
145

COMMUNICATING SEQUENTIAL PROCESSES

C. A. R. Hoare

Rappo r teur Mr. M. R. King

Abstract

This paper suggests that input and output a re ba sic
primitives of programming ; and that parallel compositio n o f
communicating sequential processes is a fundamental program
structuring method . When combined wi th a development of Dljkstl 'a' s
guarded command, these concepts are surprisingly versatile. The ir
use is illustrated by sample solutions of several fami liar
programming exercises .

Communicating processes

In order to perform the task of designing digital sysLem s
the computer scientist must adopt some suitable notation to descr ibe
his design. It is the purpose of this lecture to introdu ce Q

notation for programming multiple processes. The systems of
interest a r e processors in a fixed configuration, connected by
dedicated two way channels , for example, the network rep r esented by
figure 1 . In this diagram boxes represent processors and the lilles
rep r esent channels over which the processes communicate.

There are many possible implementations of such a network
of pr ooesses but the physical realisation of the system is not
important.

The Pa r allel Command

Whilst pictures are useful to i ntroduce new concepts and
almost essential in representing objects in two or three dimensi onal
spaces, a less expressive but more precise notation will be used to
describe such systems . The first element of this language is trle
parallel command which has the following syntax .

<parallel command> ::" [<process> ll <process> 11
<process> ::= <label> :: <command>

II <process> J

A parallel command is a list of processes separated by
parallel lin~s. Processes must be disjoint in t he sense that no
variable used by one orocess may be changed by another. In
executing a parall~i command all the processes are start ed
simultaneously and proceed concurrently. The command ter minate s
only when all its constitue nt processes terminate. The label of a
process is ilname by which other processes refer to it .

D 1

,
I

I
1

..
Fi gure 1

;41

Input and output commands

To enable separate processes to co-operate on a common
task they must be allowed to comm uni cate. Such a facilit y i s
provided by input and outp ut commands.

An input command has the following syntax.

<input command> ::= <source> ? <variable>

~Sou rce> is the name of a device or pr ocess from which the
input is to be obtained, and may be subscriDted.

<Variable> is a program variable used to store the result
of the input. Some examples o f input commands a re as follows.

1) cardreader ?
From the
place its

card image
" cardreader " read the next card in the stack a nd

contents in the character array " cardimage".

2) teleprinter(i)? char
Read a single cha racter from the ith "teleprinter" and place
into "char".

3) consumer? request
From the process "consumer" input a value and assign it to
the variable "request".

The effect of an input command is to wait until the named
source is ready t o provide output to the requesting process; and
then input the value which it o utputs and assign the value to the
variable.

The output command has the followin g syntax.

<output command> ::= <destination> ! <expression>

<Destination> is the name of a, possibly subscripted,
device or process to which the result of evaluating <expression> is
to be output. For example:

1) lineprinter! lineimage
To the "lineprinter" output the whole array of characters in
the array "lineimage".

2) factorial! n-l
To the process "factorial" output the re sult of evaluating
"n-l" .

3) teleprinter(i)! " A"
To the ith "teleprinter" output the character "A".

The effect of
destination is ready to
and then to evaluate
destination.

an output command is to wait until the named
accept input from the outputting process;
the expression and output this value to the

Processes may spend a large proportion of time waiting for

·1

148

communication to take plac e . This, however, may be advantageous as
it allows the system to give immediate response t o its user when ever
required.

Communi ca ti on is s trictly synchr onised and the r e is no
implicit buffering o f the values transmitted. Successful
communication occurs between a pair o f pr ocesses wheneve r one of
them names the ot her as the source of input and the other names the
fir s t as the destination f o r output. The n both operations take
place simultaneously and their effect i s to assign to the input
variable the value o f the output expression .

Input and o utput may be considered as more important
prim i tives than assig nment, as this ma y be co ns idered as a n i npu t
and output o perati on within the same process.

An Example

Now consider a simple s tud e nt exercise. Construct a
program to read 80 col umn ca rds and print their contents on a line
printer with 125 characters per line. Insert an extra space after
each card.

