145

COMMUNICATING SEQUENTIAL PROCESSES

C. A. R. Hoare

Rapporteur : Mr. M. R. King

Abstract

This paper suggests that input and output are bas}“
primitives of programming; and that parallel comp031tlon. of
communicating sequential processes is a fundamental _progf?m
structuring method. When combined with a development of Dijkstra's
guarded command, these concepts are surprisingly versatile. Their
use is illustrated by sample solutions of several familiar
programming exercises.

Communicating processes

In order to perform the task of designing digital systems
the computer scientist must adopt some suitable notation to deSCflb?
his design. It is the purpose of this lecture to lntrOdUCE‘o
notation for programming multiple processes. .The systems bf
interest are processors in a fixed configuration, connected by
dedicated two way channels, for example, the network represented ??
figure 1. In this diagram boxes represent processors and the lines

represent channels over which the processes communicate.

There are many possible implementations of such a network
of processes but the physical realisation of the system is not
important.

The Parallel Command

Whilst pictures are useful to introduce new concepts and
almost essential in representing objects in two or th§ee dlmen31ona}
Spaces, a less expressive but more precise notation will be usgd t?
describe such systems. The first element of this language 1s tne
parallel command which has the following syntax.

<parallel command> ::= [<process>]|<process>]] ... | 1<process>]
{process> ::= <label> :: <command>
A parallel command is a list of processes separated by
parallel 1lines. Processes must be disjoint in the sense that nc
variable used by one process may be changed by another. In
executing a parallel command all the processes are sparted
simultaneously and proceed concurrently. The command terminates

only when all its constituent processes terminate. The label of a
process is a name by which other processes refer to it.

146

Figure 1

147

Input and output commands

To enable separate processes to co-operate on a common
task they must be allowed to communicate. Such a facility is
provided by input and output commands.

An input command has the following syntax.
{input command> ::= <source> ? <variable>

<Source> is the name of a device or process from which the
input is to be obtained, and may be subscripnted.

{Variable> is a program variable used to store the result
of the input. Some examples of input commands are as follows.

1) cardreader 7 cardimage
From the '"cardreader" read the next card in the stack and
place its contents in the character array '"cardimage".

2) teleprinter(i) ? char
Read a single character from the ith "teleprinter" and place
into "c¢har".

3) consumer ? request
From the process "consumer" input a value and assign it to
the variable "request".

The effect of an input command is to wait until the named
source 1s ready to provide output to the requesting process; and
then input the value which it outputs and assign the value to the
variable.

The output command has the following syntax.
{output command> ::= <destination>!<expression>
{Destination> is the name of a, possibly subscripted,
device or process to which the result of evaluating <expression> 1is
to be output. For example:
1) lineprinter ! lineimage

To the "lineprinter" output the whole array of characters in
the array "lineimage".

2) factorial ! n-1
To the process "factorial" output the result of evaluating
"n=1",

3) teleprinter(i) ! "A"

To the ith "teleprinter" output the character "A".

The effect of an output command is to wait until the named
destination is ready to accept input from the outputting process;
and then to evaluate the expression and output this value to the
destination.

Processes may spend a large proportion of time waiting for

148

communication to take place. This, however, may be advantagecus as
it allows the system to give immediate response to its user whenever
required.

Communication is strictly synchronised and there 1s no
implicit buffering of the values transmitted. Successful
communication occurs between a pair of processes whenever one of
them names the other as the source of input and the other names the
first as the destination for output. Then both operations take
place simultaneously and their effect 1is to assign to the input
variable the value of the output expression.

Input and output may be considered as more important

primitives than assignment, as this may be considered as an input
and output operation within the same process.

An Example

Now consider a simple student exercise. Construct a
program to read 80 column cards and print their contents on a line
printer with 125 characters per line. Insert an extra space after

each card.

