THE ECLIPSE IPSE

A. Alderson

Rapporteur: Mr. G. Tomlinson

Slide 1
Good-afternoon Ladies and Gentlemen.

Tanis afternoon I am going to talk about the Eclipse Programne

whicn is an Alvey projecct.

The purpose of the Eclipse Programme is to develop an Integrated
Project Support Environment built around a database. The toctal
funding for this project is in excess of 7m. This gives an
indication of the size of the undertaking. However, even with
tnis degree of expenditure it is not possible to develop all of
the tools required of a project support environment. The
Programme has generally avoided work concerned with project
management and concentrated on tools for the software development

lifecycle in a configuration controlled enviroanment.

Omitting a large area of concern to an L[PSE nas forced us to
consider now to intagrate existing tools and now to enable third
parties to develop integrated tools. These considerations have
nad a considerable impact upon tne diraction of the project,
leading us to base our worx on PCTE, wnich I discussed earlier

today, and leading us to develop a Public Tools Intertface.

I will pegin by outlining tne scope oL tne Eclipse Programme, in
terms of the constituents of the IPSE and its hardware

environment, and in terms of the research dbeing undertaken.

I will then discuss our concept of Integration whicn leads on to
the Public Tools Interface. The PTI concerns itself with access
to the database and with user interaction. I will discuss some of

tne concepts lanvolved.

Finally, I will indicate the current status of the Programme.

no

slide 2

Before proceeding further, I will in good cinema tradition, give

the credits. This is in case you fall asleep before the end.

There are six collaborators in the Zclipse Programme, three
academic and three industrial. The academic partaners are the
University College of Wales, Aberystwyth; the University of
Lancaster and the Uaiversity of Strathclyde. These parties are
responsible for the research aspects of the Programme, but they
all contribute to the development of the LPSE itself in varying

degrees.

The industrial partners are Learmonth and Burchett Management
Systems who are responsible for the LSDM method (which may be
known to you as SSADM, the method chosen by CCTA for use within UK
Government projects), CAP, who are responsible for the Ada
cross—development work and who make a strong contribution to the
User Interfaces, and Software Sciences. Software Sciences are tne
prime contractor for Eclipse and are respoasible for the

production of the IPSE.

slide 3.1

tclipse is a database based IPSE. Tne Eclipse development
originally called ror tne IPSE to pe based upon UNIX and to use
SDS2 (a database produced by Software Sciences) and indeed the
firsct demonstrated version of Eclipse is so constructed. However,
we decided for the final implementation that PCTE should be the

basis.

The decision is both commercial and technical. Three of the
Eclipse partners, Software Sciences, CAP and Aberystwyth, are
partners in the Sapphire project developing PCTE implementations.
This shows the degree of our belief that PCTE is the best way

torward for European interests.

Technically, PCTE offers a database system well suited to our
needs, offers a user interface which we can build upon, provides
an answer to the local distribution problem and gives a simple way
to incorporate foreign tools. Using PCTE we can integrate any
existing UNIX tool and any PCTE tool. The latter 1is important 1in
view of tne ESPRIT developments and we are in close contact withn

the PACT, SPINX and SPMMS projects.

slide 3.2

In order to present our view of database and user interface, and
to encapsulate our view of integration, we provide our own Public

Tools Interrface. This is used by all developments within Eclipse.

We will be publishing this interface so that other tool builders

may interface to Eclipse.

glide 3.3

The Eclipse Programme is developing three major tool sets for the
LSDM metnod, for MASCOT3 (the new MoD method) and to support Ada.
These three nave been carefully chosen to address a large part of

the development life cycle.

LSDM address the phases from requirement specification to logical
system design, MASCOT3 address the phases to physical system

design and the Ada facilities address implementation.

