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COMMUNICATING SEQUENTIAL PROCESSES 

C. A. R. Hoare 

Rappo r teur Mr. M. R. King 

Abstract 

This paper suggests that input and output a re ba sic 
primitives of programming ; and that parallel compositio n o f 
communicating sequential processes is a fundamental program 
structuring method . When combined wi th a development of Dljkstl 'a' s 
guarded command, these concepts are surprisingly versatile. The ir 
use is illustrated by sample solutions of several fami liar 
programming exercises . 

Communicating processes 

In order to perform the task of designing digital sysLem s 
the computer scientist must adopt some suitable notation to descr ibe 
his design. It is the purpose of this lecture to introdu ce Q 

notation for programming multiple processes. The systems of 
interest a r e processors in a fixed configuration, connected by 
dedicated two way channels , for example, the network rep r esented by 
figure 1 . In this diagram boxes represent processors and the lilles 
rep r esent channels over which the processes communicate. 

There are many possible implementations of such a network 
of pr ooesses but the physical realisation of the system is not 
important. 

The Pa r allel Command 

Whilst pictures are useful to i ntroduce new concepts and 
almost essential in representing objects in two or three dimensi onal 
spaces, a less expressive but more precise notation will be used to 
describe such systems . The first element of this language is trle 
parallel command which has the following syntax . 

<parallel command> ::" [<process> ll <process> 11 
<process> ::= <label> :: <command> 

II <process> J 

A parallel command is a list of processes separated by 
parallel lin~s. Processes must be disjoint in t he sense that no 
variable used by one orocess may be changed by another. In 
executing a parall~i command all the processes are start ed 
simultaneously and proceed concurrently. The command ter minate s 
only when all its constitue nt processes terminate. The label of a 
process is ilname by which other processes refer to it . 
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Input and output commands 

To enable separate processes to co-operate on a common 
task they must be allowed to comm uni cate. Such a facilit y i s 
provided by input and outp ut commands. 

An input command has the following syntax. 

<input command> ::= <source> ? <variable> 

~Sou rce> is the name of a device or pr ocess from which the 
input is to be obtained, and may be subscriDted. 

<Variable> is a program variable used to store the result 
of the input. Some examples o f input commands a re as follows. 

1) cardreader ? 
From the 
place its 

card image 
" cardreader " read the next card in the stack a nd 

contents in the character array " cardimage". 

2) teleprinter(i)? char 
Read a single cha racter from the ith "teleprinter" and place 
into "char". 

3) consumer? request 
From the process "consumer" input a value and assign it to 
the variable "request". 

The effect of an input command is to wait until the named 
source is ready t o provide output to the requesting process; and 
then input the value which it o utputs and assign the value to the 
variable. 

The output command has the followin g syntax. 

<output command> ::= <destination> ! <expression> 

<Destination> is the name of a, possibly subscripted, 
device or process to which the result of evaluating <expression> is 
to be output. For example: 

1) lineprinter! lineimage 
To the "lineprinter" output the whole array of characters in 
the array "lineimage". 

2) factorial! n-l 
To the process "factorial" output the re sult of evaluating 
"n-l" . 

3) teleprinter(i)! " A" 
To the ith "teleprinter" output the character "A". 

The effect of 
destination is ready to 
and then to evaluate 
destination. 

an output command is to wait until the named 
accept input from the outputting process; 
the expression and output this value to the 

Processes may spend a large proportion of time waiting for 
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communication to take plac e . This, however, may be advantageous as 
it allows the system to give immediate response t o its user when ever 
required. 

Communi ca ti on is s trictly synchr onised and the r e is no 
implicit buffering o f the values transmitted. Successful 
communication occurs between a pair o f pr ocesses wheneve r one of 
them names the ot her as the source of input and the other names the 
fir s t as the destination f o r output. The n both operations take 
place simultaneously and their effect i s to assign to the input 
variable the value o f the output expression . 

Input and o utput may be considered as more important 
prim i tives than assig nment, as this ma y be co ns idered as a n i npu t 
and output o perati on within the same process. 

An Example 

Now consider a simple s tud e nt exercise. Construct a 
program to read 80 col umn ca rds and print their contents on a line 
printer with 125 characters per line. Insert an extra space after 
each card. 

