
181

ORGANISATION OF COMPUTER SYSTEMS

Z. G. Vranesic

Rappo r teur Mr. E. P. Farrell

Abst r act

The main pu rpose of the talk given by Professor Vranesic
is to consider briefly the question of how much exposure to hardware
details should a computer science (or elect ri cal engineer ing)
student have, ass um ing that digital hardware is not a major part of
his program.

Introduction

In the area of digital system design the relevant topics
are usually taught within the framework of a single hardware
oriented course, often called " Computer Organisation " or some
related title. Let us ass um e that the course in question involves
2 t o 3 lecture hours per week (with or without a laboratory) during
one semester of app r o xi mately 15 weeks.

In a cours e of this kind, as in many other s , one often
finds a tendency to place far too much emphasis on topics that offer
well defined and accepted concepts, that tend to be easy to teach
and whe r e a concensus exists whether or not a part icular technique
i s better than othe r s . This i nc lude s s uch favourite topics as
arithmetic, logi c design a nd switc hin g the ory . On the o ther side,
too litt l e time is spen t on s ub ject matter where many r easonable
cho i ces exist, for example, interfacing, bus structu r es ,
communicatio ns schemes, etc. Yet when a grad uate student enters
the comm e r cial world of i ndustry, most of his efforts in dig ital
hardware systems are likely to involve just such "poo rly defined"
areas .

The rest of this discussion will concentrate on what I
conside r to be the minimum acce ptable lev e l of detail that may . be
appropriate in on e topic, namely bus o rganisati on , interfacing and
standards.

1. Bus Structu re s

Fi gure. 1 shows thre e comm only found bus structures. The
single bus is co~ceptually simple, flexible for a ttachin g peripheral
dev i ces , and usu a lly found in small machines . It restricts the
operating speed of the system, since it can be used for only one
transfer at a time. Moreover, all the bus lines are brought to a ll
devices , whether or not a particular device requires the potentially
complex control mec hanism imposed by the bus.

18 2

The simplest form of a two-bus structure is sho wn in
Figure 1b . The CPU interacts with the memory via the memory bus.
Input and output transfers are handled by the CPU, kn own as
programmed I/O. A different version o f a two-bus structure is
given in part c of the figure. Here, the I/O transfers are made
directly from the memory, usually involving a separate I/O
processor.

1.1.1. Dedicated Bus

A bus which has a fixed assignment t o a given function, or
only two devices connected to it, is referred to as a dedicated bus.
Such a bus involves a simple bus controller , simple addressing and
simple synchronisation of devices . It allows high throughput,
since there is little contention for its use . However, it also
tends to be expensive and it may make the expansion of the system
(in modular fashion) an awkward task.

1 . 1.2. Nondedicated Bus

This is a bus shared by a number of devices, used to
perform a variety of transfers. A good example is the single bus
of Figure 1a. Nondedicated buses are characterised by lower cost,
flexibility in attaching new devices, and suitability for extension
to reliable systems where duplication is needed . The offsetting
disadvantages are lower throughput and the need for a relatively
complex bus controller.

1.2. Bus Control

Control of a bus can be either centralised in
hardware controller unit, or distributed ove r the devices
to the bus. In either case there are essentially three
ways of organising the contr o l mechanism, namely

daisy chain
independent request, and
polling

, .

a single
connected

accepted

Let us consider some typical features of each of these
schemes, restricting the discussion to centralised control.

1.2.1. DaisyChain

Figure 2 illustrates the daisy chain arrangement.
Devices request the use of the bus via the common BR line. The bus
controller accommodates the request when the bus is available by
issuing a BG signal which ripples through the devices. When the BG
signal is received by the device that requested the bus it blocks
further propogation of the BG signal, seizes the bus and indicates
this busy status via the BB line .

Daisy chain is a simple structure. Few control lines are
needed, and they are not dependent on the number of devices
connected to the bus. However, there are some disadvantages. The
priority structure is fixed, with the device nearest the controller
having the highest priority. This raises the possibility of a
remote device being locked out. Rippling of the BG signal through

183

the chain slows down the operation. Also the structure susceptible
to failure, since a failure in a single device can affect other
devices.

1.2.2 . Independent Requests

This scheme is shown in Figure 3. Each device has its
own pair of BR and BG lines. The most significant benefits of this
structure are fast operation, flexible priority structure
(determined by the controller), and ease of isolating malfunctioning
devices . The offsetting factors are higher cost and the need for a
more complex controller.

A compromise control mechanism is often attractive, which
uses daisy chain groups where the groups are organised in the
independent requests arrangement, as indicated in Figure 4.