LSDM involves a series of data collection and data transformation
steps using diagrams and tabular data. This culminates in
database schema designs and process outlines. This logical system
design nas parallels with the starting point of MASCOT3, and we
are considering the possibilities of automatic transformation
between the outputs of LSDM and the inputs of MASCOT3. (We know
that sucn a transformation is possible between the CORE method and
MASCOT3. CORE has many parallels with LSDM.) MASCCT3 also uses

diagrams and tabular data.

We are providing facilities to generate Ada source representing a
MASCOT3 design into which the algorithms of the system may be

inserted.

This souce code may be compiled using Eclipse”s Ada
cross-development facilities targetted to the INTEL 80286. Ada
compilation based on version controlled program libraries,
linking, down-line loading, remote test control and PROM burning

are all provided.

slide 3.4

Tne Eclipse Programme is developing various other tools. For
example, due to tne neavy use made of diagrams Dby the various
system development methods we have chosen to build a generic

design editor which can be parameterised to cope with various

diagram types.

We also hope that third parties will wish to integrate tools iato

Eclipse and we are discussing the possibility with other ALVEY

projects.

slide &4

The academic partners are undertaking a wide rangiang research

programme. -

In terms of effort the major topic is software reuse. The problem
we have posed 1s that of cataloguing components so that they may
be retrieved for reuse, and of reusing such components to produce
prototype systems quicxkly. Related to this 1is the problem of

describing the structure of systems we wish to build.

The metnods research has two aspects. The first is the
development of the generic design editor. The other aspect is a
study of how sequences of methods can be created with automatic

transformations between outputs and inputs.

The MMI work 1is studying means of developing effective user
interfaces for complex software systems such as IPSE. I will give'

examples of what this has achieved later,.

The distribution work 1is considering the problems of wide area
communication between IPSE3 as would occur between prime and
sub-contractors on a large project. Eclipse itself is an

interesting example.

slide 5

The hardware architecture assumed for Eclipse 1s a homogeneous
Ethernetwork of persounel workstations witn pit-mapped grapnics
screens, local processing and local data storage. We are
currently using SUNZ2 and SUN3 systems (using the GARNET prototype
PCTE implementation) and a VAX 11/750 which has the major data

storage capablility and the gateway Lo other Eclipse systems.

This completes my rapid overview of the Eclipse Programme. I now
wish to concentrate on some more detailed aspects of tne IPSE

itselt.

slide ©

The first problem which coanfronts the IPSE designer is what do we

mean by iantegrated. There are maany possibilitcies.

One answer is the INTERLISP-type system. Here there is in effect
only one tool. At any time any operatioa of the tool may be
invoked and it has an action appropriate to the current status.

In a sense this is the ultimate integration.

However it is difficult to add new facilities and impossible to

use existing tools.

We chose a different notion of integrated. We decided to hnhave
separate tools which interacted with each other by sharing data
structures. UNILX has this approach but its data sharing is
primitive being just the sharing of byte strings. We wanted

sharing of data structures.

We decided that integration should also mean consistency of
interaccion of all tools with the user. Obviously a design editor
and an Ada compiler cannot look the same, but we did require the
principle of minimum surprise to hold. Pressing the same button
in any tool should have a predictably similar effect and two

things that looked the same should have similar properties.

10

slide 7

To encapsulate these ideas we have defined a Public Tools

Interftace pased upon PCTE.

All of the PCTE facilities are available but we require tnat tools
use the Eclipse User Interface rather tnan tnhe PCTE User Interface
Lo ensure consistency of user interaction. We also require tools
to use the KEclipse Two Tier Database rather than the PCTE OMS

unless there is no alternative,.

11

slide 8

<
198}

The Eclipse Two Tier Database 1s an extension of the PCTE OM

concept.

In PCTE tne Object is a datapbase entity having attributes and
relationships to other Objects, and naving a Content. In PCTE a

Content is just a UNIX file having no inherent structure.

Our extension is to apply database concepts to the Contents of
Objects, so that a Content may have a schema. This is obviously
valuable given that much of the data we have 1s structured
(diagrams and tables) and we wish to apply both specific and

generic tools to that data.