Conve ntional structured program s for this pr oblem vary
according to whether input or output is used as the major cycle . A
more elegant s ol uti on is obtained by considering a pa ir of
processes: UNPACK which reads a car d and outputs c har ac t e rs one at a
time to a process PACK whi ch inputs those characters to a line
buffer and outputs the buffer when full. These are joined in t he
para l lel command:

[X:: UNPACKIIY: :PACK]

where X contains the output command " Y!char" and Y co ntai ns the
input command " X?ch."

Guarded Commands

We wi ll now int r oduce the rest of ou r notations. To
specify condit i onal execution Dijkstra ' s guarded commands (Dijk s tra
1975) are used (with a slight change of notation).

<guarded command> : := <guard> -~ <co mma nd>

<Guard> is a boolean expression without side effect. The
<command> cannot be executed if the gua r d evaluates to false. It
may be executed if the guard evaluates to true .

To be o f use guarded commands must be combined into more
compound structures . The alternate command has the syntax

<alte r nate command> : := [<gc> U <gc>n . U <gc>]

where each <gc> is a guarded command. Exactly one of these guarded
commands i s fully exec uted . I f several guards are tr ue t he n the
choice of command to be executed is ar~itrary. If no gu a rd i s true
then the command fails .

149

An iterative construct is provided by the repetitive
command.

<repetitive command) ::= * <alternative command)

A repetitiv e command is exec uted as often as possible.
If no guard is true then the command terminates. Otherwise an
arbitrary command with a true guard is executed and the whole
command is repeated.

Some examples of guarded comma nd s a r e as follows.

1) [x~y max := x 0 Ylx-+max := y]
If x is greater or equal to y then assign x to max. If y
is greater o r e qual to x then assign y to max. At least
one of t hese po ssibi lit ies is always true, but when y equals
x both a r e true. Fortunately, in just this case the choice
of assigning x o r y to max is arbitrary and the programmer
does not care .

2) i=O;
* li<size ;content(i) t n -+ i: =i+1]

This scans the array ' content ' until
pregiven element n is found. The
which is init ial ised to zero, as
The command terminates with i equal
first element equal to n or to
exists .

an element equal to the
command increments i,
many times as possible.
to the index of the
size if no such element

Two boolean express i ons sepa rated by a semicolon denote an
asymetric ' and ', where if the first condition is false, the
second is not eval uated. This may be considered as a
'guarded guard', ensuring that the second is never evaluated
in circumstances that would lead to disaster.

Guarded commands may be represented pictorially. The
alternative command is given in figure 2 . It is important to
notice that control splits before reaching the guards in the diamond
boxes. These act as gates preventing flow of control to the
command when false. There is an implicit control that ensures that
just a single command is executed before the si ngle control path is
resumed.

If The repetitive command is represented by figure 3.
control passes through an explicit guard it returns to the guards
for the repetition of the command. If control is forced through
the implicit guard ' a ll guards false' command teiminates.

150
Figure 2

guard guard

command command command

Figure 3

J

guard guard

command command command

151

Professor Michaelson asked for clarification of the
meaning of 'failure of an alternative command'. Professor Hoare
replied that there were many possible actions on failure, but that
none included remedial action that allows processing to continue.

Dr. Larcombe enquired if guards were evaluated
simultaneously. Professor Hoare said that they could be, but there
were many other possible implementations. Professor Heath
agreeing, suggested that in similar hardware systems the variety of
possible implementations was a useful feature.

Input guards

We now extend the definition of a guard to allow the
inclusion of an input command by the following syntax.

<guard> ::= <boolean expression> I <input command>
I<boolean expression> ; <input command>

An input command in a guard will delay the guarded command
until the input command can be executed (if ever). A boolean
expression in a guard, if false, prevents execution of any following
input command as well as the guarded command. The last statement
in a guard makes the final commitment to execute the guarded command
and may have side effects.

For example

* [west?c -. east l c)

This repeatedly inputs a value from the process west and
outputs it to the process east using c as a one portion buffer.

There is a problem of terminatiop of such commands which
will be ignored for the purpose of this presentation.

It is now possible to complete coding of the PACK and
UNPACK programs as follows.

UNPACK = cardimage:array of SO characters;
i:integer;
* [cardreader?cardimage

i: =0;

]

* [i<SO-+Ylcardimage(i); i:=i+1];
Ylspace

152

PACK = lineimage:array of 125 charactersj
c:characterj
colno:integerjcolno:=Oj
* [Y?c -to lineimage(colno): =Cj

[colno< 124 -. colno: =colno+ 1

]
] j

colno= 124 -. lineprinter! lineimage j
colno:=o

comment space fill and output last linej

There should be little difficulty in understanding either of the
programs.

