though a
few are reserved within the local context of a single clause).

A language needs to be adaptable because it certainly will be used fo r applications not fo reseen by the
designer. Although proven effective as a command programming and personal language. REXX
may (indeed. probably will) prove inadequate in certain future applica tions. Room for expansion
and change is included to make the language more adaptable.

Keep the language small

Every suggested addition to the language was considered only if it would be of use to a significant
number of users. My intention has been to keep the language as small as possible. so that users can
rapidly grasp most of the language. This means that:

• The language appears less formidable to the new user.

• Documenta tion is smaller and simpler.

• The experienced user can be aware of all the abilities of the language. and so has the whole tool
at his disposal to achieve results.

• There are few exceptions. special cases. or rarely used embell ishments.

• The language is eaSier to implement.

No defined size or shape limits

The language does not Jefine limits on the size or share of' any of' its toke ns or Jata (although there
may be implementati on restric tions), It d oes. however. d~line the minimum requirements that must
be satisfied by an implementation . Whereve r a n implementation restriction has to be applied. it is
recommended that it should be of such a magnit uJe that rew (if any) users will be affected .

Where implementat ion limits a re necessary. the language enco ura ges the implementer to use fa miliar
and mem o ra ble va lues fo r the lim its. Fo r example 250 is preferred to 255. 500 to 512. and so on.
There is no longer any excuse for fo rcing the arti facts o f thl.! binary system onto a po pulation tha t
uses only the decimal system . Onl y a tin y minority of futu re program mers will need to deal with
base ·ty.. ~\ ·J e ri ved num ber system s.

80

,. ,. ,.

History and Design Principles

The REXX language (originally called "REX") borrows from many earlier languages; PL/I, Algol, and
even APL have had their influences, as have several unpublished languages that I developed during the
1970's. REXX itself was designed as a personal project in about four thousand hours during the years
1979 through 1982, at the IBM UK Laboratories near Winchester (England) and at the IBM
T. 1. Watson Research Center in New York: (USA). As might be expected REXX has an international
flavour , with roots in both the European and North American. programming cultures.

There are several experimental implementations of the REXX language within IBM, for both large and
small machines. My own System/370 impiementation has become a part of the Virtual Machine/System
Product, as the System Product Interpreter for the Conversational Monitor System (CMS). This imple
mentation of the language is described in the Reference Manual for that product.' A different IBM im
plementation, written in C, provides a subset of the language as part of the IBM PC{VM Bond product,
running on various models of the IBM Personal Computer.

The design process for REXX began in a conventional manner. The REXX language was first designed
and documented; this initial informal specification was then circulated to a number of appropriate re
viewers. The revised initial description then became the basis for the first specification and implemen
tation .

From then on, other less common design principles were followed. strongly influenced by the develop
ment environment. The most significant was the intense use of a communications network, but all three
items in this list have had a considerable influence on the evolution of REXX.

Communications

Once an initial implementation was complete. the most important factor in the development of
REXX began to take effect. IBM has an internal network. known as VNET, that now links over
2200 main-frame computers in 53 countries. REXX rapidly spread throughout this network, so from
the start many hundreds of people were using the language . All the users. from temporary staff to
professional programmers. were able to provide immediate feedback to the designer on their pref
erences, needs, and suggestions for changes. (A t times it seemed as though most of them did - at
peak periods I was replying to an average of 350 pieces of electronic mail each day .)

An informal language commi ttee soon appeared spon taneously. communicating entirely electron
ically , and the language discussions grew to be hundreds of thousands of lines .

On occasions it became clear as time passed that incompatible changes to the language were needed .
Here the network was both a hindrance and a help. It was a hindrance as its size meant that REXX
was enjoying very wide usage and hence many people had a heavy investment in existing programs.
It was a help because it was possible to communicate directly with the users to explain why the
change was necessary, and to provide aids to help and persuade people to change to the new version
of the language . The decision to make an incompatible change was never taken lightly. but because
changes could be made relatively easily the language was able to evolve much furthe r than would
have been the case ir o nl y upwards compatible extensio ns we re <.:ons idered .

\ IBM Virtual MachinelSyatem Product: System Product Interpreter Reference . IBM Rdt' ft:f1Cf' Manllul, O rde r
:-'0. SC24·5239. IBM (In3).

81

..

