
Rapporte ur s

APPLICATION PROGRAMMING SYSTEMS SO FRIENDLY
THAT EVEN A SALESMAN CAN USE THEM

Professor W. M. McKeeman

Mr. J. Aspden
Dr. J . Eve
Mr. D. McGlade

157

Professor McKeeman remarked that the development of the
microcomputer appeared to be following the same path as the
macrocomputer and making the same mistakes but three times faster.
Some of these errors lie in the way microcomputers are designed, and
should be comparatively easy to avoid. However, we should ask
whether there are any new problems which did not occur before. The
answer appears to be that there are, and Professor McKeeman
illustrated this by referring to a manufacture r , who was not a
sophisticated computer user but one used to machines of great
mechanical and electromechanical complexity, but who discovered that
much of the machinery which they were experienced and equipped to
bui l d could be replaced by a microcomputer. The device in question
is a ' sidewalk bank teller'. Their prototype bank teller was
delivered with 28K of hand-coded assembly language in it, and was so
successful that the bank who received i t asked fo r two more, but
also requested an extra feature be incorporated . The manufacturers
were already using total memory of the machines but re - organised the
program and managed to add this feature.

This went on for four months, with every machine a little
different, until the manufacturer realised it was programming for
customers and would need an exponentially increasing number of
programme r s . What cou l d be done to solve this problem? The
manufacturer was prepared to dedicate one salesman to each sale so
the solution proposed was to turn the salesman into " programmers " .
A second problem to be overcome was the willingness of the salesman
to sel l anything, i rr espective of t he feas i bility of pr oducing it.
The engineering department was receiving orders, signed by the
managerial staff, for items that simply could not be made in any
reasonable period of time.

Figures and 2 illustrate the proposed solution. The
engineering department pr oduced a program, the " specification
processo r" which was available to salesmen , v i a a po r table terminal .
This prog r am posed a set of questions wh i ch the customer and
salesman answered; from these answers a complete specification was
produced in a Polish-string form which could then be passed to a
"product simulator " program. Using the latter the c ustomer and
salesmen could check that the specification did indeed meet the
customer ' s needs. If unsatisfactory aspects of the specification
were discovered, these could be corrected by repeating these two
steps.

-,

158

·1

1

PORTABLE
TERMINAL

PHONE LINE

lIlENU SELECT

DEVELOPlIlENT
COMPUTER

FILE

(AT P.M. SITE)

SPEC. CUSTOlllER l- Iff) ---ill~~:rmL_~OCESSOR

CUSTOlllER
SPEC.

APPLI- -CATION
COMPILER .l:...

CUSTOlIlER
ALGORITHM

SIMULA'IED DEMANDS PRODUCT CUSTOlIlER
ON PRODUC SIMULATO ALGORI

f~/q SIMULATED INTERP.
PRODUCT
REACTIONS

CUSTOMISED CONTRACT

t~g
CONTRACT WRITER

Figure 1

S
P
E
C

C
o
M
P
I
L
E

D
E
M
0

C
0
N
T
R
A
C
T

PRODUCT
PHONE LINE

(AT P.M.)

CUSTOMER

DEMANre

CUST.
PROG.

RESPONSES GO TO SPEC.

j
@; CUSTOMER
0

MANUAL ...:l

I
~

(AT CUSTOMER)

I ~
CUSTOMER

t PROGRAM

~

Figure 2

DEVELOPMENT
COMPUTER

PROGRAM
LINKER

MINI
~MULATOR

+
DIAGNOSIS

DOC~

MENTOR

I ~

FILE

INTERP (MINI)

DEVICE
DRIVERS

CUS'IUMER
PROGRAM

SIMULATED
ENVIRONMENT (S)

CUS'IUMER
U

PROGRAM

CUSTOMER
SPEC.

CUSTOMER
PROGRAM 0

159

L
I
N
K

T
E
S
T

D
0
C
U
M
E
N
T

I
N
S
T
A
L
L

160

On ac hi evi ng
spec i fication
which pr oduced
form.

a satis fa cto r y specification t he Po lis h string
was passed to another program, the " cont l"act writer "
an Englis h version o f the specification in contract

This set of programs wa s a new tool f o r the sa lesm an which
had the great merit t hat since engineer in g produced it, he could not
s ell anything t he y could not make.

DECLARE B 1 CC INFO 10 RETRIES 1;
ACCESS RETRIES- ONLY FR OM CARD INSERTED CC_RETRY;
MAIN:

ENTRY;
CAL L f: f··.;,F: 1 ;

$ comment test fr ont gate of bank card receiver.
DEVICE BANK CARD FR ONT GATE TIMEOUT 10 B;
IF TIMEOUT EQ 1 CALL BROKE N;

$ Comment if there is no ca rd, do diagnostics .
IF B EQ 1 CALL IDLE;

$ Comment start customer id cycle.
CALL CARD INSERTED ;
REPEAT MAIN;

END;

CARD INSERTED:
ENTR Y;

DATA MOVE 0 TO RETRIES ;
$ Comment pul l bank card into reader.

DEVICE BANK CARD PULL TIMEOUT 10 0 CC INFO;
IF TIMEOUT EQ 1 CA LL CC RETRY;

$ Comment test bank card back gate.
DEVICE BANK CARD BACK GATE TIMEOUT 10 B;
IF TIMEOUT EQ 1 CALL BROKEN;
IF B EQ 1 CALL CC RETRY;

$ Comment card in plac e, start id
CALL ID SEQUENCE;

$ comment-customer accepted .
CALL TRANSACTIONS;

$ Comment al l done, return bank card and close window.
CALL SIGNOFF;
RETURN TO MAIN;

END;

Figure 3: Sample of ABL code.