The data model we use ‘in this second tier (within Contents) is
based on entities, attributes and relationsnips as is the first

tier as described by PCTE.

We allow relationships between second and first tier entities.
This provides us with the ability to describe hierarchies of

Objects of different types.

It could be argued that all of our entities could be described as

first tier objects.

While this is theoretically possible, with current technology it
would be unacceptably inefficient, since for many purposes we wish
to consider an object as a single entity without concern for its

precise Content (e.g. for version control, back=up).

12

slide 9

The second tier data model is similar to but not the same as PCTE.

This may seem perverse but there are two major reasons.

The first i{s that we had an implementatioan, based on

Carnegie-Mellon”s I[DL, of schema accessed contents; so cost was a

consideration. The second is that we consider PCTE difficient in

the data types it offers and we wished to simplify the

construction of tools by offering sequences and enumerations.

13

slide 10

This left us with the problem of unifyiang PCTE and IDLE through a

single interface.

This was eased oy the snared concepts of entity, attribute and

L a0 K

We were also aware of the need to produce a concise interface. In
Eclipse=-V] we developed a very wide interface giving very detailed
control to the interface user. This had a number of adverse

consequences.

First we had a lot of code because we had a lot of entry points.

The fact that we used Ada in Eclipse-Vl did not help.

Second we had efficiency problems because we were using messages
to access the database interface, and the detailed interaction

implied many messages.

Third we found interface users used it very inefficiently. For
example, when accessing three attributes from the same entity they
would re-identify the entity before each attribute access. Tight
budgets prevented much consultancy on use within the project so

third party use would give great problems.

We have therefore attempted to introduce an interface where
accesses can be optimised within the database and which has only
few functions with little scope for alternative ways of doing

things.

So for instance there 1is only one function which can obtain a

value.

14

This function obtains the value orf:
- any single valued attribuce,

- any virtual attribute defined by the system (e.g. entity type-,

permitted access level) rather than have separate functions,
- a single value by key from a bag,
- an lterator over a set or sequence.

Every function which takes an entity as a parameter may identify

that entity by either:

- a pathname relative to the root, some reference object (e.g

nome) or the current entity,
- the value of an iterator where the iterator is defined by a

pathname with a pattern as the last element of the name. All

entities matching the pattern may be accessed.

15

slide

11

The Eclipse User Interface is designed to utilise bit-mapped
screens with bota «eypoard and mouse input. [t offers multiple
windows each of which may have multiple frames. (These may be
text, grapnics, control panel or message frames.) Windows may be

iconised.

The interface handles the full range of interactions from text
(tty) to graphics. The normal user interaction Eclipse is by
means of control panels whiecn are modelled on the instrument

panels of hardware equipment.

The user has various interaction possibilities such as buttons,
indicator lights, menus and signs, The latter are areas of the
screen with a title. These can be used for both display and input

of values

16

slide 12

This is an example of the Eclipse User Intertface in use.

At tne top is the Eclipse Status window snowing system status

information.
The main portion of the screen is occupied by the jsd tool window.
This has two control panel frames with examples of menus, buttons

and signs.

The lowest window is that for the shell tool. This is a TTY

window.

At the lower left is the icon of the Eclipse Help tool.

17

slide 13

Qur experience with Eclipse~V]l has shown that i1f we are to have

consistency of interaction in differeat tools all of the following

must be provided:

- Standards for presentation and interaction.

- An application interface assisting those standards. (In
Eclipse we have a language, Format Definition Language, which
expresses the physical presentation of the interface to the
user) .

- A Help system to give consistent treatment of user assistance.

- A message system to give consistent treatment of messages,

prompts and confirmations.

- A consistent command syntax.

18

slide

L

The Eclipse Programme began in August 1984. The current and

envisaged progress is as follows:

Eclipse-V]l was demonstrated in Quarter 2 1986 at the Lancaster
IPSE Conference and at the ALVEY Conference, where the User

Interface attracted approving comment.
The Eclipse PTI will be implemented by Quarter 4 1986, and
will be available to third parties then. The specification

will be available earlier.