Conventional structured programs for this problem vary
according to whether input or output is used as the major cycle. A
more elegant solution 1is obtained by considering a pair of
processes: UNPACK which reads a card and outputs characters one at a
time to a process PACK which inputs those characters to a line
buffer and outputs the buffer when full. These are joined in the
parallel command:

[X::UNPACK]|Y::PACK]

where X contains the output command "Y!char!" and Y contains the
input command "X?ch."

Guarded Commands

We will now introduce the rest of our notations. To
specify conditional execution Dijkstra's guarded commands (Dijkstra
1975) are used (with a slight change of notation).

{guarded command> ::= <{guard> -» <command>
<Guard> is a boolean expression without side effect. The
{command> cannot be executed if the guard evaluates to false. Tt

may be executed if the guard evaluates to true.

To be of use guarded commands must be combined into more
compound structures. The alternate command has the syntax

<alternate command> ::= [<ge> I <ge>fl . . . [l <ge>]

where each <gec> is a guarded command. Exactly one of these guarded
commands is fully executed. If several guards are true then the
choice of command to be executed is arbitrary. If no guard is true
then the command fails.

149

An iterative construct is provided by the repetitive
command .

{repetitive command> ::-= i <alternative command>

A repetitive command is executed as often as possible.
If no guard 1is true then the command terminates. Otherwise an
arbitrary command with a true guard 1is executed and the whole
command 1is repeated.

Some examples of guarded commands are as follows.

1) [x2y max := x @} y2x+smax := y]
If x 1is greater or equal to y then assign x to max. If y
is greater or equal to x then assign y to max. At least
one of these possibilities is always true, but when y equals
X both are true. Fortunately, in just this case the choice
of assigning x or y to max is arbitrary and the programmer
does not care,

2) 1203

¥ [i<sizejcontent(i) # n —» i:=i+1]

This scans the array 'content' until an element equal to the
pregiven element n is found. The command increments 1,
which is initialised to zero, as many times as possible.
The command terminates with i equal to the index of the
first element equal to n or to size if no such element
exists.

Two boolean expressions separated by a semicolon denote an

asymetric 'and', where if the first condition is false, the
second 1is not evaluated. This may be considered as a
'guarded guard', ensuring that the second is never evaluated

in circumstances that would lead to disaster.

Guarded commands may be represented pictorially. The
alternative command is given in figure 2. It 1is important to
notice that control splits before reaching the guards in the diamond
boxes. These act as gates preventing flow of control to the
command when false. There is an implicit control that ensures that
just a single command is executed before the single control path 1is
resumed.

The repetitive command 1is represented by figure 3. I
control passes through an explicit guard it returns to the guards
for the repetition of the command. If control is forced through

the implicit guard 'all guards false' command terminates.

150

command

command.

command

command

command

command

151

Professor Michaelson asked for <clarification of the
meaning of 'failure of an alternative command'. Professor Hoare
replied that there were many possible actions on failure, but that
none included remedial action that allows processing to continue.

Dr. Larcombe enquired if guards were evaluated
simultaneously. Professor Hoare said that they could be, but there
were many other possible implementations. Professor Heath

agreeing, suggested that in similar hardware systems the variety of
possible implementations was a useful feature.

Input guards

We now extend the definition of a guard +to allow the
inclusion of an input command by the following syntax.

<{guard> ::= <boolean expression> | <input command>
|<boolean expression> ; <input command>

An input command in a guard will delay the guarded command

until the input command can be executed (if ever). A boolean
expression in a guard, if false, prevents execution of any following
input command as well as the guarded command. The 1last statement

in a guard makes the final commitment to execute the guarded command
and may have side effects.

For example
* [west?c —» east lc]

This repeatedly inputs a value from the process west and
outputs it to the process east using c as a one portion buffer.

There is a problem of termination of such commands which
will be ignored for the purpose of this presentation.

It is now possible to complete coding of the PACK and
UNPACK programs as follows.

