157
APPLICATION PROGRAMMING SYSTEMS SO FRIENDLY
THAT EVEN A SALESMAN CAN USE THEM

Professor W. M. McKeeman

Rapporteurs : Mr. J. Aspden
Dr. J. Eve
Mr. D. McGlade

Professor McKeeman remarked that the development of the
microcomputer appeared to be following the same path as the
macrocomputer and making the same mistakes but three times faster.
Some of these errors lie in the way microcomputers are designed, and

should be comparatively easy to avoid. However, we should ask
whether there are any new problems which did not occur before. The
answer appears to be that there are, and Professor McKeeman

illustrated this by referring to a manufacturer, who was not a
sophisticated computer user but one wused to machines of great
mechanical and electromechanical complexity, but who discovered that
much of the machinery which they were experienced and equipped to
build could be replaced by a microcomputer. The device in question
is a 'sidewalk bank teller'. Their prototype bank teller was
delivered with 28K of hand-coded assembly language in it, and was so
successful that the bank who received it asked for two more, but
also requested an extra feature be incorporated. The manufacturers
were already using total memory of the machines but re-organised the
program and managed to add this feature.

This went on for four months, with every machine a little
different, until the manufacturer realised it was programming for
customers and would need an exponentially increasing number of

programmers. What could be done to solve this problem? The
manufacturer was prepared to dedicate one salesman to each sale so
the solution proposed was to turn the salesman into "programmers".

A second problem to be overcome was the willingness of the salesman
to sell anything, irrespective of the feasibility of producing 1it.
The engineering department was receiving orders, signed by the
managerial staff, for items that simply could not be made in any
reasonable period of time.

Figures 1 and 2 illustrate the proposed solution. The
engineering department produced a program, the "specification
processor" which was available to salesmen, via a portable terminal.
This program posed a set of questions which the customer and
salesman answered; from these answers a complete specification was
produced in a Polish-string form which could then be passed to a
"product simulator" program. Using the latter the customer and
salesmen could check that the specification did indeed meet the
customer's needs. If unsatisfactory aspects of the specification
were discovered, these could be corrected by repeating these two
steps.

158

SALES LOCP

WRITER

jof =

Figure 1

FILE

PORTABLE DEVELOPMENT
TERMINAL COMPUTER
PHONE LINE (AT P.M, SITE)
MENU SELECT SPEC, | CUSTOMER
; C) SPECTRTCATTON _p{FROCESSOR _smc,o
CUSTOMER
SPEC.
APPLI-
CATION
COMPTLER
CUSTOMER
ALGORTTHM
SIMULATED DEMANDS CUSTOMER
PRODUGT
ON_PRODUCT ﬁsm wno ALGORT
L __J - @
e SIMULATED INTERP.,
PRODUCT
REACTIONS
CUSTOMISED TR

HroHUY=E0Q Q="wm

oEEHU

HarPrIdEa=E 00

GO TO SPEC.

MAINTENANCE LOOP

INTERP (MINT)

FILE

SIMULATED

ENVIRONMENT(S)

O

CUSTOMER
PROGRAM

CUSTOMER
SPEC.

et

Figure 2

PRODUCT DEVELOPMENT
PHONE LINE COMPUTER
(AT PoM,)
CUSTOMER
> PROGRAM
DEMANDS
CUST. MINI
PROG. EMULATOR
RESPONSES
DIAGNOSIS
CUSTOMER f e
MANUAL
(AT CUSTOMER)
CUSTOMER
PROGRAM

CUSTOMER
PROGRAM

O

O

159

S e ~E e

SEHd=acgdaoody

ok nEH

160

On achieving a satisfactory specification the Polish string
specification was passed to another program, the "contract writer"
which produced an English version of the specification 1in contract
form.

This set of programs was a new tool for the salesman which
had the great merit that since engineering produced it, he could not
sell anything they could not make.

DECLARE B 1 CC INFO 10 RETRIES 1;
ACCESS RETRIES ONLY FROM CARD INSERTED CC_RETRY;

MAIN:
ENTRY ;
CALL RESET;
$ comment test front gate of bank card receiver.
DEVICE BANK CARD FRONT GATE TIMEOUT 10 B;
IF TIMEOUT EQ 1 CALL BROKEN;
$ Comment if there is no card, do diagnostics.
IF B EQ 1 CALL IDLE;
$ Comment start customer id cycle.
CALL CARD INSERTED;
REPEAT MAIN;
END;
CARD INSERTED:
ENTRY;
DATA MOVE O TO RETRIES;
$ Comment pull bank card into reader.

DEVICE BANK CARD PULL TIMEOUT 100 CC_INFO;
IF TIMEOUT EQ 1 CALL CC RETRY;

$ Comment test bank card back gate.
DEVICE BANK CARD BACK GATE TIMEOUT 10 B;
IF TIMEOUT EQ 1 CALL BROKEN;
IF B EQ 1 CGALL CE RETRY}

$ Comment card in place, start id
CALL ID_ SEQUENCE;
$ comment customer accepted.
CALL TRANSACTIONS;
$ Comment all done, return bank card and close window.