The MASCOT3 and Ada toolsets will be available by Quarter 2
1987.

The LSDM toolset will be available by Quarter 3 1987.

Other results will be published as they become available. The
Programme has published a number of papers already. The

references are given in the appendix to this paper.

19

ECLIPSE PAPERS

A Alderson; M F sott; M & Falla

An Qverview of Eclipse in Integrated Project Support

Environments

Ed. J McDermid, PPL, 1985

A Alderson; M F Bott; M E Falla

Eclipse Object Management System

IEE Jourmal of

A Alderson

Sortware Engineering in Jan “86

Configuration Management in Eclipse

MILCOMP “85

M F Bott

Software Support Environments in Commercial Data Processing

To be published in: Data Processing 1986

R H Pierce

Ada in the Eclipse Project Support Environment

Proceeding of

J Smart

Man Machine Interface Management System for UNIX

International Conrerence on Ada

Uniforum ¥6 at Ananeim CA. 4-7 Feb 38b

Describing Software Design Methodology

I Sommerville;

R Welland; S Beer

To appear in the Computer Journal

Paris 1985

3. The ECLIPSE System Structure Language

I Sommerville and K Thomson

lyth Int. Conf on Systems Sciences, Honolulu, Jan 1936

9. A Software Components Catalogue

M Wood and I Sommerville

To appear in "Intelligent Information Retrieval Systems"

Ed. J A Campbell Published by Ellis Horwood

10. Eclipse: A Distributed Software Development Enviroument

D Hdutchison and J Walpole

Software Engineering Journal, Vol 1, No 2 (March 1986)
pp 88 - 92

i

:ﬁ‘fc ere "
,,i;:.g The University College of Wales, Aberystwyth

27 Coleg Prifysgol Cymru

"\

University of Lancaster -

University
of Strathclyde

B Software Sciences

23

MASCOT3

LsoM o
e
PCTE
PCTE N
TOOLS 53
\ UNIX
. Toos
\\-\\

ECLIPSE

THIRD
PARTY
TOOLS

/

OTHER
ECLIPSE
TOOLS

MAJOR RESEARCH TOPICS

REUSE
. COMPONENT LIBRARY
PROTOTYPING
SYSL INCLUDING BUILD

METHODS

MMI

DISTRIBUTION (WAN)

25

DATA BASE

HOST MACHINE

—'('E 153 E

£ *&Eﬁ@b

26"

Software Sciences

INTEGRATION

BY DATA
SHARING STRUCTURES

BY USER INTERFACE
CONSISTENT INTERACTION

ECLIPSE PTI

OMS

EXECUTION
COMAUNICATION
IPC
ACTIVITIES
DISTRIBUTION

UNIX

USER 1/F

TWO TIER DATABASE

FCLIPSE USER I/F

ECLIFSE PTT
TWO TIER DATABASE

AN EXTENSION OF THE OMS CONCEPT,

DATABASE MODEL APPLIED TO OBJECT CONTENT,

\ FIRST TIER

/
> 9¢

4
rd
- | SECOND TIER
— s il P,

FIRST TIER DATABASE MODEL
IS PCTE OMS

29

ECLIPSE—PT

SECOND TIER DATABASE MODEL

IDLE (BASED ON IDL)

NODES (ENTITIES) WITH:
ATTRIBUTES OF TYPE:

INTEGER
DATE

STRING
BOOLEAN
ENUMERATION

LING TO:
LOCAL NODES
EXTERMAL NODES
PCTE OBJECTS
SEQUEHCES

NODE TYPES MAY BELONG
70 CLASSES

30

ECLIPSE PTI

UNTFIED DATABASE MODEL

PCTE PLUS IDLE

ENTITIES WITH
ATTRIBUTES
LINKS

VIRTUAL ATTRIBUTES

KEYED BAG ATTRIBUTES
DERIVED ATTRIBUTES

3

EeEPSE—FTH
USER INTERFACE

BIT-MAPPED SCREEN
KEYBOARD AND MOUSE
MULTIPLE WINDOWS
MULTIPLE FRAMES
[CONS

TTY

GRAPHICS

CONTROL PANEL
BUTTONS
LIGHTS
MENUS
SIGNS

32

£

s CCLIPSESOYOTENLOTATUG YLy .