The customer at this stage signed the contract, and was
not involved agai n until delivery.

The next step in developing a program to run on the
" mini computer in the bank teller f o r a specific customer was the

construction o f a package consisting o f a standard interpret er and
the user specification together with any device drives that are
required . For conven ien ce the pac kage is exerci s ed on a la r ge
machine ove r a wide r a nge of environments . The same specif i cation,
o nce debugged, is given to a documentor program to pr od uce both

161

maintenance and user manuals for the customer. The maintenance
manual in particular includes the modifications needed to change
messages, this being a frequent requirement. Finally, this package
is sent to the minicomputer at the user site.

Apart from these programs (the specification processor ,
product simulator , contract writer, standard interpreter and device
driver modules, documentor and environment simulator) which are
rarely altered, there are no programmers involved in the production
cycle. These major programs are not trivial and the specification
of environmental tests was particularly difficult. Figure 3
illustrated the language invented to assist the testing. Most of
this involved the device driver interactions as approximately half
of the comma nds are device commands.

In summarising Professor McKeeman noted that the main
points to observe in the problem and its solution are :

1) The machine selected by the bank teller manufactuer was
inadequate for the task. In particular, it was too small
and not designed for interpreter use.

2) The solution had a high initial cost but would automatically
generate the exponentially increasing amount of code needed.

3) The salesmen were disciplined to sell only feasible
products.

4) Maintenance was greatly simplifed. In particularly it
enabled the minicomputer at a site to be changed easily,
thus localising the fault to hardware or software.

Professor Randell asked if this method could be used in
other applications. Professor McKeeman said that for problems like
banking it is sufficiently general. Although the menu select i on
program was large it was easier to develop than to change the
product. However there are a lot of problems with too much
variability for such an approach. Th ere are cases in which the
cost of getting started with this ~ethod exceeds that of a more
conventional approach.

Professor Pyle wondered if any software company had
expressed an interesr--in the method as a speculative venture.
Professor McKeeman replied that if a company wanted such a suite of
programs then it would be worthwhile, but there was no obvious way
to generalise the method. The menu-selection in particular appears
to be very ad hoc. The res t of the system can be built fairly
readily.

Professor
to capt ur e , at the
simulating demands,
likely to do.

Pyle pointed out
pornt where the
what the custome r

that there was an opportunity
salesman and customer are

anticipates the end-users are

Professor McKeeman admitted this had escaped him and it
would have assisted the construction of the simulated environments
which had proved most difficult. The actual writing of the
programs was not too involved and had been tried as a student
project.

Professor Wells asked if the menu selection had much in

162

common with computer assisted instruction.
agreed that there was much in common but did not
be exploited.

Professor McKeeman
see how this could

Dr. Glaser said most of the modules
occurred in-tAI systems over the last fifteen years
had eventually found the menu selection approach to
factor.

described have
but such systems

be a limiting

Professor McKeeman agreed that it was by no means clear
how to proceed beyond menu selection, but thought it impractical to
attempt to train salesmen in a programming language.

Professor Page noted that the combinatorial possibilities
in the simulated environment could become very large indeed, and to
exhaustively test the environments would require complex analysis
into equivalent classes that might easily be outside the ability of
the person testing.

Professor McKeeman felt there was no chance that the
testing could be exhaustive. The objective was simply to detect
the first few hundred errors so that the end-user does not see them.
All subsequent errors would be fixed at the site when discovered.

Professor Page drew attention to the fact that the 301st
error might be the one which gave away all ten thousand dollars.
Agreeing with this, Professor McKeeman pointed out that things were
worse than that. One suggestion made was that a machine be given
to a student who would spend all summer trying to 'break' it. This
frightened the manufacturer. They were not at all concerned that
these devices could be tricked, but much more concerned that someone
knew how. The mystery of the device was part of its protection.
That the machine might make mistakes was fairly low on the list of
problems. Banks do not mind money being stolen - they are insured
against that - what they are worried about is customers withdrawing
their money, it's gone then. They are very concerned with their
im ag e.

Professor Randell asked Professor McKeeman to enlarge on
his point about the computer not being suitable for interpretation.
He replied that some microprogrammable machines make good
interpreters even where the instruction unpacking is left to the
microcode. It appears that if you are going to compile into some
engineering-chosen opcode set you are already in difficulties.
Machines designed to be interpreters fit better with the current
economics which optimise for space rather than speed.

Professor Randell requested more information on the
student project implementing part of this system.

About 40 students, mostly undergraduates who were quite
good programmers, were formed into three separate groups and had ten
weeks to complete the project. The first stage was to write on the
Burroughs B~OOO an emulator arId assembler for the PDP11. Se~nndly,
in that emulator they had to specify a complete banking machine.

163

All this ha'd to .be done in the sense of the software hut
where the students had to sell their product to thei r fellows.
This worked very well at Toronto but very badly at Santa Cruz, where
the st4dents resented the competitive aspects.

At the e nd the students had to assess what they had
learnt.

STACK COMPUTERS

Introduction

, Professor McKeeman mentioned that his first involvement
with stack computers was as a student at Stanford at the time of the
Burroughs 8'i000 when he 'was sent to the Burroughs plant to learn
about their machines. Since then the B5500, 5700 and 6700 have
continued the development of stack hardware, becoming increasingly
complex, and it was suggested that the B6700 was near the practical
limit of complexity for such mechanisms.

In contrast, what follows is an explanation of the simple
ideas about stack computers, since one by one these ideas are easy
to understand, but all together comprehension becomes difficult.

The first task is to understand what problems are being
solved; generally there are questions to which we require the
answers. There are many ways to do this, and the way we have
chosen is:

translator machine
human_prog.r amming language_machine language _answer

Within this model there are alternat ives available, and we
have a choice of machine . language and programming language.