Now consid er the problem of how to increase the efficiency
of waiting. It is not possible to reduce the time spent waiting
for a single event. However by waiting for two events
simultaneously twice as much useful waiting is performed in the same
amount of time. Provided that such events are r andom this is
supported by statistical theory. This alone is the reason for the
use of non-determinism in parallel programs.

Consider an alternative command with input commands in
more than a single guard.

[producer?c A.
consumer?request -+ ... B.

U

In the successful execution of this command either (when
the producer is ready) input " c " from it and do A or (when the
consumer is ready) input "request" from it and do B. Now it is the
intention of the programmer that the choice between those two
alternatives shall not be made at random or arbitrarily. The
implementation should select whichever of these two alternatives can
be executed the earliest, while the othe r is omitted.

Of course a programming language cannot specify the
relative speed of execution of such processes and such an intention
cannot feature in the definition of the language. However a good
implementation should not delay unreasonably in performing some
action once it becomes possible to do so. Such specification is
not even possible in strictly sequential languages such as ALGOL , 60.
The ALGOL 60 report does not specify that an implementation may not
wait at a semi-colon for an arbitrarily long time before executing
the next statement. Any implementation that did would not be
popular with its users.

ensure
Hoare
answer

Professor
that all the
acknowledged
the quest i on.

Michaelson asked if any arrangements
processes were eventually executed.

the importance of the problem but

are made to
Professor

declined to

Professor Van der Poel rem arked upon the similarity of the
system to that of computers--waiting for interrupts. Professor
Hoare noted that this similarity was intentional.

Dr. Treleaven suggested that the model presented by the

f

•

, ,

15 3

lan guag e for c ed pr oce sse s t o run at the same s peed as for e xampl e
slow peripherals. Similarly it did nothing to prevent pr oc esses
holding on t o s c ar c e reso urces . Professor Hoare replied that these
problems could not be so lved thr ough programming language design.
However, they may be a lleviat ed by constructing programs that use
explicit buffering.

Now c onsid e r a guard with a boolean condition foll o wed by
an input c ommand.

[in co un t ~ outco unt+n i producer? c - . .
Uo utco un t > i ncounti con s umer?request-.
]

A •••
.. B.

This is simi lar to the previous example except that if
incount is g r ea ter th a n outc ount+n then the first alternative cannot
be selected and inpu t i s no t acc e pt ed from pr oducer. If outcount
is less t ha n or equa l t o incoun t the se con d aLternative cannot be
selected and input is not accepted from consumer.

Bounded buffer

. We again consider a simple exerc~~e. Write a process
which inpMts porti ons from a producer and o4tputs them to a consumer
interposing a buffer o f up to N portions to ·smooth variations in the
speed of producti on and consumption. This specification is
fulfilled by the foll owing program.

buffer:array of N portionsi incount, outcount:integeri
p:portioni
incount:=Oi
outcount:=Oi
c omment O~outcount~incount~outcount+Ni
* [incount<outcount+Niproducer?p-

buffer(incount mod N):= Pi
incount:= incount+1

Uoutcount<incounticonsumer?request-+.
consumer!buffer(outcount mod N)i
outcount:= outcount+1

]

Local storage for up to N portions is provided by 'buffer'
while 'p' is working storage for the input portions. 'Incount' and
'outcount' ~eep track of the number of portions input from the
producer and output to the consumer respectively. Acceptance of
input from producer will cause incount to be incremented. This
must never exceed outcount by more tha~ the N portions of the
buffer . This is ensured by the guard preceding the input command.
Similarly dutcount is incremented each time a portion is output to
consumer. This must never exceed incount, which is checked before
any request ' for output from consumer is accepted.

Arrays o f pr ocesses

It is useful to be able to specify a number of similar
processes, and for this we introduce the notation.