1.2.3. Polling

The polling structure is given in Figure 5.
is used to identify the device that is requesting
bus. The poll count connection can be either a
allowing parallel transmission of the count, or
requiring a more complex bit-serial transmission
priority is determined by the method of counting:

A poll count
the use of the
set of lines

a single line
method. The

if a count is started frem zero each time a BR signal is
received, then fixed priority results,
if a count is continued · from where it stopped during the
previous request, then round-r~bin polling occurs.

,. ' .

It should be noted . that the BR
the polling counter runs continuously when
The counter is stopped by any device using

line can be eliminated if
the bus is not busy.

the bus.
.' ,

Polling is a simple and relatively inexpensive struc~tit~.
It is more reliable and fleKible than the daisy chain. But, it is
also slow.

It · is more important to recognise that the techniques for
implementing bus control are in general very similar, and often
identical, to the techniques used to deal with interrupt requests.

2. Bus Communicstions

Having chosen a suitable bus structure, it is necessary to
define the protocol for implementing data transfers on the bus. A
variety of schemes for timing the transfers are possible, and they
can be broadly classified as either synchronous or asynchronous.

In the case of a synchronous bus, all devices derive the
timing information from a common clock line. Fixed time slots of
equal width are generated (or synchronised) by a central circuit.
The clock pulses must be of greater duration than the maximum
propagation delay on the bus. Thus, the speed of operation is
governed by the longest delay and the slowest device. However, it
should be noted that a very slow device could be assigned ~ore than
one time slot. Also, the clock rate can be selected to match the

184

fastest device in the system, but then buf f ers must be included to
accommodate slower devices.

An o ther difficulty with the sy nc hr onous bu s i s th a t th e
acknowledgement that the destinati on device received the co rre c t
data is not easily available. Verification by a repl y at the end
of each transmitted data unit (byte, word) i s wasteful of ba ndwidth,
as the time slots are defined by the slowest device. A d ange rous
alternative is verification by default, whereby if an error is
detected by the destination it will return a signal to th~ source a
few time slots later.

The most positive features o f a synchronous bus are that
it requires simple interfaces, and it is usually easy to implement.

The asyn c hronous bus provides an attractive and frequently
used alternative. Here the signalling is based on a "handshake"
protocol, between the sending and receiving devices. Instead of
the common c lock, the timing is contr o lled by signals on "Ready" and
"Accept" lines . The Ready signal verifies the validity of the data
on the bus, while the Accept signal is generated as an
acknowledgement for the received information. An example of the
signalling needed for an input transfer on an asynchronous bus is
shown in Figure 6. The time t -t allows for the skew on the bus,
as well as the time needed by the device interface to decode the
address and mode information. The time t -t allows for the
propagation delay of the Ready signal, and for any extra delays
introduced by the in4erface in placing the data on the bus . At
t the Accept sigpal has , arrived and the data lines can be strobed.
The time t -t also allows for bus skew. Erroneous addressing may
take place if an address starts to change while Ready is still true
(that is, equal to one).

The asynchronous bus has some highly beneficial features.
The speed of operation is not governed by the slow devices.
Verification of data transters is naturally provided. A high
degree of flexibility ancii':'reUability may be achieved. The most
significant drawback is the complex interfaces that are required .

.l:. Interfaces

The choice of the interfacing cirDuits depends upon the
able to perform the particular application. The interface must be

following functions: ,

provide a storage buffer for one word (or byte) of data,
contain status flags that can be accessed by the computer to
determine whether the buffer is full or empty, whether or
not the device needs servicing, etc.,
decode addresses to determine when it is being addressed,
generate the appropriate timing signals, as required by the
defined bus protocol, and
perform any format conversion that may be necessary to
transfer data between the bus and the I/O device (for
example, parallel-serial).

Most frequently an interface is depicted as
This simple block diagram and the above

shown in
discussed

Figure 7.
functional

185

characteristics are often deemed to provide s uff i c "ent exposure for
a student. The assumption made is that interfac i ng i s a re asonably
straightforward, and usually tedious, task that therefore has little
scope for classroom discussion.

A more appropr iate level of de ta il that a studen t should
appreciate is given in an example of a para llel 1/0 in ter face sho wn
in Figure 8. This 16 -bit interfa c e contai ns data bu ffe r s fo r in put
a nd output (DIN and DOU T), and status reg is ters c orrespondi ng to
each buffer (SIN and SOUT) . The buffers and the s ta tu s registers
a re assigned four consec utiv e word add re sses . Inputs to the DI N
buffe r and outputs from the DOUT buffer, as well as the i nput s to
the status registers, are not s hown in the diagram , since this
circuitry is internal to the device and not a part of the in t erface.
A connection to an asynch ronou s bus is assumed .