When evaluating a machine design it is necessary to take
account of many factors along the enti re path from question to
answe r; the effort to express a problem in a programming language,
the time to compile it, then speed of execution etc . Stack
computers have their main payoff in programming time and compilation
time.

Arithmetic Evaluation Stack (S)

Although this is the simplest type of stack to understand,
there are still several design choices which can be made. For
example we may choose a mixed stack , where all variable types are
manipulated in a single stack; this is wasteful of space, since
floating point numbers normally occupy more space than integers, and
a large operator set 1S needed to cover operations between different
types such as real add, integer add etc.

Another poss ibility is to have a different stack for each
type; space wastage is avoided, but many operato rs are still needed,
as is some means of transferring values between stacks.

:,."

164

A third method is to have a single stack, but to tag each
item in it with its type information as Burroughs does. With t his
method space is aga in wasted, since r oom must be left for tag field,
but the ope r ator set can be mu ch smaller - a single add operato r can
take ca re of type conve r s i on and checking .

Control Stac k (Sc)

This type of stack i s conce rn ed with saving and restoring
th e program counter on procedure e ntr y a nd ex it . As an example of
th e way such a stack can be used , consider a situation which may
occur in a compilat i on when an error is detected. In a typical
compiler, the program may be deeply nested in procedur e calls when
the e rr o r i s encountered, and a simple recovery method is t o read
th e input stream until a semicolon i s detected , then return to a
place in the compiler where a semicolon makes sense; this entai ls
many levels of return. Th e re are several more examples of where
this s ituation can occur , and it would be useful if there was a
mec ha nism in one ' s programming language to a llo w this. For e xample
a 'return to ' or 'return from' statement . An example of how this
construct would be used is shown in Figure 1.

The question then is, in terms o f stacks and machine
a r c hitect ur e , what is needed to achieve this type of behaviour?
Th e control stack, used e xc lusively f o r saving return addresses is
one possible solution, and the ope rati ons needed to manipulate it to
ach ieve va riou s types of call an d return are summari sed in Figure 2.

P PROCEDURE OPT I ONS (MAIN);
S : PR OCEDUR E (N);

1* some code * 1
END S ;

R PROCEDURE(N);
IF N<O THEN RETURN FROM Q;
CALL S(5);

END R;
Q PROCEDURE(N);

IF N< 3 THEN CALL R(N);
CA LL S(10);

END Q;
CA LL Q(-1);

END P;

Figure 1

165

Call Q Return from Q Repeat Q

Absolute Sc __ PC PCf-SC PC.- Q
PC Q

Relative Sc~(P,PC-PRT[P]) (T, U)-Sc
PC PRT[Q] PC PRT[T]+U PC PRT[Q]

Multi- di tto Tf-NIL T+-NIL
Level wh il e Ti'Q do while T#oQ do

(T,U)~Sc (T,U)+-- Sc
(T,U)+-Sc PC~PRT[Q]

PC PRT[T]+U

Figure 2

Using absolute addresses with a single level of ret urn,
the mechanism is simple - to call, the program counter is pushed
onto the control stack, and the address of the called procedure is
loaded into the program counter. Return involves popping the saved
r eturn add r ess from the control stack i nto the program counter.
This mechanism can be modified slightly to allow for dynamic code
relocation. In this case, the operati ng system will keep procedure
entry ad dresses in a n e xecut i on time table (called the program
reference table, or PRT), and will update this when code is moved.
Th e cont r ol stack must then save two values: the i ndex of the
calli ng r outin e in the PRT, and the call ing point rel ative to its
entry point. Using this type of mechanism multi-level return is
straightfo r ward, and a ll that is required is a loop whi ch pops
r etu rn addresses from the control s tack until the c urrent one
correspond s to t he context we wish to return from. One more pop
f r om the control stack into the program counter will then achieve
the desired return.

Local var iabl e stack (Sv)

A third type of stack is the l oca l variable stack, and in
terms of the Burroughs machines th i s has pr oved to be the most
use fu l. The Algol-like sto rage a llocati on mechanism, an d
add re ssi ng relative to global and local base registers (or a
display) reduces address sizes and hence code density can be higher .

Fi gu re 3 s hows how this stack works. Th e global register
points to the base of the stack for the ent ir e run of the program,
whilst t he local register points to the ba se of the local variables
of the c urr ently executing procedure, mak ing both g l obals and locals
accessible . Othe r variables will not be accessible since they are
outsid e the c urrent scope.

166

L

G

L

G

L

G

UNUSED

r-----~, . • . L-__ L_O_C~,,_TO __ P __ ~ ~ __ I .E. GLOB~

S

. I ...-.
~

v

UNUSED

LOC~ TO Q

LOC~ TO P
I.E. GLOB~

UNUSED

LOC~ TO R

r-----~~--L-O-C-~---TO--Q----~
LOC~ TO P

_ L _ I.E. GLOB~
~_~I----~--~

SV
Figure 3

P is a prog r am
invok ed b y the
o pe r a t i ng syst em_
Q a nd R a r e non­
nested pr ocedure s
de c lar e d within P.

P h a s ca lled Q

Q has ca ll ed R_
Local variables t o
Q are tempor a rily
unaccessible_

The operators needed to manage this stack are concerned
with scope-entry and scope-exit, and interact to some extent with
the call and return mechanisms since the two happen at the same
time. Dynamically, the sequence of events must be call

. return, scope-exit, and the actions of the operators ar e
as follows, where P is a program or procedure which calls procedure
Q;

Scope-entry L'- L + V(P) (In P)
Call Sc ; = PC; PC;=Q (In P)
Return PC;= Sc (In Q)
Scope-exit L'- L-V(P) (In P)

(V (P) corresponds to the number of level variables in P) .