CALL SIGNOFF;
RETURN TO MAIN;
END;

Figure 3: Sample of ABL code.

The customer at this stage signed the contract, and was
not involved again until delivery.

The next step in developing a program %to run on the
minicomputer in the bank teller for a specific customer was the
construction of a package consisting of a standard interpreter and
the wuser specification together with any device drives that are
required. For convenience the package 1is exercised on a large
machine over a wide range of environments. The same specification,
once debugged, is given to a documentor program to produce both

161

maintenance and user manuals for the customer. The maintenance
manual in particular includes the modifications needed to change
messages, this being a frequent requirement. Finally, this package

is sent to the minicomputer at the user site.

Apart from these programs (the specification processor,
product simulator, contract writer, standard interpreter and device
driver modules, documentor and environment simulator) which are
rarely altered, there are no programmers involved in the production

cycle. These major programs are not trivial and the specification
of environmental tests was particularly difficult. Figure 3
illustrated the language invented to assist the testing. Most of

this 1involved the device driver interactions as approximately half
of the commands are device commands.

In summarising Professor McKeeman noted that the main
points to observe in the problem and its solution are:

1) The machine selected by the bank teller manufactuer was
inadequate for the task. In particular, it was too small
and not designed for interpreter use.

2) The solution had a high initial cost but would automatically
generate the exponentially increasing amount of code needed.

3) The salesmen were disciplined to sell only feasible
products.
4) Maintenance was greatly simplifed. In particularly it

enabled the minicomputer at a site to be changed easily,
thus localising the fault to hardware or software.

Professor Randell asked if this method could be wused in
other applications. Professor McKeeman said that for problems like
banking it 1is sufficiently general. Although the menu selection
program was large it was easier to develop than to change the
product. However there are a 1lot of problems with too much
variability for such an approach. There are cases in which the
cost of getting started with this method exceeds that of a more
conventional approach.

Professor Pyle wondered if any software company had
expressed an 1interest in the method as a speculative venture.
Professor McKeeman replied that if a company wanted such a suite of
programs then it would be worthwhile, but there was no obvious way
to generalise the method. The menu-selection in particular appears
to be very ad hoc. The rest of the system can be built fairly
readily.

Professor Pyle pointed out that there was an opportunity
to capture, at the point where the salesman and customer are
simulating demands, what the customer anticipates the end-users are
likely to do.

Professor McKeeman admitted this had escaped him and it
would have assisted the construction of the simulated environments
which had proved most difficult. The actual writing of the
programs was not too involved and had been tried as a student
project.

Professor Wells asked if the menu selection had much in

162

common wWith computer assisted instruction. Professor McKeeman

agreed that there was much in common but did not see how this could
be exploited.

Dr. Glaser said most of the modules described have
occurred in CAT systems over the last fifteen years but such systems
had eventually found the menu selection approach to be a limiting
factor.

Professor McKeeman agreed that it was by no means clear
how to proceed beyond menu selection, but thought it impractical to
attempt to train salesmen in a programming language.

Professor Page noted that the combinatorial possibilities
in the simulated environment could become very large indeed, and to
exhaustively test the environments would require complex analysis
into equivalent classes that might easily be outside the ability of
the person testing.

Professor McKeeman felt there was no chance that the
testing could be exhaustive. The objective was simply to detect
the first few hundred errors so that the end-user does not see them.
All subsequent errors would be fixed at the site when discovered.

Professor Page drew attention to the fact that the 301st
error might be the one which gave away all ten thousand dollars.
Agreeing with this, Professor McKeeman pointed out that things were
worse than that. One suggestion made was that a machine be given
to a student who would spend all summer trying to 'break' it. This
frightened the manufacturer. They were not at all concerned that
these devices could be tricked, but much more concerned that someone
knew how. The mystery of the device was part of 1its protection.
That the machine might make mistakes was fairly low on the list of
problems. Banks do not mind money being stolen - they are insured
against that - what they are worried about is customers withdrawing
their money, it's gone then. They are very concerned with their
image.

Professor Randell asked Professor McKeeman to enlarge on
his point about the computer not being suitable for interpretation.

He replied that some microprogrammable machines make good
interpreters even where the instruction unpacking 1is 1left to the
microcode. It appears that if you are going to compile into some

engineering-chosen opcode set you are already 1in difficulties.
Machines designed to be interpreters fit better with the current
economics which optimise for space rather than speed.

Professor Randell requested more information on the
student project implementing part of this system.

About 40 students, mostly undergraduates who were quite
good programmers, were formed into three separate groups and had ten
weeks to complete the project. The first stage was to write on the
Burroughs B5000 an emulator and assembler for the PDP11. Secondly,
in that emulator they had to specify a complete banking machine.

163

All this had to be done in the sense of the software hut

where the students had to sell their product to their fellows.

This worked very well at Toronto but very badly at Santa Cruz, where
the students resented the competitive aspects.

At the end the students had to assess what they had
learnt.