Usaky- -
iuhite

et e ey n o (n)e1906% - 361 CARSLONS; Aboryotuythi:Luhcaator-Sthathcydos

LB
sore CAAP [

Ervor Level ![i’l'inl]i l'[lelp]! I'[Caaum-"

-i] Close |

INFORMATION

e, FRaRB-REFERBNERS, - .
Jsu/step

A

-

Error Level il Print HB Ilelu'-_']“i Comment "

INFORHATIUH

jsu
method steps - Project selection and steps

In ECLIPSE-v1, all 150D design information is

held in OBJECIS which are regarded as helonging
to a particulor PROJECT. Selection of a PRUJECT
to work in is lreated as an initial “pseudo step”
of the nelhod.

The six steps of the J5D method proper aro:

:entity action step
:enlily structure step
inttial model step
function step
osyslen Liming step
inplementation step

- N e

& e

All the above STEPS (excluding PROJECT) have
associated vilh them predefined diagrams or

forns ulich nay be used to record Information
yenerated during the application of tho JSD
method. Additionally, all STEPS (including
PROJECT) may have any nunber of text UBJECTS

in uhich the user may store any other information
he ulshes.

i

Is =1 § yrep =v “Irux’

Iy

grep v '\.8”
11 Is -al
3 suntoo s

slnpr windguprint -s H Asr -y -Pcan
sunSs.csh. [an.17) screenpNint >/ tap/screenprint

=

JSD MANAGER ¥1.0

> Projoets . JSD Step
» Project

Text Editor
Yitool

«ClUrkents OBjetin I'RS Types
H lexlt

ECLIPSE PTI

USER INTERFACE

HOUSE STYLE

AFPLICATION INTERFACE (FDL)

HELP

MESSAGES

COMMANDS

34

PROGRESS

V1 DEMONSTRATED

Q4 86
V2 PTI AVAILABLE

02 87
V2 MASCOT TOOLSET
V2 ADA TOOLSET

Q3 87
V2 LSDM TOOLSET

35

DISCUSSION

Dr. Alderson was asked how the PCTE related to X/Open. He
replied that this might became clearer later in his talk and one could
look at the names of the collaborators.

Professor Randell asked if the PCTE sat on top of Unix, Dr.
Alderson replied that it did not and was an extension to the Unix
kernel.

Mr. Jackson asked whether one could add "content" to any PCTE
object. Dr. Alderson replied that one could not since '"content" is
only a property of file type objects.

Professor Atkinson asked whether there was any way to discover on
which processor an object was created. Dr. Alderson was not sure.

After Dr. Alderson had explained that composition was a property
of the object category which enforced existence, in keeping with
Bishop Berkeley's doctrine that things only exist if one is looking at
them, Professor Randell coammented that this was the kest reference to
Berkeley he had heard all week.

During Dr. Alderson's description of pathname interpretation Mr.
Stroud remarked that it seemed to be the wrong way round. Fred.c was
represented by an arity-many link called c fram the current directory.
He suggested it would be more natural to think of Fred as a camposite
object with links to its source code, documentation, test data etc.
Professor Atkinson said it depended on which way you looked at it,
i.e. whether a 1link was an attribute or vice-versa. In this case
links could not have attributes. Dr. Alderson said that doing it
this way made the schema definitions more campact since when you
created a new program object you did not need to set up all the links.
Mr. Stroud was not convinced, feeling that a program object should be
same kind of pre—defined template or type.

36