Thus at scope-entry the local base L is simply incremented
in order to protect the local variables of the procedure c ontaining
the call, and decremented by a corresponding amount at sc o pe-exit.
Therefore at these times the number of local variables in P should
be known . Professor Pyle pointed out that since different d a t a
types may be of different-rengths, what really needs to be known is
the space occupied by thc vari ables rather thAn their number,
especially if the language allowed user defined types. Professor
McKeeman acknowledged this, and warned against designing a machine
with a specific language in mind. If one was to allow user defined
types then the kind of scheme which was suggested in the section on

167

arithmetic evaluation stacks, namely one stack for each type, would
clea r ly to too restrictive.

Professor Whitfield suggested that it would be possible to
do the storage allocation for a particular procedure when it was
called, rather than having to protect the space occupied by its
local variables when this procedure called another. Professor
McKeeman replied that the two methods, namely allocation on ent r y,
or protecti on before a ca ll. wer e basicallv equivalent solutions .
However, by deferring things for as long as possible, more
information is normally available , and in this case one is
protecting the thing which is best known, that being the scope in
which one i s already.

Dr. Chen arlded that with some int e rpretive languages such
as APL it was not poss ible to know in advance how many local
variables were present in a parcticular procedure.

Marker Stack (Sm)

One further stack, the marker stack can be utilised in
conjunction with the local variable stack . On scope-ent ry, the old
value of the local base L is pushed onto Sm before it is
incremented, so that all that is needed for scope-exit is to pop
this saved value from Sm into L. This implies that the number of
locals V(P) is only needed at the time of the call. We then have:

Scope-entry
Scope-exit

Sm:=Lj
L:=Sm

L:=L+V(P)

The means of addressing variables relative to global and
local r eg isters works well if nesting of procedures is denied.
When procedures are nested, a procedure has access not only to its
l ocal variables but also those of any procedures inside which it is
declared. In this case the global/local solution is inadequate,
and a more complex mechanism, the display, is necessary. The
contents of the display are then used to point to the bases of all
scopes to which the currently executing procedure ha s access .
Using display, the scope-entry and scope-exit operators a re as
follows:

Scope-entry

Scope-exit

Sm:=D[J)
D[J):=D[K) + V(P)
D[J):=Sm

and figure 4 illustrates a typical situation .

I

168

The above mechanisms are only valid if parametric
procedures are not allowed. If this is not the case, then a
procedure may be passed to the body o f another procedure which is
not accessible to the calling procedure. In this case all of the
display (except D[OJ) may have to be changed, which entails sav i ng
all the changed entries on the marker stack.

The various stacks, registers and
interactions are pictured in Figure 5, and a
for the B5000 is shown in Figure 6.

program code and t heir
corresponding pictur e

The B5000 has one large stack, plus local and global base
registers. Arithmetic evaluation is done at the top of this stack,
and contained in it are many links to accomplish the same effect as
did the marker stack and control stack. A problem wi:h this type
of organisation occurs with procedure parameters which a r e prepared
before the call, but eventually are required to be in the local area
for the called procedure. They therefore appear on the stack ' a
little ea r ly'. One way round this problem is to have a parameter
preparatio n stack in which these variables can be sto r ed until the
call, and then copied across to where they are to be used. On the
Burroughs machines a lot of complicated manipulation takes place at
the ti me of procedure calls in order to ensure c orrect return f r om
t he call. This is a good example of what with a single stack is
complicated, but with several stacks causes no problems.

Unused

level 2

level 1

level 1
. - -- - - 1-- _

- - ~

. - . . level 1 -~- .
level a

Sm Sv Display

Figure 4

Code

~

...

I
I ~

PC Sc Sm Sv

Figure 5

-

/

PC ~ 4

Sv

Figure 6

•

~ I

.-I I

I
I

L

I •

G

•

L

•

G

I

I

I

I

1.6
3.0

S

169

170

Professor Hoare remarked that, since the c ost o f compiler
writing had been significantly reduced since 19 60, in a compil e r f o r
a language and hardware as simple as tho s e des c ribed, it would be
easy to do more address allocation and stack administrati on a t
compile time. He also noted that the c hain-back meth od o f
organising access to non-local variables is very efficient, pr ovided
that fast ac cess to glo bal, lo cal and perhaps next-local variables
is available, and therefo re a di s pl ay is unnecessary. Professo r
Mc Keeman sa id t ha t when the B5000 WRS firs t rel e as ed it did no t have
the chaining b 8C k ability, but this was later added in s oftwa r e .
This was done after display had be en implemented on the B6700, whi c h
proved to be a very c omplex piece o f hardw a re. From a user point­
of-vie w t here I s n" d ifference between the two methods, bu t on an
engineering level the chain-back mechanism is much cheaper .
Professor Randell c ommented that the cost factors mentioned by
Profe s sor H08r'p ' WP f ' " not the on l y ones. and others, such as code
density and Lime Lo decode ma y need Lu be taken into ac co unt.
Professor Michaelson po inted out th a t an important point was being
overlooked. Ea rlier it had been ment io ned that the Burroughs type
of organisati on was a imed at he lping the translation phase on the
problem s o lving pa t h, but the run time step was really the more
impo rtant. Thus the problems o f c ode l ocation and the number of
working areas in a roll-in/roll-out s ystem should dominate design
decisions rather than time saved at compile time, and certainly at
compiler writing time, which is trivial in comparison to the rest.
Pr o fessor McKeeman expressed doubt about whether c ompiler writing
time should be regarded as trivial, and went on to make two further
points. Firstly, when something goes wrong with a program, the
time taken by the programmer to find and fix the problem is very
important. Secondly, with the addressing mechanism associated with
stack organisation, addresses can be much shorter, and a higher c ode
density can be achieved.