STACK COMPUTERS

Introduction

Professor McKeeman mentioned that his first involvement
with stack computers was as a student at Stanford at the time of the
Burroughs B5000 when he ‘was sent to the Burroughs plant to learn
about their machines. Since then the B5500, 5700 and 6700 have
continued the development of stack hardware, becoming increasingly
complex, and it was suggested that the B6700 was near the practical
limit of complexity for such mechanisms.

In contrast, what follows is an explanation of the simple
ideas about stack computers, since one by one these ideas are easy
to understand, but all together comprehension becomes difficult.

The first task is to understand what problems are being
solved; generally there are questions to which we require the
answers. There are many ways to do this, and the way we have
chosen is:

translator machine
human—sprogramming language—smachine language —» answer

Within this model there are alternatives available, and we
have a choice of machine language and programming language.

When evaluating a machine design it is necessary to take
account of many factors along the entire path from question to
answer; the effort to express a problem in a programming language,
the time to compile it, then speed of execution etc. Stack
computers have their main payoff in programming time and compilation
time.

Arithmetic Evaluation Stack (S)

Although this is the simplest type of stack to understand,
there are still several design choices which can be made. For
example we may choose a mixed stack, where all variable types are
manipulated in a single stack; this is wasteful of space, since
floating point numbers normally occupy more space than integers, and
a large operator set is needed to cover operations between different
types such as real add, integer add etc.

Another possibility is to have a different stack for each
type; space wastage is avoided, but many operators are still needed,
as is some means of transferring values between stacks.

164

A third method is to have a single stack, but to tag each
item in it with its type information as Burroughs does. With this
method space is again wasted, since room must be left for tag field,
but the operator set can be much smaller - a single add operator can
take care of type conversion and checking.

Control Stack (Sc)

This type of stack is concerned with saving and restoring

the program counter on procedure entry and exit. As an example of
the way such a stack can be used, consider a situation which may
occur in a compilation when an error is detected. In a typical

compiler, the program may be deeply nested in procedure calls when
the error is encountered, and a simple recovery method 1is to read
the input stream until a semicolon is detected, then return to a
place in the compiler where a semicolon makes sense; this entails
many levels of return. There are several more examples of where
this situation can occur, and it would be wuseful if there was a
mechanism in one's programming language to allow this. For example
a 'return to' or 'return from' statement. An example of how this
construct would be used is shown in Figure 1.

The question then is, in terms of stacks and machine
architecture, what 1is needed to achieve this type of behaviour?
The control stack, used exclusively for saving return addresses is
one possible solution, and the operations needed to manipulate it to
achieve various types of call and return are summarised in Figure 2.

P : PROCEDURE OPTIONS (MAIN);
S : PROCEDURE(N);
/% some code ¥/
END S;
R : PROCEDURE(N);
IF N<O THEN RETURN FROM Q;
CALL S(5);
END R;
Q : PROCEDURE(N);
IF N<3 THEN CALL R(N);
CALL S(10)4
END Q;
CALL Q(=1);
END P;

Figure 1

165

Call Q Return from Q Repeat Q
Absolute|l Sce—PC PCe—Sc PCe Q

PC Q
Relative| Sce—(P,PC-PRT([P1]) (T,U)—3Sc

PC PRTIQ] PC PRT[TJ]+U PC PRTLQ]
Multi- ditto Te+—NIL Te—NIL
Level while T#Q do while T#Q do

(T,U)eSc (T,U)eSc
(T,U)+Sc PCe—PRT([Q]

PC PRT[TI+U

Figure 2

Using absolute addresses with a single level of return,
the mechanism is simple - to call, the program counter is pushed
onto the control stack, and the address of the called procedure is
loaded into the program counter. Return involves popping the saved
return address from the control stack into the program counter.
This mechanism can be modified slightly to allow for dynamic code
relocation. In this case, the operating system will keep procedure
entry addresses in an execution time table (called the program
reference table, or PRT), and will update this when code is moved.
The control stack must then save two values: the index of the
calling routine in the PRT, and the calling point relative to its
entry point. Using this type of mechanism multi-level return is
straightforward, and all that 1is required 1is a loop which pops
return addresses from the control stack wuntil the current one
corresponds to the context we wish to return from. One more pop
from the control stack into the program counter will then achieve
the desired return.

Local variable stack (Sv)

A third type of stack is the local variable stack, and in
terms of the Burroughs machines this has proved to be the most
useful. The Algol-like storage allocation mechanism, and
addressing relative to global and 1local base registers (or a
display) reduces address sizes and hence code density can be higher.

Figure 3 shows how this stack works. The global register
points to the base of the stack for the entire run of the program,
whilst the local register points to the base of the local variables
of the currently executing procedure, making both globals and locals
accessible. Other variables will not be accessible since they are
outside the current scope.