UNPACK = cardimage:array of 80 characters;
i:integer;
¥ [cardreader?cardimage =»
g =0
¥ [i<80 -» Y!cardimage(i); i:=1i+11;
Y!space

152

PACK = lineimage:array of 125 characters;

c:character;

colno:integer;colno:=0;

¥ [Y?c — lineimage(colno):=c;
[colno<124 —# colno:=colno+1
colno=124 -+ lineprinter!lineimage;

colno:=o0

]

13

comment space fill and output last line;

There should be little difficulty in understanding either of the
programs.

Now consider the problem of how to increase the efficiency
of waiting. It 1is not possible to reduce the time spent waiting
for a single event. However by waiting for two events
simultaneously twice as much useful waiting is performed in the same
amount of time. Provided that such events are random this is
supported by statistical theory. This alone is the reason for the
use of non-determinism in parallel programs.

Consider an alternative command with input commands in
more than a single guard.

[producer?c - . . . A. . .
consumer?request =+ . . . B.

0

In the successful execution of this command either (when
the producer is ready) input "e" from it and do A or (when the

consumer is ready) input "request" from it and do B. Now it is the
intention of the programmer that the choice between those two
alternatives shall not be made at random or arbitrarily. The

implementation should select whichever of these two alternatives can
be executed the earliest, while the other is omitted.

Of course a programming language cannot specify the
relative speed of execution of such processes and such an intention
cannot feature in the definition of the language. However a good
implementation should not delay unreasonably in performing some
action once it becomes possible to do so. Such specification 1is
not even possible in strictly sequential languages such as ALGOL 60.
The ALGOL 60 report does not specify that an implementation may not
wait at a semi-colon for an arbitrarily long time before executing
the next statement. Any implementation that did would not be
popular with its users.

Professor Michaelson asked if any arrangements are made to
ensure that all the processes were eventually executed. Professor
Hoare acknowledged the importance of the problem but declined to
answer the question.

Professor Van der Poel remarked upon the similarity of the
system to that of computers waiting for interrupts. Professor
Hoare noted that this similarity was intentional.

D TreleaQen suggested that the model presented by the

153

language forced processes to run at the same speed as for example
slow peripherals. Similarly 1t did nothing to prevent processes
holding on to scarce resources. Professor Hoare replied that these
problems could not be solved through programming language design.

However, they may be alleviated by constructing programs that use
explicit buffering.

Now consider a guard with a boolean condition followed by
an input command.

[incount £ outcount+n; producer?c— . . . A. . .
floutcount > incount; consumer?request—+ . . . B.

]

This is similar to the previous example except that if
incount is greater than outcount+n then the first alternative cannot
be selected and input is not accepted from producer. If outcount
is 1less than or equal to incount the second alternative cannot be
selected and input is not accepted from consumer.

Bounded buffer

We again consider a simple exercifse. Write a process
which inputs portions from a producer and outputs them to a consumer
interposing a buffer of up to N portions to smooth variations in the
speed of production and consumption. This specification 1is
fulfilled by the following program.

buffer:array of N portions; incount, outcount:integer;

p:portion;

incount:=0;

outcount:=0;

comment Ofoutcount{incount{outcount+N;

* [incount<outcount+N;producer?p-*
buffer(incount mod N):= p;
incount:= incount+1

Joutcount<incount;consumer?request —»
consumer!buffer(outcount mod N);
outcount:= outcount+1) Then s

]

Local storage for up to N portions is provided by 'buffer'
while 'p' is working storage for the input portions. 'Incount' and
'outcount' Kkeep track of the number of portions input from the
producer and output to the consumer respectively. Acceptance of
input from producer will cause incount to be incremented. This
must never exceed outcount by more than the N portions of the
buffer. This is ensured by the guard preceding the input command.
Similarly outcount 1is incremented each time a portion is output to
consumer. This must never exceed incount, which is checked before

any request for output from consumer is accepted.
Arrays of processes

It 1is wuseful to be able to specify a number of similar
processes, and for this we introduce the notation.