" 11 name(i) : : <command> 1- ,

154

This specifies an array consisting of N processes, all
executing the same command. The bound variable i r anges betwee n 1
and N and ma y be acc essed (but not ass i gned) within the command to
indicate the process number. Each process is identi ca l ex cept for
the value in it s own copy of i. Specific processes are denoted by
a su bscripted name <name> (j), where j mu st lie betwee n 1 and N. As
an example of an array o f processes reconsider the bounded buffer
problem usin g the follow i ng so luti on.

[X[O)::. produ cer; . .

N II IT XCi J :: p :portion ~[X[i-1 J? p-+X[i+1 J : p J
1 = 1

IIX[N+1)::.
)

. con sumer. . .

The producer and consumer processes are given the name s
X[O) and X[N+1) respectively. Th e a rr ay of pr ocesses X[1) to X[N)
each h ave a local va ri able p which holds a si ngle portion. The ith
process input s a portion from process X[i-1) and outputs it t o
X[i+1), thu s passing portions through the array from pr oducer t o
co n s umer. This is illustra t ed in figure 4 .

X[O J: : X[1]: : X[2 J:: ~

producer
~ . • • • • -- X[N]: : X[N+1 J::

consumer

Figure 4

We finally cons ider a more substantial problem. A square matri x A
of order 3 is given . Three streams are to be input repre senting
three columns o f a matrix IN. Thre e streams a r e to be output
representing th e columns of the product matrix IN*A. After a n
initial delay the results are to be outp ut at the same rate as t he
input is consumed.

To ach ieve the desired speed nine multiplications must be
performed s imultaneously. This require s nine separate processes
together with so me other processes handli ng boundary conditions as
illustrated by figure 5.

Let the cu rr ent va lues o f t he input st r eams be x,y a nd z.
These values a re generated by the processes on the 'western ' border
of figure 5. The 'no rthern' border is a gene r a t o r of zero ' s. An
x from the west f i r st enters M[1,1) where it is multiplied by
A" and added to ' the zero input from the north. This partial sum
is passed south to M[2, 1) t o have y*A2l added and so on , Meanwhil e
the value o f x is passed east to M[1,2) to form th e partial sum
X*A

'
2 and so on. The eastern border ac ts as a sink for the input

st reams. Provided the input is a llo wed to be consumed slightly
skew the fin a l result appears at the southern bo rder.

155

M[O, 1] M[0,2] M[O, 3]

0 0 0
,It ,

M[1,0] x M[1,1] x - M[1, 2] x ... M[1, 3]
y

M[1,4]

A~lX Al a X A13

11, , ,~

Y • Y ... Y Y --M[2,O] M[2,1] M[2, 2] M[2,3] M[2, 4]

All x+AalY Al aX+AaaY A13 X+Aa3Y

,It ,
z z - z • z ...

M[3,O] • M[3,1] --... M[3,2] • M[3, 3] M[3,4]

All x+Aa ly+A31 z Al a x+Aa a Y+Aa a z Al3 X+Aa3 Y+Aa 3 Z

r

M[4,1] ~ M[4, 3] N
j,.

-
i,---I---E

s

Figure 5

· '

156

The following pr ogram is a realisat ion of such a scheme .
3

[IT M[i,O]:: ... sou r ces of x,y and z .
1 = 1

3

II IT
3=1

II 'fr
1 =1

3

II 3 LT,
~ 'fr

1 = 1 J =1
II

]

M[O,j]: : ~ [true-+M[1 , j] !O]

M[i,ll]: :x:real ; ~ [M[i , 3]?x -+ skip]

M[4,j]:: . .. sinks for r esults ..

M [i , j] : : x : rea 1 ;

* [M [i ,j-1]?x

]

M[i , j +1]!x;sum:real;
tH i -1, j] ? sum;
IHi +1,j] ! (A[i,j] * x+sum)

The first l ine is the weste r n border, the source of the
input streams, while the second line is the northern border, the
sou rce o f zero ' s . The next line is a sink for the input streams
and is followed by t he southern border, a s ink for results.
Finally a two dimen sio nal array of pr ocesses perform the
multipli ca tion of the ma trices . Each process of the array inputs a
value x from the west and immedi ate ly outputs it to the east. It
then adds to the parti al sum inpu t from the north the product of x
and A This sum i s output to t he south.

Referen ce

E. W. Di jkstra . "Gu arded commands, Nondete rminacy and
formal Derivation of Prog rams", CACM 18, 8 (1975).
pp. 45 3- 457.