166

P s a program
UNUSED invoked by the
operating system.
Q and R are non-
I nested procedures
i LOCAL TO P . .
-\\\\‘ I.E. GLOBAL declared within P.
% T
. Sv
P has called Q
UNUSED
. LOCAL TO @
L R
i LOCAL TO P
o I.E. GLOBAL
SV
UNUSED Q has called R.
Local variables to
LOCAL TO R Q are temporarily
unaccessible.
LOCAL TO @
I i
s LOCAL TO P
- ki T.E. GLOBAL
S
v
Figure 3

The operators needed to manage this stack are concerned
with scope-entry and scope-exit, and interact to some extent with
the call and return mechanisms since the two happen at the same
time. Dynamically, the sequence of events must be call
v o return, scope-exit, and the actions of the operators are
as follows, where P is a program or procedure which calls procedure

Q

Scope-entry Lissdd + ViEP) (In P)
Call 8o = RPOs PCesQ (I B)
Return PC:= Sc (In Q)
Scope-exit L:= L=V(P) (In P)

(V(P) corresponds to the number of level variables in P).

Thus at scope-entry the local base L is simply incremented
in order to protect the local variables of the procedure containing
the <call, and decremented by a corresponding amount at scope-exit.
Therefore at these times the number of local variables in P should
be Kknown. Professor Pyle pointed out that since different data
types may be of different lengths, what really needs to be known 1is
the space occupied by the variables rather than their number,

especially if the language allowed user defined types. Professor
McKeeman acknowledged this, and warned against designing a machine
with a specific language in mind. If one was to allow user defined

types then the kind of scheme which was suggested in the section on

167

arithmetic evaluation stacks, namely one stack for each type, would
clearly to too restrictive.

Professor Whitfield suggested that it would be possible to
do the storage allocation for a particular procedure when it was
called, rather than having to protect the space occupied by its
local variables when +this procedure called another. Professor
McKeeman replied that the two methods, namely allocation on entry,
or protection before a call, were basically equivalent solutions.
However, by deferring things for as 1long as possible, more
information is normally available, and in this case one is
protecting the thing which is best known, that being the scope in
which one is already.

Dr. Chen added that with some interpretive languages such
as APL it was not possible to know in advance how many local
variables were present in a parcticular procedure.

Marker Stack (Sm)

One further stack, the marker stack can be utilised in
conjunction with the local variable stack. On scope-entry, the old
value of the 1local base L is pushed onto Sm before it 1is
incremented, so that all that is needed for scope-exit is to pop
this saved value from Sm into L. This implies that the number of
locals V(P) is only needed at the time of the call. We then have:

Scope-entry : Sm:=L; L:=L+V(P)
Scope-exit ¢ L:=Sm

The means of addressing variables relative to global and
local registers works well if nesting of procedures 1is denied.
When procedures are nested, a procedure has access not only to its
local variables but also those of any procedures inside which it 1is
declared. In this case the global/local solution is inadequate,
and a more complex mechanism, the display, 1is necessary. The
contents of the display are then used to point to the bases of all
scopes to which the currently executing procedure has access.
Using display, the scope-entry and scope-exit operators are as
follows:

Scope-entry : Sm:=D[J]
D[J]:=D[K] + V(P)
Scope-exit : D[J]:=Bm

and figure 4 illustrates a typical situation.

168

The above mechanisms are only valid it parametric
procedures are not allowed. If this 1is not the case, then a
procedure may be passed to the body of another procedure which 1is
not accessible to the calling procedure. In this case all of the
display (except D[O]) may have to be changed, which entails saving
all the changed entries on the marker stack.

The wvarious stacks, registers and program code and their
interactions are pictured in Figure 5, and a corresponding picture
for the B5000 is shown in Figure 6.

The B5000 has one large stack, plus local and global base
registers. Arithmetic evaluation is done at the top of this stack,
and contained in it are many links to accomplish the same effect as
did the marker stack and control stack. A problem with this type
of organisation occurs with procedure parameters which are prepared
before the call, but eventually are required to be in the local area
for the called procedure. They therefore appear on the stack 'a
little early'. One way round this problem is to have a parameter
preparation stack in which these variables can be stored until the
call, and then copied across to where they are to be used. On the
Burroughs machines a lot of complicated manipulation takes place at
the time of procedure calls in order to ensure correct return from
the call. This 1is a good example of what with a single stack is
complicated, but with several stacks causes no problems.

Unused

level 2

level 1

B SR level 1

p S (et)

P e level 1

level O

Sm oV Display

Figure 4

Code 169

PC

PC

ol B
L
- TN 1.6
' gt I N o ol R 7
Sc Sm Sv G S
Figure 5
r . "
gl .
L
NS «— =

Sv

Figure 6

170

Professor Hoare remarked that, since the cost of compiler
writing had been significantly reduced since 1960, in a compiler for
a language and hardware as simple as those described, it would be
easy to do more address allocation and stack administration at
compile time. He also noted that the chain-back method of
organising access to non-local variables is very efficient, provided
that fast access to global, local and perhaps next-local variables
is available, and therefore a display is unnecessary. Professor
McKeeman said that when the B5000 was first released it did not have
the chaining back ability, but this was later added in software.
This was done after display had been implemented on the B6700, which

proved to be a very complex piece of hardware. From a user point-
of-view there is no difference between the two methods, but on an
engineering level the chain-back mechanism is much cheaper.