Conve ntional structured program s for this pr oblem vary 
according to whether input or output is used as the major cycle . A 
more elegant s ol uti on is obtained by considering a pa ir of 
processes: UNPACK which reads a car d and outputs c har ac t e rs one at a 
time to a process PACK whi ch inputs those characters to a line 
buffer and outputs the buffer when full. These are joined in t he 
para l lel command: 

[X:: UNPACKIIY: :PACK] 

where X contains the output command " Y!char" and Y co ntai ns the 
input command " X?ch." 

Guarded Commands 

We wi ll now int r oduce the rest of ou r notations. To 
specify condit i onal execution Dijkstra ' s guarded commands (Dijk s tra 
1975) are used (with a slight change of notation). 

<guarded command> : := <guard> -~ <co mma nd> 

<Guard> is a boolean expression without side effect. The 
<command> cannot be executed if the gua r d evaluates to false. It 
may be executed if the guard evaluates to true . 

To be o f use guarded commands must be combined into more 
compound structures . The alternate command has the syntax 

<alte r nate command> : := [<gc> U <gc>n . U <gc> ] 

where each <gc> is a guarded command. Exactly one of these guarded 
commands i s fully exec uted . I f several guards are tr ue t he n the 
choice of command to be executed is ar~itrary. If no gu a rd i s true 
then the command fails . 
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An iterative construct is provided by the repetitive 
command. 

<repetitive command) ::= * <alternative command) 

A repetitiv e command is exec uted as often as possible. 
If no guard is true then the command terminates. Otherwise an 
arbitrary command with a true guard is executed and the whole 
command is repeated. 

Some examples of guarded comma nd s a r e as follows. 

1) [x~y max := x 0 Ylx-+max := y] 
If x is greater or equal to y then assign x to max. If y 
is greater o r e qual to x then assign y to max. At least 
one of t hese po ssibi lit ies is always true, but when y equals 
x both a r e true. Fortunately, in just this case the choice 
of assigning x o r y to max is arbitrary and the programmer 
does not care . 

2) i=O; 
* li<size ;content(i) t n -+ i: =i+1] 

This scans the array ' content ' until 
pregiven element n is found. The 
which is init ial ised to zero, as 
The command terminates with i equal 
first element equal to n or to 
exists . 

an element equal to the 
command increments i, 
many times as possible. 
to the index of the 
size if no such element 

Two boolean express i ons sepa rated by a semicolon denote an 
asymetric ' and ', where if the first condition is false, the 
second is not eval uated. This may be considered as a 
'guarded guard', ensuring that the second is never evaluated 
in circumstances that would lead to disaster. 

Guarded commands may be represented pictorially. The 
alternative command is given in figure 2 . It is important to 
notice that control splits before reaching the guards in the diamond 
boxes. These act as gates preventing flow of control to the 
command when false. There is an implicit control that ensures that 
just a single command is executed before the si ngle control path is 
resumed. 

If The repetitive command is represented by figure 3. 
control passes through an explicit guard it returns to the guards 
for the repetition of the command. If control is forced through 
the implicit guard ' a ll guards false' command teiminates. 
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Professor Michaelson asked for clarification of the 
meaning of 'failure of an alternative command'. Professor Hoare 
replied that there were many possible actions on failure, but that 
none included remedial action that allows processing to continue. 

Dr. Larcombe enquired if guards were evaluated 
simultaneously. Professor Hoare said that they could be, but there 
were many other possible implementations. Professor Heath 
agreeing, suggested that in similar hardware systems the variety of 
possible implementations was a useful feature. 

Input guards 

We now extend the definition of a guard to allow the 
inclusion of an input command by the following syntax. 

<guard> ::= <boolean expression> I <input command> 
I<boolean expression> ; <input command> 

An input command in a guard will delay the guarded command 
until the input command can be executed (if ever). A boolean 
expression in a guard, if false, prevents execution of any following 
input command as well as the guarded command. The last statement 
in a guard makes the final commitment to execute the guarded command 
and may have side effects. 

For example 

* [west?c -. east l c) 

This repeatedly inputs a value from the process west and 
outputs it to the process east using c as a one portion buffer. 

There is a problem of terminatiop of such commands which 
will be ignored for the purpose of this presentation. 

It is now possible to complete coding of the PACK and 
UNPACK programs as follows. 

UNPACK = cardimage:array of SO characters; 
i:integer; 
* [cardreader?cardimage

i: =0; 

] 

* [i<SO-+Ylcardimage(i); i:=i+1]; 
Ylspace 
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PACK = lineimage:array of 125 charactersj 
c:characterj 
colno:integerjcolno:=Oj 
* [Y?c -to lineimage(colno): =Cj 

[colno< 124 -. colno: =colno+ 1 

] 
] j 

colno= 124 -. lineprinter! lineimage j 
colno:=o 

comment space fill and output last linej 

There should be little difficulty in understanding either of the 
programs. 