Another example o f a useful interface is shown in Figure
9 . This serial-paralle l interface is based upon the use of the
UART (Universal Asyn chro nous Receiver Tr ansmitter) chip, which
contains the ci r c uitry for the serial-parallel conversion.
Awareness o f the existence of such components and the ease of their
utilisation i s ce rt ai n to prove beneficial to the students. One
should note that the i nterface of Figure 9 requires the same
addressing and control circuitry as the paralle l interface of Figure
8. Such interfaces are suitable for connection to a variety of
devices, for example, teletypewriter (as in Figure 9), modem, etc.
Although the student should not be expected to remember circuits
such as in Figure s 8 and 9 for examinations it is important that he
should be capable of looking at such a level instead of believing
that a $300 interface consists o f simply 3 wires linked together.

4. Standardisation

Standardisation is a touchy issue. It seems that
whenever the question of defining "standards" is raised, it starts a
heated debate. In my opinion, some standards are badly needed.
Existence of adequate standards makes the life of an average system
designer c'onsiderab ly easier. It should lead t o better defined
systems and more readily available components at competitive prices.
Unfortunately, the pr og ress of defining standards has been painfully
slow. In many cases inadequate specifications have resulted,
either from the equipment or functional point of view. However,
mistakes of the past need not hinder developments in the future.

Among many attempts at defining standards f or inte r f ac ing,
there are at least two that are gaining some degree of ac ceptance.
One of them is the EIA Standard RS-232C (also known as the CCITT
recommend at ion V24), which specif ies a 25-pin interface between data
communication devices and dat a terminal equipment. The second one
is the IEEE Standard 488-1975, which specifies a digital interface
for programmable instrumentation. It is i ntended for connection of
laboratory instrumentation that can be digitally controlled.

Awareness of standards, their
highly useful to a system designer.
ignore them solely on account of
specifications.

benefits and pitfalls, is
It is a serious mistake to

imperfect or inc omplete

186

5. Conclusions

The preceding discussion is an attempt to s uggest a
minimum level of exposure to the subject of bussing, interfac es and
standardisation that is deemed appropriate for computer science
students who are not specialising in hardware . As another issue,
it is hoped to impress the teachers of computer o rganisati on that
there is a very real need to deal adequately with the topics where
design decisions are not black and white, but where many
alternatives exist, even if they are not properly defined. To this
effect, illustrative examples from the commercial environment often
prove to be considerably useful.

It is regrettable that the voluminous l i terature on
digital systems contains rel ative ly few papers that deal with the
problems of bus structures and interfaci ng. Occasionally one finds
a paper discussing these topics in an interesting way, as for
example the survey paper by Thurber [1] .

Textbo oks on computer organisation also leave much to be
desired. Indeed, this was one of the primary reaso n s why two of my
colleagues and I have attempted to write a book that concentrates
more heavily on such topics [2]. The book contains a considerable
amount of the type of material that was used in the preceding
discussion.

6. Discussion

The discussion section was totally i nvolved by a heated
debate about whether standards were useful in the design of digital
systems.

Professo r Whitfield disputed the speaker's statement that
the RS-232 standard was clearly defined. He continued by compar i ng
it t o the X25 communications protocol where you are told about the
various bit pattern tables but no indication of their functionality
is given, the result of this being that somebody has to wr ite a
skeleton program whi ch attempts to define the functi onality .
Pro f essor Vranesic replied t hat in the case o f RS-2 32C the
functionality of the pins was indeed defined, although o ne could
perhaps argue whether or not the functions cho se n were correct.
Professo r Hoare declared that it was not possible for two people to
design an interface which would allow any data terminal to be
connected to any modem, the r esult being that you had t o connect
" everything up to everyth ing " . He went on to say that no standards
at all were better than standards which do not work in practice and
at present we should leave the problem wi th manufac t urers.
Professor Vranesic replied that it wo uld be ludi c rou s to have
manufact ure r s specificat i ons, for example the " Intel bus " , being
accepted as standards, the inevitable outcome of this attitude would
be numerous standards .

Dr. Glaser said that another reason f o r bad s tandards is
that they are inevitably the lowest common denominator of agreement
that can be obtained from all the manufacturers and other interested
parties. He said that the X25 standard was an example of such an
" electropolitical " compromise which decided up on a standard that
could be agreed this year instead o f waiting f o r a properly defined

187

standard which would not emerge until 1985.