Professor McKeeman noted that the immediately preceding
.: discussion showed that the question of computer architecture

evaluation is a difficult one, and concluded with two further
examples to illustrate the point.

The size of load-type instructions for the B6700 could be
halved from 16 bits to 8 bits. Since these instructions were the
most common, the saving on memory needed to contain instructions
would be about 10%. On suggesting this to Burroughs they countered
with the following argument. Money is spent on many other things:
cpu, peripherals, installation and running costs, programming, and
that the effect of the saving on memory to the end user would be
negligible. What would be worthwhile would be a way to save 10% of
the programmer's time.

171

The evaluation question is very hard, even with
quantitative cost benefit analysis techniques. A careful
evaluation on these lines was done at a particular installation, and
it was shown that the machine was costing more than the benefit it
produced. When this was explained to the owner of the installation
he denied it, since he had forgotten to mention another factor - the
fact that he allowed customers to tour his computer centre, and he
received much business that way . He knew that the computer was
worthwhile, but was unable to express it quantitatively .

Reference
(ed i tor) .

Introduction
Chapter 7.

A SIMPLE COMPUTER

1. Introduction

to Computer Architecture, H. Stone

Professor McKeeman began his third talk by recounting some
early teaching experiences in a course on machine structure and
computer organisation which was based upon the IBM 360 computer.
He observed that students unfortunately formed the impression that
the IBM 360 design was the solution to the problems of machine
design. In a subsequent course where students were to design their
own machines a disproportional number of 360-like designs emerged .
Using the HP2116 computer in this course rather than the IBM 360
simply produced HP2116 evangelists rather than IBM 360 advocates.
The simple computer to be described resulted from such experiences;
it is sufficiently powerful to give the basic insights into computer
architecture but is unlikely to be mistaken to be a pre-ordained
solution to all problems therein. It soon becomes clear that it is
deficient on both economic and engineering grounds when these issues
arise later in the course .

The objectives of the course are

1. To introduce the subject of machine organisation (after
students have acquired considerable programming experience a
course on compilers is a prerequ i site). This course not only
introduces students to their first machines but involves them in
designing their own machines.

2. To avoid exposing them too early to "authoritative" designs
such as the IBM 360 or HP2116 computers.

3. To introduce the notion of "levels of control". The idea that
translation from a high level language to machine language has to be
a single step can be avoided by introducing microprogramming from
the outset. In this way students immediately see the existence of
intermediate levels over which choice can be exercised during the
design stage.

4. To introduce alte rn ative CPU organisations. No initial
committment is made to ze r o, one, two or three add ress o r indeed any
other form of organisation. Consideration of several such
alternatives is included in the course.

172

To cover this
software implementation
later in the course.

variety, the initial
an implementation in

designs
hardware

involved
follows

2. ~ Simple Microprogrammable Computer ,

These early designs utilise a simple microprogrammable
computer consisting of a number of independent units each with one
or more input ports and one or more output ports. To simplify the
design each input port is a general register which stores the last
data value transmitted to it. The output ports have values which
are a function only of the input port values and the state of the
unit itself. The sequence of events between setting an input port
value and the first inspection of an affected output port value is
arranged to have sufficient delay to ensure that the output value is
ready.

The units comprising this computer include general
registers, special registers, memories and computational units.
The output ports ' of all of these units are connected by a common bus
to the input ports of the units though at a given moment in time
data may only be transmitted from one output port to one input port.

Each unit and where necessary its input and output ports
are named as shown in Figure 1. The bus and unless otherwise
stated, the ports are 16 bits wide. Where ports are less than 16
bits the rightmost (least significant) bits of the bus are used, all
others being set to zero. Apart from connections to LIT and MUPC
which are explained later all data flow is accomplished by a
sequence of bus transfers moving data from one of the sixteen output
ports (0 to F) shown on the left of figure 1 to one of the input
ports which are illustrated on the right of figure 1.

The registers RO to R3 are general purpose registers.
The output port value of one of these registers is equal to the
value most recently transmitted to its input port.

IN and OUT are 8-bit registers used for input and output
to an external device such as a teletype. The value of IN is the
EBCDIC code of a character sent from the input device; a side effect
of inspecting the value of IN is to transmit the next character from
the input device to IN. Each EBCDIC character code sent to OUT is
transmitted to the output device.

directly
its input

The 4 bit register LIT can only be
from a microprogram instruction.
port is not connected to the bus.

set to a value obtained
Unlike other units then

to micro­
program fet

PO

P1

P2

P3

P4

P5

~P6

P7

p8

P9

PA

PB

PC

PD

PE

PF

- RO f"'"

- R1 f"'"

- R2 ~

- R3 -

-G:J OUT r-

- LIT -
- MUPC r

~ M
I

MEMORY r-=-===
_ O~~
- SUM

OR,~ ADDER

.- AND

- NOT

E I
C CHOICE -

SL

~ ~ SHIFTER
SR - •

Figure 1. Bus Port Assignm;nts

MA

MV

AL

A.R

D

T

F

SV

SA

PO

P1

P2

P3

P4

PL

P7

p8

P9

PA

PB

PC

PD

PE

--=:JPF

.....

....

173

from input
port bus
address

from mi cro­
program
memory

174

MUPC is the microp r ogram counter. It contains the
address in the microprogram of the next microinstruction. It is
automatically set before the beginning of a microinstruction fetch
cycle of the computer. If MUPC is explicitly changed by a
microinstruction the next microinstruction is fet c hed from the
changed address.