Professor Randell commented that the cost factors mentioned by
Professor Hoare were not the only ones., and others, such as code
density and time to decode may need Lo Dbe taken into account.
Professor Michaelson pointed out that an important point was being
overlooked. Farlier it had been mentioned that the Burroughs type
of organisation was aimed at helping the translation phase on the
problem solving path, but the run time step was really the more
important. Thus the problems of code location and the number‘of
working areas in a roll-in/roll-out system should dominate design
decisions rather than time saved at compile time, and certainly at
compiler writing time, which is trivial in comparison to the ?e§t.
Professor McKeeman expressed doubt about whether compiler writing
time should be regarded as trivial, and went on to make two further
points. Firstly, when something goes wrong with a program, the
time taken by the programmer to find and fix the problem 1is very
important. Secondly, with the addressing mechanism associated with
stack organisation, addresses can be much shorter, and a higher code
density can be achieved.

Professor McKeeman noted that the immediately preceding
discussion showed that the question of computer architecture
evaluation 1is a difficult one, and concluded with two further
examples to illustrate the point.

The size of load-type instructions for the B6700 could be

halved from 16 bits to 8 bits. Since these instructigns were.the
most common, the saving on memory needed to contain instructions
would be about 10%. On suggesting this to Burroughs they countered

with the following argument. Money is spent on many other things:
cpu, peripherals, installation and running costs, programming, and
that the effect of the saving on memory to the end user would be
negligible. What would be worthwhile would be a way to save 10% of
the programmer's time.

171

The evaluation question 1is very hard, even with
quantitative cost benefit analysis techniques. A careful
evaluation on these lines was done at a particular installation, and
it was shown that the machine was costing more than the benefit it
produced. When this was explained to the owner of the installation
he denied it, since he had forgotten to mention another factor - the
fact that he allowed customers to tour his computer centre, and he
received much business that way. He knew that the computer was
worthwhile, but was unable to express it quantitatively.

Reference Introduction to Computer Architecture, H. Stone

(editor). Chapter 7.

A SIMPLE COMPUTER

1. Introduction

Professor McKeeman began his third talk by recounting some
early teaching experiences in a course on machine structure and
computer organisation which was based upon the IBM 360 computer.
He observed that students unfortunately formed the impression that
the IBM 360 design was the solution to the problems of machine
design. In a subsequent course where students were to design their
own machines a disproportional number of 360-like designs emerged.
Using the HP2116 computer in this course rather than the IBM 360
simply produced HP2116 evangelists rather than IBM 360 advocates.
The simple computer to be described resulted from such experiences;
it is sufficiently powerful to give the basic insights into computer
architecture but is unlikely to be mistaken to be a pre-ordained
solution to all problems therein. It soon becomes clear that it is
deficient on both economic and engineering grounds when these issues
arise later in the course.

The objectives of the course are

1. To introduce the subject of machine organisation (after
students have acquired considerable programming experience - a
course on compilers is a prerequisite). This course not only

introduces students to their first machines but involves them in
designing their own machines.

2 To avoid exposing them too early to "authoritative" designs
such as the IBM 360 or HP2116 computers.

X To introduce the notion of "levels of control". The idea that
translation from a high level language to machine language has to be
a single step can be avoided by introducing microprogramming from
the outset. In this way students immediately see the existence of
intermediate levels over which choice can be exercised during the
design stage.

uy, To introduce alternative CPU organisations. No 1initial
committment is made to zero, one, two or three address or indeed any
other form of organisation. Consideration of several such

alternatives is included in the course.

1fe

To cover this variety, the initial designs involved
software implementation - an implementation in hardware follows
later in the course.

2. A Simple Microprogrammable Computer

These early designs wutilise a simple microprogrammable
computer consisting of a number of independent units each with one
or more input ports and one or more output ports. To simplify the
design each input port is a general register which stores the last

data value transmitted to it. The output ports have values which
are a function only of the input port values and the state of the
unit itself. The sequence of events between setting an input port

value and the first inspection of an affected output port value is
arranged to have sufficient delay to ensure that the output value is
ready. '

The units comprising this computer include general
registers, special registers, memories and computational wunits.
The output ports of all of these units are connected by a common bus
to the input ports of the units though at a given moment in time
data may only be transmitted from one output port to one input port.

Each unit and where necessary its input and output ports
are named as shown in Figure 1. The bus and unless otherwise
stated, the ports are 16 bits wide. Where ports are less than 16
bits the rightmost (least significant) bits of the bus are used, all
others being set to zero. Apart from connections to LIT and MUPC
which are explained 1later all data flow 1is accomplished by a
sequence of bus transfers moving data from one of the sixteen output
ports (0 to F) shown on the left of figure 1 to one of the input
ports which are illustrated on the right of figure 1.

The registers RO to R3 are general purpose registers.
The output port value of one of these registers is equal to the
value most recently transmitted to its input port.

IN and OUT are 8-bit registers used for input and output
to an external device such as a teletype. The value of IN is the
EBCDIC code of a character sent from the input device; a side effect
of inspecting the value of IN is to transmit the next character from
the input device to IN. Each EBCDIC character code sent to OUT 1is
transmitted to the output device.

The 4 bit register LIT can only be set to a value obtained
directly from a microprogram instruction. Unlike other units then
its input port is not connected to the bus.