Professor Hoare said it should be our duty as
professionals to have sufficient maturity to admit that certain
standards are not standards at all and do not serve the purpose they
were intended for and it is because we are not prepared to give
these answers often enough that we get into such a fearful mess over
standards . Professor Randall asked Professor Hoare whether the
half-way poor was so entirely the envy of the unattainable best .
Professor Hoare replied that in the case of standards the answer was
'yes' and that one should not standardise before one fully
understands what is involved.

Professor Michaelson wound up the discussion by s upporting
Dr. Glaser ' s statement that Professor Hoare's answer was not true
SInce he was ignoring the fact that the main problems in
standardisation were mainly political which resulted in bad
standards being defined on the basis of inadequate compromises.

7. References

1. K. J. Thurber, E. D. Jensen, L. A. Jack, L. L. Kinney,
P. C. Patton and L. C. Anderson, "A systematic approach to
the design of digital bussing structures " , Proc. FJCC 1972,
pp 719-740.

2' . V. C. Hamacher, Z. G. Vranesic and S . G. Zaky, "Computer
Organisation", McGraw-Hill, 1978.

188

, j j

, ,
CPU Main Device 1 • • • Device n

memory

a) Single bus

• Device 1

.
Main ,

Memory bus • CPU r'" • memory

Device n
r/o bus

b) Two-bus struct=e - programmed rio.

.. Device 1
r - - ,
I I

CPU Main
~ I

,.... Memory bus • I I memory L_ - ~

/ Device n
. r/o processor

c) Two-bus struct=e - r/o processor.

Figure 1 Mos t common bus structures

189

BR .. · ..
BB

Bus ...
I I controller

· . .
BG .. D1 .. D2

f--. •••

Figur e 2 Dai sy chai n

BRn
"':"
• BR2 ...:

- BR1

Bus I
control l er

• • •
D1 D? D"

BG1 ~ , 4 4 4

BG?

· • BG
n ·

t BB
• ••

Figure 3 Independent requests

190

BR1 ... ----,
BB1

• I I
BG1 . I--

Bus • •

..
...

controller
•

BI\- • · ... ---...,
Bl\-

f r
BC\:

... ---,

- ...

Figure 4 Daisy chai n groups

BR
• ••

BB

I I
• •• I

Bus

I controller D1 D2 Dn
~ ~ ~

...
Poll count

Figure 5 Polling

Address & Mode
information

Ready

Accept

Lata

strobe data into ______ -L ________ L-______ ~-----------I
input buffer

I

I I I

I to 't ' t rt 3 I 1 I 2
'.-I

Bu8 cycle

Figure 6 Signals for input transfer on an asynchronou~ bus

Address lines

La· ~a lines
j

Co ntro l lines
j

r -- - - -- - - - -- - - -- -- 1- - - - -

Address Lata & Status
decoder r egi ster s

191

Interfar,e ,
Control

circuits I
L _____ _ _____ J

I I
L ________ _ . _____ -1

Figure 7 Interface block diagram

192
Accept ~ 1

Ready

A15

A14
•
•
•

A3

A2

A1

word/-{>_
Byte

D
E
C
0
D
E
R

r-- 1 __ "

Read/
wr i te • I I '>-1-------,1 I .,

" : I

) ------

) -

DO
SIN •

•
R r- D

7

DO

E •
•

D7

~"''''"
8

•
"'---, D : .- 15 ~---

DO

'ffiW"J •
D7 Cl

-- ---.---.

D8 ~DOUThil
D15 ~;_ Cil I

SOUT •

•
R . : ------11:· '

Ltt)- ~ ------
Fi gure 8 A 16-bit parallel 1 r/o 'nterface

... _._.< }

Transmission
clock /' 1--1-.. . __ .. . _ .. - '-......

.1-- t-- --
DOUTLenable 1"--,- .1

~!
--'-"'-1

Transmitter
buffer register .

I
To printer 4 I j' Transmi tt e~-'-"-""" --I

SO regist er
'------"'-I

DART

1 ,-----

_ .. '.J Feceiver From keyboard

SOUT enablE:

-~'--_ __ r egi ster

! r . -~:=-::£ -----. I
Rece iver I I _DA

buffer register

Receiving 1
clock ----_._-

L ~ ___ -~,.-. --' F~I
t ., IN"
~ enabl

'-

!;r::able

I ,

~
-.. -~ f'>
~_.1
i

... . -._--+.-{>-+--4
.~

__ ._ .. r
Fig:re 9 A serial-parallel i nt erface us ing the UART chip

193
• • •