Main memory consists of up to 216 16-bit words.
Associated with main memory are two input ports, MA and MV and one
output port M. The value of MA designates an address in main
memory. Transmitting a value to MV causes this value to be written
to the memory address designated by MA. Whenever M is used as a
source the word in main memory indicated by the address in MA is
transmitted.

The ADDER lias two input ports, AL and AR and five output
ports rel ated as follows

OFL = 0 if _ 2 '6~AL+AR<2'6
= 1 otherwise

SUM = AL+AR (two's complement arithmetic)
OR = logical OR of AL and AR
AND = logical AND of AL and AR
NOT = ,AL

Whenever AL or AR is changed all output port values change
accordingly.

The output port C of the choice
of the input port F, if the value of D
contains the value of the T input port.

unit, contains the value
is zero; otherwise it

The SHIFTER unit has two input ports SV and SA. The
latter is four bits wide and specifies the number of places the
value in SV is to be shifted. Shifts are logical (zeros are
inserted for undefined bits). For positive value of SV

SL = S V*2SA

SR = SV/2 SA

Whenever SA and SV change, SL and SR change accordingly.

3. Microprogram

The microinstructions for this machine contain pairs of
hexadecimal digits. The first of the pair specifies an output
port, which is the source, and the second an input port, which is
the destination of a bus transfer. For example 07 specifies that
RO is transferred to MA.

The one exception to this rule arises in the case
LIT unit. When the destination is 5 the first hexadecimal
the constant to be transmitted to the input port of the LIT

of the
digit is
unit.

A microprogram is a sequence of microinstructions stored
in a separate memory (not shown in Figure 1) . The mechanism that
fetches a microinstruction from the address specified by the MUPC
register and causes it to be obeyed constitutes the hard-wired part

.'
I

175

of ' th~ computer. "
, .,

, ,
Eaqh in~~r4ction contain~ a t~ird field of ei&ht bits in

addition to the two hexadecimal digits. This eight bit f ield
specifies the ,address of the next mi c roinstruction to be executed.
quring th~ , fetch ', part , of th n fe~r~-exe c ute cxcl~ , ,for " a
microinstruction the contents of, this 8-bit field are transferred to
MUP C so defining);he address ,of the : next microinstruction . The
mic roprog r~m . memory then ,i s f, ix ed at , 25 6 16:-, qg , word s' , "

Commenting on this computer, Pr o fessor McKeeman regretied
the pervasiveness o f decision to make the bus 16 bits wide but there
seemed to be no way lof in co rporating truly variable length
ope rations sufficiently simp ly to allow ,it to l be intr oduced at the
outset in a first introducti on to computer arc~itecture .

\ - '-, ,

As a s impl e illustration of ' the use of this computer, the
microprogram for the fetch c ycle for ' a , single l address computer is
shown in Figure 2. The instruction fo\mat of the one address
computer is assumed t o be, four high o rd er bits representing the
operation cod e and twelve l ow o rd e r bits representing an address RO
is used to simulate the prog ram co unter (PC) , and R1 the address
register (ADR) of the simulated computer. '

Microprogram
memory address

10
1 1
12 r'1
1 3

J
1~ . ,{

i
<)

,

Micr o­
instruction

071 1
1512

, 5913 , '
OA14 ,
9015

1 ", 15, ,
;. 'l r 7316

. 16 3E17 , ,
J '1'17

,
JG~~18 ,. .1u j .J"!!

(j
." 1 8

I , J h j r. !1 <? t 5~ 19 J I I , ' '1 f ~~ •

Symbolic form

PC~A
, (-,

Prepare memory access
1_LIT }
LIT--,.llL
PC-ti\R

' SUM_PC

R,3---+,S V
4-4LIT
hq~pA'1

~ nc cemen~ pro~ram counter
.)

Fet ch' Single 'address inst~~c:ti ~i! '
~. ,I ' • (; 1 I ')

• I.. i ~ I i' ': r
')' j' , ,) '(. t

IsolAte , address field " "

,Mo->R3 ' }

c'~
, 19 '" !j ~ EqA)? L;--16 V: , ,

1A F 11 B SR--ADR
I: . 1'" I.

1B C51 C 12-4LIT }
. j J q !11 .a. F: e r. L r' ~ f

1C 5F1D LIT_SA
1D 3E 1E R3-4SV

Switch on opcode , 'r,o,,-r
--'--

£)i)~ Ii ~)~ iiI'! (L.!. If C',d '" r~ F 61 F , ' _ . I,j (J . ' . ,SR-tiVPC
, 1 l.. . ,

.,
"

'1<1 ,I Fi~we l ~ s uql}he (~~'2" CY(H'1 ~ l qf ~ ~ j?J2~ i:1 dqr: !: ss .m ~c l1 tt\e

" . ,

~''':. 0':> ;,j;.l\o.,1 :.:11:10'f.i;:- b. 1. 29 "'ir,/)b :Jnf "~_'.)(,

'1 'n \..' q .~ ,';, : J... . ' i 'j '"" , r:' ~;_ ~ .. q .~
'1 'j u·~ r ;\'1 .. ,1"1, . 1"" -'I -1(" f!1 I" Ii' 'f)1 '::'1' '
~,' -1".,.11 TI:l ~ r 'sYfllbopc f q rm of the ~~strp(Ji,ons sho Wp 'j ir! fi g~ re _, 2