PO

P1

p2

P3

P4

P5

to micro—
program fetch P6

PT

P8

P9
PA

PB

PC

PD

PE

PF

ok

PO

¥l

P2

P3

our [«

P4

nl

173

<

i R1 [«

- R2 |
< R3 [«
Bl IN

< LT [
< | MUPC P

Frrrt e

Fd

MEMORY

CHOICE

SHIFTER

-\
e

\YAvAN

SV

SA

—

Figure 1. Bus Port Assignm:=nts

PL

—lPS

| P9

Py | BA

it PB

PC

PD

s——

¥ fron input
port bus
address

from micro=
program
memory

174

MUPC is the microprogram counter. It contains the
address in the microprogram of the next microinstruction. It i3
automatically set before the beginning of a microinstruction fetch
cycle of the computer. If MUPC is explicitly changed Dby a

microinstruction the next microinstruction is fetched from the
changed address.

Main memory consists of up to 2% 16-bit words.
Associated with main memory are two input ports, MA and MV and one

output port M. The value of MA designates an address in main
memory. Transmitting a value to MV causes this value to be written
to the memory address designated by MA. Whenever M is wused as a

source the word in main memory indicated by the address in MA is
transmitted.

The ADDER has two input ports, AL and AR and five output
ports related as follows

OFL = 0 if -2*5¢AL+AR<2*®
= 1 otherwise
SUM = AL+AR (two's complement arithmetic)
OR = logical OR of AL and AR
AND = logical AND of AL and AR
NOT = +qAL

Whenever AL or AR is changed all output port values change
accordingly.

The output port C of the choice unit, contains thg valge
of the input port F, if the value of D is zero; otherwise it
contains the value of the T input port.

The SHIFTER wunit has two input ports SV and SA. The
latter is four bits wide and specifies the number of places the

value in SV 1is to be shifted. Shifts are logical (zeros are
inserted for undefined bits). For positive value of SV

Sk =-3yx2™

SR = SV/2%

Whenever SA and SV change, SL and SR change accordingly.

3. Microprogram

The microinstructions for this machine contain pairs of
hexadecimal digits. The first of the pair specifies an outpgt
port, which is the source, and the second an input port, which 1is
the destination of a bus transfer. For example 07 specifies that
RO is transferred to MA.

The one exception to this rule arises in the case Qf. the
LIT unit. When the destination is 5 the first hexadecimal digit 1is
the constant to be transmitted to the input port of the LIT unit.

A microprogram is a sequence of microinstructions stored
in a separate memory (not shown in Figure 1). The mechanism that
fetches a microinstruction from the address specified by the MUPC
register and causes it to be obeyed constitutes the hard-wired part

175
of the computer.

Each instruction contains a third field of eight bits in
addition to the two hexadecimal digits. This eight bit field
specifies the address of the next microinstruction to be executed.
buring . sthe ; feteh .pant, of the fetch-execute cycle for a
microinstruction the contents of this 8-bit field are transferred to
MUPC so defining the address of the next microinstruction. The
microprogram memory then is fixed at 256 16-bit words.

Commenting on this computer, Professor McKeeman regretted
the pervasiveness of decision to -make the bus,K 16 bits wide but there
seemed to be no way of incorporating truly variable length
operations sufficiently simply to allow it to! be introduced at the
outset in a first introduction to computer architecture.

As a simple illustration of the use of this computer, the
microprogram for the fetch cycle for a single address computer 1is
shown in Figure 2. The - instruction. format of the one address
computer is assumed to be, four high order bits representing the
operation code and twelve low order bits representing an address RO
is used to simulate the priogram counter (PC)' and R1 the address
register (ADR) of the simulated computer.

Microprogram Micro- Symbolic form
memory address instruction

10 0711 PC—MA Prepare memory access

11 1512 1—LIT

12 : 5913 LIT—AL \ Increment program counter
13 OA1Y PC—pAR

14 - 9015 SUM—»PC ‘ _
i a 7316 .~ _M—»R3 Fetch Single address instruction
16 ' 3E17 R3—SV

AT 4518 . 4—LIT .

(18 .4n 5K19 . LIT—»SA Isolate address field

19 D IR -4 i 1 ‘ SL—V

1A F11B SR—*ADR

1B C51C 12—LIT

1C 5F 1D LIT—»SA Switeh on opcode

1D 3E1E R3—SV =

AE 4w ., .. E61F_ .. SR—»MUPC

Figure 2., . .The fetch cycle of a one address machine

e

. The 'symbolic form of the instructions shown 1n ‘Figure 2
omits the next instruction address. In.the £first _line, the progranm
counter is _sent to. the memory address 1nput port preparatory to
fetchlng the instruction from main —memory. The next four
instructions increment the program counter by 1 then the instruction
is brought from memory into the scratch, register R3. The . next five
instructions, take the ~instruction from R3 shift it left and then
rlght four places to strlp off the operation. code and leave _the
remaining address in the address register. "The final four

176

instructions take the instruction from R3 shift it right twelve
places and send the operation code to the microprogram counter.
The final instruction effects a multi-way branch to microprogram
memory locations 00 to OF according to the operation code.