Now consid er the problem of how to increase the efficiency 
of waiting. It is not possible to reduce the time spent waiting 
for a single event. However by waiting for two events 
simultaneously twice as much useful waiting is performed in the same 
amount of time. Provided that such events are r andom this is 
supported by statistical theory. This alone is the reason for the 
use of non-determinism in parallel programs. 

Consider an alternative command with input commands in 
more than a single guard. 

[producer?c ...... A. 
consumer?request -+ ... B. 

U 

In the successful execution of this command either (when 
the producer is ready) input " c " from it and do A or (when the 
consumer is ready) input "request" from it and do B. Now it is the 
intention of the programmer that the choice between those two 
alternatives shall not be made at random or arbitrarily. The 
implementation should select whichever of these two alternatives can 
be executed the earliest, while the othe r is omitted. 

Of course a programming language cannot specify the 
relative speed of execution of such processes and such an intention 
cannot feature in the definition of the language. However a good 
implementation should not delay unreasonably in performing some 
action once it becomes possible to do so. Such specification is 
not even possible in strictly sequential languages such as ALGOL , 60. 
The ALGOL 60 report does not specify that an implementation may not 
wait at a semi-colon for an arbitrarily long time before executing 
the next statement. Any implementation that did would not be 
popular with its users. 

ensure 
Hoare 
answer 

Professor 
that all the 
acknowledged 
the quest i on. 

Michaelson asked if any arrangements 
processes were eventually executed. 

the importance of the problem but 

are made to 
Professor 

declined to 

Professor Van der Poel rem arked upon the similarity of the 
system to that of computers--waiting for interrupts. Professor 
Hoare noted that this similarity was intentional. 

Dr. Treleaven suggested that the model presented by the 
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lan guag e for c ed pr oce sse s t o run at the same s peed as for e xampl e 
slow peripherals. Similarly it did nothing to prevent pr oc esses 
holding on t o s c ar c e reso urces . Professor Hoare replied that these 
problems could not be so lved thr ough programming language design. 
However, they may be a lleviat ed by constructing programs that use 
explicit buffering. 

Now c onsid e r a guard with a boolean condition foll o wed by 
an input c ommand. 

[in co un t ~ outco unt+n i producer? c - . . 
Uo utco un t > i ncounti con s umer?request-. 
] 

A ••• 
.. B. 

This is simi lar to the previous example except that if 
incount is g r ea ter th a n outc ount+n then the first alternative cannot 
be selected and inpu t i s no t acc e pt ed from pr oducer. If outcount 
is less t ha n or equa l t o incoun t the se con d aLternative cannot be 
selected and input is not accepted from consumer. 

Bounded buffer 

. We again consider a simple exerc~~e. Write a process 
which inpMts porti ons from a producer and o4tputs them to a consumer 
interposing a buffer o f up to N portions to ·smooth variations in the 
speed of producti on and consumption. This specification is 
fulfilled by the foll owing program. 

buffer:array of N portionsi incount, outcount:integeri 
p:portioni 
incount:=Oi 
outcount:=Oi 
c omment O~outcount~incount~outcount+Ni 
* [incount<outcount+Niproducer?p-

buffer(incount mod N):= Pi 
incount:= incount+1 

Uoutcount<incounticonsumer?request-+. 
consumer!buffer(outcount mod N)i 
outcount:= outcount+1 

] 

Local storage for up to N portions is provided by 'buffer' 
while 'p' is working storage for the input portions. 'Incount' and 
'outcount' ~eep track of the number of portions input from the 
producer and output to the consumer respectively. Acceptance of 
input from producer will cause incount to be incremented. This 
must never exceed outcount by more tha~ the N portions of the 
buffer . This is ensured by the guard preceding the input command. 
Similarly dutcount is incremented each time a portion is output to 
consumer. This must never exceed incount, which is checked before 
any request ' for output from consumer is accepted. 

Arrays o f pr ocesses 

It is useful to be able to specify a number of similar 
processes, and for this we introduce the notation. 