Documentation before Implementation

Every major section of the REXX language was documented (and circulated for review) before im
plementation. The documentation was not in the form of a functional specification, but was instead
complete reference documentation that in due course became part of this language definition. At
the same time (before implementation) sample programs were written to explore the usability of any
proposed new feature. This approach resulted in the following benefits:

• The majority of usability problems were discovered before they became embedded in the lan-
guage and before any implementation included them. •

• Writing the documentation was found to be the most efTective way of spotting inconsistencies,
ambiguities, or incompleteness in a design. (But the documentation must itself be complete, to
"final draft" standard.)

• I deliberately did not consider the implementation details until the documentation was com
plete. Tills minimized the implementation's influence upon the language.

• Reference documentation written after implementation is likely to be inaccurate or incomplete.
since at that stage the author will know the implementation too well to write an objective de
scription .

The language uaer la uauBlly right

User feedback was fundamental to the process of evolution of the REXX language. Although users
can be unwise in their suggestions, even those suggestions wlllch appeared to be shallow were con
sidered carefully since they often acted as pointers to deficiencies in the language or documentation.
The language has often been tuned to meet user expectations; some of the desirable quirks "f the
language are a direct result of tills necessary tuning. Much would have remained unimproved if
users had had to go though a formal suggestions procedure. rather than j ust sending a piece of
electronic mail directly to me . All of this mail was reviewed some time after the initial corre
spondence in an efTort to perceive trends and generalities that might not have been apparent on a
day-to-day basis.

Many (if not most) of the good ideas embodied in the language came directly or indirectly from
suggestions made by users. It is impossible to overestimate the value of the direct feedback from
users that was available while REXX was being designed,

Conclusions

A vital part of the environment provided to programmers is the programming language itself. Most of
our programming languages have, for various Illstorical reasons. been designed for the benefit of the
target maclllnes and compilers rather than for the benefit of people . As a result they are more demanding
of the programmer than they need be, and this often leads to errors.

REXX is an attempt to red ress tills balance; it is desi gned specifically to provide a comfortable pro
gramming environment. If the user - the programmer - finds it easy to program. then fewer mistakes
and errors are made.

Inevitably I have made compromises in five yea rs of design work 0n REXX , Despite thi s. I believe that
the la nguage has achieved its objective and truly makes prog ramming easier. I ,liso believe (a nd hope)
tha t future languages will improve on it - REXX is just a start in the direction of languages designed
for people rather ,than for computers.

82

DISCUSSION

Professor Habermann queried the view that "Simple is beautiful"
when applied to language; natural human languages provide many and
varied ways of expressing the same ideas. However, this does not
imply the opposite view that "Complex is beautiful", and he would
prefer the goal of Consistency as a guide. It was a good idea to put
expressive conoepts into basic components such as expressions, atc.

In reply, the speaker suggested that the real answer was that the
equivalent in REXX of the elementary 'tokens' of natural written
languages (i.e. letters) were its basic components (e.g. those used
in forming expressions); the expressiveness came also from the rich
set of functions provided.

Dr. Larcombe asked if it were possible to change or expand the
syntax of the language, to which Mr. Cowlishaw responded that this
was indeed possible in the original version of the language, but not"
in later versions. He was thinking of re-introducing the ability to
make controlled extensions to the syntax (but not semantics). Another
questioner said that if asked to make a c hoice, he would select LISP
as a base language f or extension, as it had almost no syntax to speak
of l Mr. Cowlishaw replied that he was more concerned to make the
language accessible to large numbers of people; attempts to spread the
concepts of LISP to such an audience (as for example with LOGO) had
not been very successful, he fel t . There were certainly more powerful
languages, but in his view REXX was better in achieving the objectives
he had set out.

In response to a query about the user market for REXX, the
speaker commented that it appeared to matched the needs of a number of
different groups; it was apparently very popular at SLAC (St anford
Linear Accelerator Centre), f or example. It was not a large system:
the IBMl370 version occupied 351< (pl us an exte rnal function library),
and a recent PC version implemented in C used 69K (including all the
error messages I) •

Professor Randell asked the speaker whether there had been any
interaction between the "REXX community" and t hat of IBM's Federal
Systems Division, with their very formal approaches to programming?
Mr. Cowlis~aw admitted that he was not familiar with FSD , but another
speaker commented that their style and use ~f formal specification
languages had not been widely adopted by othe r IBM divisions.

83

,. ,.

F

I

l