omi~~ ~~e n~xt i rist ruc~ ~~n addtess~ , In ~ ~h ~ ~ first r~~e , ~~e _ program
co u ~~~f i ~ , se~t ~~ i th~ ,~~~~ry pdd~A,~ , ~q put ~ ~~r~ p~ep~ratory ~ 9
~etc9 rn& :; K~e. 1, 1'\ ~~ r~c~+ 9,~ ,fr,qIJI " m'pn,~ me~or.y . . Th K: ne~~ "r f~~r
ltl,struc,tl<:ln.S ' ''rcr.e"l ent. l, th~ , p,rogr.am counter 1,by , 1 ther the I ~ nptruc~~on
P ,!Jr, q4gryt fr ?\\\ :;I1)el!)or,y ~nto kh~ ,c rfl ~c h l. r eg~:;;~er,.~~ . ! I ?:tie I n !'j~~ flve
lnst r, u9tlonS t ~~¥ e ? the ~ lnst \, ~ ctlon f\om . ~ 3 ~hl,f t It left ana th ~n
Hg ht I f 6 ur "places '. to "st rip ' off Othe ' o pe r. aqo\,\ , co <je , . ahd J ~~ave t;l1e
rem ;,lining addr~ss ' in the address ' register . "'''The ' final four

176

instructions take the instruction from R3
places and send the operation code to
The final instruction effects a multi-way
memory locations 00 to OF according to the

shift it right twelve
the microprogram counter.
branch to microprogram

operation code.

Clearly the instructions of the Fetch/Execute program may
reside anywhere in the microprogram memory (other than location 00
to OF) and it has been assumed that they reside in locations 10 to
1E for the purpose of specifying the microinstructions fully in the
second column of Figure 2. The microprogram memory layout so far
specified is shown in Figure 3.

00

SWITCH AREA
OF
10 t----------;~

1E

FErCH EXECUTE
PROGRAM

1F t----------;

, ,
FF l~ __________________ ~

Figure 3 Microprogram Memory Layout

Each microinstruction in the switch area is the initial
microinstruction of the execute cycle for the corresponding
operation of the one address machine. This initial
microinstruction designates as its successor the first of a sequence
of instructions (in the unallocated region 1F to FF) which complete
the execute cycle of the one address machine instruction. While
the memory layout becomes somewhat bizarre it is not difficult to
understand and is part of the price paid in keeping the underlying
machine simple.

4. Teaching

Professor McKeeman next described the way in which the
course using this computer develops.

First of all a simple single address computer with 4-bit
opcode and 12 bit address is described and students write a few
short simple programs for it; examples might be a program for
generating the Fibonacci numbers or for performing bubble sort.
These are punched on cards and fed to the one address "machine"
which is emulated on the microprogrammed computer. (The latter is
in fact an XPL program running on hardware which is more readily
available.) The one address machine provides them with about one
page of output in the form of an instruction by instruction trace of
the execution of this first assembly language program. (Strictly
speaking their first machine language program since the coding is
done in hexadecimal.) They then see the states of all the registers

. I

177

during the execution of a few instructions. Decoding this o utput
becomes dull very rapidly but once the students have understood the
behaviour of the one address machine they are exposed to the
microprogram implementing the one address machine. They are helped
in understanding it by running their programs once again but with a
different set of trace mechanisms which trace the action of the
microcomputer displaying the bus cycle. This gives more than a
page of output and since intere st in it wanes quickly it is limited
to about 100 lines . Now having seen the macro machine and the
micro machine operating they have seen most of the mechanisms and
can now design a machine, usually a stack machine, and reprogram the
microcomputer to implement it. Alternatively they might add an
"execute" instruction to the one address machine or perform some
similar exercise. In this way students get the idea of adding
opcodes, changing opcodes, modifying the whole architecture of the
machine .

The simple computer provided is sufficiently genera l that
these things can all be accomplished. It is soon apparent to
students that it is far less than ideal. Its main virtues are that
it works in a straightforward fa shion and that an engineer has never
seen it - which means that its use is not constrained by a large
number of subtle features (perhaps based on what core technology
required in 1956) . The machine was designed to be und erstood,
economics was not a consideration. At about the time that the
students become disenchanted with the microcomputer they are set the
task of designing their own microcomputer. At this stage they are
made aware of the fact that the microcomputer is in f act merely
represented by an XPL program which is not sacrosanct and they are
then free to design a better micromachine than that provided. At
last then they are on the way to studying computer architecture.

The first three weeks of the course a re taken up by these
things. Some of the students may then write an assembler for their
microprocessor, using a symbolic form for instructions, takin g
advantage of what they have learned in the compiler writing cour se.
The main functions of the early part of the course are concerned
with getting over the ideas of the fetch execute cycle at different
levels and the choices that are available here. Then about a week
is spent on exercises such as

1 . Design (and implement?) the bus.

Enough background in electronics is available at this
stage to allow consideration of how to build the latches on the end
of the bus for each of the ports and how to decode the bus
addresses. It would be nice to have sixteen lines with a signal on
a specific line to denote a specific address but an alternative is
to encode addresses on four lines and use 4 x 16 decoders; each
latch must then be selected on a particular bit pattern. Yet
another alternative is to associate the decoding with the ports.

2. Design the adder unit.

This exercise would stop at the design stage.
chips there is little point in implementing it .

3. Design a 4-bit Polish Machine

With ALU

178

This turns out to be painful. The
a sixteen bit memory. Once students
implications of packing four in st ruct ions per
the B5000 solution .

4. Make the microcomputer emulate itself

underlying machine has
have considered the

word they are shown

This is a non-trivial exercise and leads to the same issue
as the Universal Turing Machine . Can the microcomputer emulate
itself emulating itself ? By changing the IN and OUT
regist ers one student did emulate a Turing Machine.