" 11 name( i) : : <command> 1- , 
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This specifies an array consisting of N processes, all 
executing the same command. The bound variable i r anges betwee n 1 
and N and ma y be acc essed (but not ass i gned) within the command to 
indicate the process number. Each process is identi ca l ex cept for 
the value in it s own copy of i. Specific processes are denoted by 
a su bscripted name <name> (j ), where j mu st lie betwee n 1 and N. As 
an example of an array o f processes reconsider the bounded buffer 
problem usin g the follow i ng so luti on. 

[X[O)::. produ cer; . . 

N II IT XCi J :: p :portion ~[X[i-1 J? p-+X[i+1 J : p J 
1 = 1 

IIX[N+1)::. 
) 

. con sumer. . . 

The producer and consumer processes are given the name s 
X[O) and X[N+1) respectively. Th e a rr ay of pr ocesses X[1) to X[N ) 
each h ave a local va ri able p which holds a si ngle portion. The ith 
process input s a portion from process X[i-1) and outputs it t o 
X[i+1), thu s passing portions through the array from pr oducer t o 
co n s umer. This is illustra t ed in figure 4 . 

X[O J: : X[1 ]: : X[2 J:: ~ 

producer 
~ . • • • • -- X[N]: : X[ N+1 J:: 

consumer 

Figure 4 

We finally cons ider a more substantial problem. A square matri x A 
of order 3 is given . Three streams are to be input repre senting 
three columns o f a matrix IN. Thre e streams a r e to be output 
representing th e columns of the product matrix IN*A. After a n 
initial delay the results are to be outp ut at the same rate as t he 
input is consumed. 

To ach ieve the desired speed nine multiplications must be 
performed s imultaneously. This require s nine separate processes 
together with so me other processes handli ng boundary conditions as 
illustrated by figure 5. 

Let the cu rr ent va lues o f t he input st r eams be x,y a nd z. 
These values a re generated by the processes on the 'western ' border 
of figure 5. The 'no rthern' border is a gene r a t o r of zero ' s. An 
x from the west f i r st enters M[1,1) where it is multiplied by 
A" and added to ' the zero input from the north. This partial sum 
is passed south to M[2, 1 ) t o have y*A2l added and so on , Meanwhil e 
the value o f x is passed east to M[1,2) to form th e partial sum 
X*A

'
2 and so on. The eastern border ac ts as a sink for the input 

st reams. Provided the input is a llo wed to be consumed slightly 
skew the fin a l result appears at the southern bo rder. 
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M[O, 1] M[0,2 ] M[O, 3] 

0 0 0 
,It , 

M[1,0 ] x M[1,1 ] x - M[1, 2 ] x ... M[1, 3 ] 
y 

M[1,4] 

A~lX Al a X A13 

11, , ,~ 

Y • Y ... Y Y --M[2,O ] M[2,1] M[2, 2] M[ 2,3 ] M[ 2, 4] 

All x+AalY Al aX+AaaY A13 X+Aa3Y 

,It , 
z z - z • z ... 

M[3,O] • M[3,1 ] --... M[3,2 ] • M[3, 3] M[3,4 ] 

All x+Aa ly+A31 z Al a x+Aa a Y+Aa a z Al3 X+Aa3 Y+Aa 3 Z 

r 

M[4,1 ] ~ M[4, 3] N 
j,. 

-
i,---I---E 

s 

Figure 5 
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The following pr ogram is a realisat ion of such a scheme . 
3 

[ IT M[i,O]:: ... sou r ces of x,y and z . 
1 = 1 

3 

II IT 
3=1 

II 'fr 
1 =1 

3 

II 3 LT, 
~ 'fr 

1 = 1 J =1 
II 

] 

M[O,j]: : ~ [true-+M[1 , j] !O] 

M[i,ll ]: :x:real ; ~ [M[i , 3 ]?x -+ skip] 

M[4,j ]:: . .. sinks for r esults .. 

M [i , j ] : : x : rea 1 ; 

* [M [i ,j-1]?x .... 

] 

M[i , j +1 ]!x;sum:real; 
tH i -1, j] ? sum; 
IHi +1,j ] ! (A[i,j] * x+sum) 

The first l ine is the weste r n border, the source of the 
input streams, while the second line is the northern border, the 
sou rce o f zero ' s . The next line is a sink for the input streams 
and is followed by t he southern border, a s ink for results. 
Finally a two dimen sio nal array of pr ocesses perform the 
multipli ca tion of the ma trices . Each process of the array inputs a 
value x from the west and immedi ate ly outputs it to the east. It 
then adds to the parti al sum inpu t from the north the product of x 
and A This sum i s output to t he south. 
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