N
1D1 name(i)::<command>

154

This specifies an array consisting of N processes, all
executing the same command. The bound variable i ranges between 1
and N and may be accessed (but not assigned) within the command to
indicate the process number. Each process is identical except for
the value in its own copy of i. Specific processes are denoted by
a subscripted name <name>(j), where j must lie between 1 and N. As
an example of an array of processes reconsider the bounded buffer
problem using the following solution.

[X[0)::. . . producer.
N
|| m X[i] :: p:portion *[X[i~17? p»X[i+1] ! p]
i=1

|| X[N+11::. . . consumer.

]

The producer and consumer processes are given the names
X[0] and X[N+1] respectively. The array of processes X[1] to X[N]
each have a local variable p which holds a single portion. The ith
process inputs a portion from process X[i-1] and outputs it to
X[i+1], thus passing portions through the array from producer to
consumer. This is illustrated in figure 4.

X[0]:: | X(11e: |—p| X[2): f—p ., .. —» X[N):: |—p X[N+1 s s
producer consumer

Figure 4

We finally consider a more substantial problem. A square matrix A
of order 3 1is given. Three streams are to be input representing
three columns of a matrix IN. Three streams are %to be output
representing the columns of the product matrix IN¥A. After an
initial delay the results are to be output at the same rate as the
input is consumed.

To achieve the desired speed nine multiplications must be
performed simultaneously. This requires nine separate processes
together with some other processes handling boundary conditions as
illustrated by figure 5.

Let the current values of the input streams be x,y and =z.
These values are generated by the processes on the 'western' border
of figure 5. The 'northern' border is a generator of zero's. An
x from the west first enters M[1,1] where it is multiplied by
A;1 and added to the zero input from the north. This partial sum
is passed south to M[2,1] to have y¥A;;, added and so on. Meanwhile
the value of x 1is passed east to M[1,2] to form the partial sum
x¥Ai2 and so on. The eastern border acts as a sink for the input
streams. Provided the 1input is allowed to be consumed slightly
skew the final result appears at the southern border.

155

M[0,1] M[0,2] M[0,3]
0 0
M[1,0] F—=—8 M[1,1] M[1,3] = u[1,4]
Aax Aa
M[2,0] [®Im[2,1] [P mM2,2] [P M[2,3] ——» M[244]
Ayaxthsqy Ay oxthzay MAaxtAzzy
M[3,0] M[3,1] SRR o F e M[344]
Ay1xtAz1y+hza2 Ay2XtAsaytAsaZ A1z xtAs3y+Asaz
M[441] M[452] M[443] N
W E
s

Figure 5

156
The following program is a realisation of such a scheme.
3
[I M[1,0]::. « . sources of X%,y and z

3
”J__ﬂl M[O,jl:: * [true-»M[1,j]!0]

”131'1 M[i,4]::x:real; * [M[i,3]?x - skip]
IIJiT1 Mi4,31::. . . sinkes for results . . .
3
[1£1 Jﬁ; M[i,j)::x:real;

¥ [MIi,j-112x —»
~ M[i,j+1]!x;sum:real;
M{i-1,J]1%sum;
MLi+1,3]V(A[L,j] ¥*x+sum)
]

The first line is the western border, the source of the
input streams, while the second line is the northern border, the
source of zero's. The next line is a sink for the 1input streams
and 1is followed by the southern border, a sink for results.
Finally a two dimensional array of processes perform the
multiplication of the matrices. Each process of the array inputs a
value x from the west and immediately outputs it to the east. It
then adds to the partial sum input from the north the product of x
and A . This sum is output to the south.

Reference
E. W. Dijkstra. "Guarded commands, Nondeterminacy and

formal Derivation of Programs", CACM 18, 8 (1975).
pp. U453-457.