5. Emulate the PDP 11 (?!)

Students have seen enough of the PDPll to realise that it
is a very simple and neat computer and they begin to contemplate
emulating this in a 256 word microprogram memory . After perhaps an
hour it is realised that no amount of packing will suffice and the
issue becomes " Can you design a micropro grammable computer of
sufficient power to emulate a PDP 11 given a constraint on the size
of the micr op rogram memory to perhaps 100 words? " . (Professor
McKeeman explained that hi s students at least are used to questions
to which the answer is that there is no answer.)

6. Design a machin e with addresses of the form [length,
where address defines a bit address and length defines the
bits of the operand field starting at the given address.

address]
number of

While this is logically possible on the given
microcomputer it is beyond its capabil ities given any reasonable
amount of microprogram memory. As in the previous exercise this
becomes a matter of designing a suitable microcomputer to support
variable length operations.

This course runs for two quarters. Presentation of the
simple computer occupies the first two weeks. After this students
are taught logical design and they eventually build a compu ter
involving about 600 to 700 backplane wires. They have certain aids
such as wirewrap programs.

Professor McKeeman closed by remarking that at least he
did not rec og nise HP2116 or IBM360's among the machines designed by
students on this course.

5. Discussion

Professor Heath commented that he liked this approach and
the simple computer and the fact that it left out detail which
caused loss of momentum in teaching. He cited as an instance the
fact that the program counter is set by each microinstruction rather
than incremented avoided the lengthy digression into branch
instructions which would be necessary at that point in the case of
teaching based on say the PDP 11 . (Interestingly Professor
McKeeman had remarked earlier in an aside that he had in fact done
this for a good engineering reason. Ripple carries in the program
counter cause the execution of microprogram instructions on a slow,
quick, slow, quick, ve ry slow basis.)

•

179

Replying to a question by Professor Dijkstra, Professor
McKeeman explained that 2 lecture hours and 2 laboratory hours were
allocated each week, so the presentat i on of the microcomputer took
about 4 hours of lectures - the corresponding laboratory periods
were occupied by running programs and explaining computer centre
procedures. Mr. Givens asked what level of students took the
course . The---course was intended for 3rd year undergraduates who
should have already have taken the compiler writing course as a
prerequisit. Professor McKeeman said he believed that no one
should be designing computers without underst anding what compilers
do but a number of students sneaked in without it . Perhaps half of
the class were third year students, with a few postgraduate students
and a few first and second year students.

Professor Vranesic asked if it were the case that
engineers who knew nothing of compiler writing should not design
machines, then was it reasonable that compiler writers who knew
nothing of engineering should do so . Professor McKeeman's initial
response was " Certainly, because it's fun." More seriously he
replied that of course programmers in general have not the first
idea of how to convert things into logic and he then commented on
his experience with Burroughs where the design teams include both
programmers and engineers. The engineers with their different
background frequently instinctively recognised things that would
compromise the total design. As an example he cited the B6700
design where the programmers lead the design team and the engineers
sincerely attempted to implement their design. Subsequently it
became clear that the programmers had not appreciated fully some of
the engineering consequences of their decisions, some of which
impaired rather than improved the efficiency of the machine overall.
Fortunately the chief engineer on the design team taught himself a
lot about programming during the project so that he could understand
what it was that the programmers were about . Subsequently in the
design of the B1700 the pendulum swung back and an engineer was in
charge . Here the programmers were merely advisers. In this case
the programmers' advice was that the early versions of the machine
could not be programmed. The engineers' reply was "Of course it
can be programmed. It can emulate a Turing Machine." Finally the
chief engineer agreed to program the machine for a few weeks and the
fin al version of the B1700 reflect s the results of his agreeing to
train himself in programming. In . both cases it was the engineer
who of course really did the detailed design but the combi nati on o f
programming and enginee ring experience was beneficial in both cases.
Professo r Vranesic then asked if the student, at the end of the
course, was aware of the engineering constraints to which Professor
McKeeman replied that they were fortunate at Santa Cruz to have a
very skilled computer engineer on the staff who supervised the later
laboratory work and introduced students to those aspects of design
to which a good electrical engineering background cont ribut es. He,
for example, will not permit them to build the simple microcomputer
- it is too expensive for what it does - it has too many parts. He
discusses an electronically much simpler machine but which logically
is more complex. It involves 600 - 700 backplane wires r athe r than
the 1800 involved in building the simple computer. In addition ,
students eventually obtained experience of interrupt programming on
a PDP 11; they program both tbe B5000 and the IBM360 so they do see
a variety of real machines (in the case of the B5000 even at the
wiring diagram level).

180

The response to a question by Professor Whitfield on
numbers of staff and students involved was that the class never
contained more than 20 students so that one member of teaching staff
could handle it. Availability of staff interested in teaching
different aspects of .the course resulted in it being split between
the two. Professor Whitfield commented that it seemed students
must spend a great deal more time on this course than the contact
hours allocated to it. Professor McKeeman expla ined that students
at Santa Cr uz normally take three courses simultaneously which
implies about 12 to 15 contact hours; they are however expected to
spend twice as much time outside of class making about 40 to 45
hours of study per week. However students do complain that the
computing courses demand more of them in terms o f time than othe r
courses; the level of effort was indicated by the fact that the
students threw a champagne party on the day that the machin e they
had built worked. They were very proud of that achievement.

In the ensuing discussion about the organisation of the
group project resulting in the construction of the ma chine it
emerged that the management was largey controlled by the engineering
staff member though the students perhaps would not agree. He
vetted the design carefully before allowing any implementation and
prevented really bad decisions which would have caused trouble.
The students divided into four groups, the memory section, the 1/0
sect i on, the fetch-execute section and the combinatorics section.
The groups were r ather arbitrarily composed and were in any event
dynamic.

Reference A Simple Computer SIGMICRO Newslett e r, October 1974.