Clearly the instructions of the Fetch/Execute program may
reside anywhere in the microprogram memory (other than location 00
to OF) and it has been assumed that they reside in locations 10 to
1E for the purpose of specifying the microinstructions fully in the
second column of Figure 2. The microprogram memory layout so far
specified is shown in Figure 3.

00
SWITCH AREA
OF
10 .
FETCH EXECUTE
PROGRAM
1E
17
I |
] 1
FF | 1

Figure 3 Microprogram Memory Layout

Each microinstruction in the switch area is the initial
microinstruction of the execute <cycle for the corresponding
operation of the one address machine. This initial
microinstruction designates as its successor the first of a sequence
of 1instructions (in the unallocated region 1F to FF) which complete
the execute cycle of the one address machine instruction. While
the memory layout becomes somewhat bizarre it is not difficult to
understand and is part of the price paid in keeping the underlying
machine simple.

4, Teaching

Professor McKeeman next described the way in which the
course using this computer develops.

First of all a simple single address computer with U4-bit
opcode and 12 bit address is described and students write a few
short simple programs for it; examples might be a program for
generating the Fibonacci numbers or for performing bubble sort.
These are punched on cards and fed to the one address '"machine"
which 1is emulated on the microprogrammed computer. (The latter is
in fact an XPL program running on hardware which is more readily
available.) The one address machine provides them with about one
page of output in the form of an instruction by instruction trace of
the execution of this first assembly language program. (Strictly
speaking their first machine language program since the coding is
done in hexadecimal.) They then see the states of all the registers

177

during the execution of a few instructions. Decoding this output
becomes dull very rapidly but once the students have understood the
behaviour of the one address machine they are exposed to the
microprogram implementing the one address machine. They are helped
in understanding it by running their programs once again but with a
different set of trace mechanisms which trace the action of the

microcomputer displaying the bus cycle. This gives more than a
page of output and since interest in it wanes quickly it is limited
to about 100 lines. Now having seen the macro machine and the

micro machine operating they have seen most of the mechanisms and
can now design a machine, usually a stack machine, and reprogram the

microcomputer to implement it. Alternatively they might add an
"execute" instruction to the one address machine or perform some
similar exercise. In this way students get the idea of adding

opcodes, changing opcodes, modifying the whole architecture of the
machine.

The simple computer provided is sufficiently general that
these things <can all be accomplished. It is soon apparent to
students that it is far less than ideal. Its main virtues are that
it works in a straightforward fashion and that an engineer has never
seen it - which means that its use is not constrained by a 1large
number of subtle features (perhaps based on what core technology
required in 1956). The machine was designed to be wunderstood,
economics was not a «consideration. At about the time that the
students become disenchanted with the microcomputer they are set the
task of designing their own microcomputer. At this stage they are
made aware of the fact that the microcomputer is in fact merely
represented by an XPL program which is not sacrosanct and they are
then free to design a better micromachine than that provided. At
last then they are on the way to studying computer architecture.

The first three weeks of the course are taken up by these
things. Some of the students may then write an assembler for their
microprocessor, using a symbolic form for instructions, taking
advantage of what they have learned in the compiler writing course.
The main functions of the early part of the course are concerned
with getting over the ideas of the fetch execute cycle at different
levels and the choices that are available here. Then about a week
is spent on exercises such as

1. Design (and implement?) the bus.

Enough background in electronics 1is available at this
stage to allow consideration of how to build the latches on the end
of the bus for each of the ports and how to decode the bus
addresses. It would be nice to have sixteen lines with a signal on
a specific 1line to denote a specific address but an alternative is
to encode addresses on four lines and use 4 x 16 decoders; each
latch must then be selected on a particular bit pattern. Yet
another alternative is to associate the decoding with the ports.

2. Design the adder unit.

This exercise would stop at the design stage. With ALU
chips there is little point in implementing it.

3. Design a U4-bit Polish Machine

178

This turns out to be painful. The underlying machine has
a sixteen bit memory. Once students have considered the
implications of packing four instructions per word they are shown
the B5000 solution.

4. Make the microcomputer emulate itself

This is a non-trivial exercise and leads to the same issue
as the Universal Turing Machine. Can the microcomputer emulate
itself emulating itself . « « « « % By changing the IN and OUT
registers one student did emulate a Turing Machine.

5. Emulate the PDP 11 (7!)

Students have seen enough of the PDP11 to realise that it
is a very simple and neat computer and they begin to contemplate
emulating this in a 256 word microprogram memory. After perhaps an
hour it 1is realised that no amount of packing will suffice and the
issue becomes "Can you design a microprogrammable computer of
sufficient power to emulate a PDP 11 given a constraint on the size
of the microprogram memory to perhaps 100 words?". (Professor
McKeeman explained that his students at least are used to questions
to which the answer is that there is no answer.)

6. Design a machine with addresses of the form [length, address]
where address defines a bit address and length defines the number of
bits of the operand field starting at the given address.

While this is logically possible on the given
microcomputer it is beyond its capabilities given any reasonable
amount of microprogram memory. As in the previous exercise this
becomes a matter of designing a suitable microcomputer to support
variable length operations.

This course runs for two quarters. Presentation of the
simple computer occupies the first two weeks. After this students
are taught logical design and they eventually build a computer
involving about 600 to T00 backplane wires. They have certain aids
such as wirewrap programs.

Professor McKeeman closed by remarking that at least he
did not recognise HP2116 or IBM360's among the machines designed by
students on this course.

é; Discussion

Professor Heath commented that he liked this approach and
the simple computer and the fact that it left out detail which
caused loss of momentum in teaching. He cited as an instance the
fact that the program counter is set by each microinstruction rather
than incremented avoided the 1lengthy digression 1into Dbranch
instructions which would be necessary at that point in the case of
teaching based on say the PDP 11. (Interestingly Professor
McKeeman had remarked earlier in an aside that he had in fact done
this for a good engineering reason. Ripple carries in the program
counter cause the execution of microprogram instructions on a slow,
quick, slow, quick, very slow basis.)

174

Replying to a question by Professor Dijkstra, Professor
McKeeman explained that 2 lecture hours and 2 laboratory hours were
allocated each week, so the presentation of the microcomputer took
about 4 hours of lectures - the corresponding 1laboratory periods
were occupied by running programs and explaining computer centre
procedures. Mr. Givens asked what 1level of students took the
course. The course was intended for 3rd year undergraduates who
should have already have taken the compiler writing course as a
prerequisit. Professor McKeeman said he believed that no one
should be designing computers without understanding what compilers
do but a number of students sneaked in without it. Perhaps half of
the class were third year students, with a few postgraduate students
and a few first and second year students.

Professor Vranesic asked if it were the case that
engineers who knew nothing of compiler writing should not design
machines, then was it reasonable that compiler writers who knew
nothing of engineering should do so. Professor McKeeman's 1initial
response was "Certainly, because it's fun." More seriously he
replied that of course programmers in general have not the first
idea of how to convert things into logic and he then commented on
his experience with Burroughs where the design teams include Dboth

programmers and engineers. The engineers with their different
background frequently instinctively recognised things that would
compromise the total design. As an example he cited the B6700

design where the programmers lead the design team and the engineers
sincerely attempted to implement their design. Subsequently it
became clear that the programmers had not appreciated fully some of
the engineering consequences of their decisions, some of which
impaired rather than improved the efficiency of the machine overall.
Fortunately the chief engineer on the design team taught himself a
lot about programming during the project so that he could understand

what it was that the programmers were about. Subsequently in the
design of the B1700 the pendulum swung back and an engineer was 1in
charge. Here the programmers were merely advisers. In this case

the programmers' advice was that the early versions of the machine
could not be programmed. The engineers' reply was "Of course it
can be programmed. It can emulate a Turing Machine." Finally the
chief engineer agreed to program the machine for a few weeks and the
final version of the B1700 reflects the results of his agreeing to
train himself in programming. In both cases it was the engineer
who of course really did the detailed design but the combination of
programming and engineering experience was beneficial in both cases.
Professor Vranesic then asked if the student, at the end of the
course, was aware of the engineering constraints to which Professor
McKeeman replied that they were fortunate at Santa Cruz to have a
very skilled computer engineer on the staff who supervised the later
laboratory work and introduced students to those aspects of design
to which a good electrical engineering background contributes. He,
for example, Wwill not permit them to build the simple microcomputer
- it is too expensive for what it does - it has too many parts. He
discusses an electronically much simpler machine but which logically
is more complex. It involves 600 - 700 backplane wires rather than
the 1800 involved in building the simple computer. In addition,
students eventually obtained experience of interrupt programming on
a PDP 11; they program both tbe B5000 and the IBM360 so they do see
a variety of real machines (in the case of the B5000 even at the
wiring diagram level).

180

The response to a question by Professor Whitfield on
numbers of staff and students involved was that the class never
contained more than 20 students so that one member of teaching staff
could handle it. Availability of staff interested in teaching
different aspects of the course resulted in it being split between
the two. Professor Whitfield commented that it seemed students
must spend a great deal more time on this course than the contact
hours allocated to it. Professor McKeeman explained that students
at Santa Cruz normally take three courses simultaneously which
implies about 12 to 15 contact hours; they are however expected to
spend twice as much time outside of class making about 40 to A5
hours of study per week. However students do complain that the
computing courses demand more of them in terms of time than other
courses; the level of effort was indicated by the fact that the
students threw a champagne party on the day that the machine they
had built worked. They were very proud of that achievement.

In the ensuing discussion about the organisation of the
group project resulting in the construction of the machine it
emerged that the management was largey controlled by the engineering
staff member though the students perhaps would not agree. He
vetted the design carefully before allowing any implementation and
prevented really bad decisions which would have caused trouble.
The students divided into four groups, the memory section, the I1/0
section, the fetch-execute section and the combinatorics section.
The groups were rather arbitrarily composed and were in any event
dynamic.

Reference A Simple Computer : SIGMICRO Newsletter, October 1974.

