
107 

DIRECTED GRAPH METHODS IN COMPUTER SYSTEMS EDUCATION 

F. G. Heath 

Introduction 

I have been working actively in directed graphs applied to 
all aspects of computer science and engineering since 1970, and it 
has been on the whole a frustrating time . I became convinced 
fairly swiftly that in all situations except where the computation 
is constrained by design to be single-stream that directed graphs 
are the proper analytical tool for powerful CAD methods equally at 
home in hardware, software or any mixture. 

I became convinced thzt di r ected graphs were a good thing, 
and told other designers that they were a good thing, they agreed 
that they were a good thing, promised to try to use them and went 
straight back to their bad old ways. Heriot-Watt still has a 
directed-graph research program funded partly from the SRC and 
partly from department al money (there's conviction for you) which is 
adding register-transfer language methods to the earlier work (bas e d 
on the LOGOS project at Case-Western Reserve University run by Ted 
Glaser who was the real innovator). 

If working designers will not accept the methods then we 
must do the next best thing an d slip directed graph teach ing into 
our syllabuses. This is the main topic of my lecture, but in order 
to help you to appreciate the importance of directed graphs in our 
subject I intend to spend about half my time on a paper which J 
presented at the 1976 NATO conference on computer archit ecture at 
San Rafael (Appendix). This can of course be read at more length 
separ atel y . 

The l~~~~~~~l £ea!~~~~ ~! ~~~~~~~~ Q~~E~~ 

It must be true to say that almost all computer design, 
hardware and software, is based on Boolean algebra, programming or 
flow charts. Boolean algebra is tota l ly unsu i table as a method of 
designing large complex circuits. Higher level algorithm s derived 
from the algebra (for example minimisation rules) are f ar-removed 
from common sense, frequently needing computer processing. Their 
result s baffle the maintenance man. So des i gners work with 
familiar high level concepts, stitched together with very elementary 
boolea n functions . Programming is not much better in assembler 
language programming, since the functions a re logical in style and 
often can be incomprehensible even a fter a careful reading of the 
manual . A PDP 11 instruction to write 11001111 to the low byte of 
a register fills the high byte with 1 's o It is hard to convince an 
engineer that this is a good idea. (I do know why.) 

Flow-charts begin to make sense, except that for many 
people the flow-chart is just an excuse to meander from input to 
output through a series of boxes representing ill-defined functions. 
Even so U:e method gives a good start to design, and in fact the 
directed graph methods which I want to discuss are really about a 



. i 

108 

flow-chart which is split into control and data sections and which 
has sufficient formalism for us to derive valuable system properties 
from the structure of the computation. 

I shall now go quickly thr ough the Appendix, pointing out 
the essential formalism which has to be introduced, also the 
analytical methods which can be realised because of the formalism 
and the useful benefits to the designer in the form of information 
about his design. 

Page 8 of the appendix indicates the general requirements 
of such a system, followed by (pp. 10-11) a flow- chart for Euclid's 
algorithm (see ref. 4) which is developed into a block structure 
diagram (Figure 3b) and then into the full twin directed - graph 
(bigraph, schema) in Figure 4. 

The left-hand graph represents the control function, and 
may be regarded loosely as a microprogram in logic, with cells 
(bistables) alternating with simple logic operators. However, the 
logic operators are not simple, although at first sight the AND 
seems to be a la Boole.---These functions are defined such that as 
the flow of control goes in one direction (say downward from 
operator ORl to operator 2) there is a fl ow of information upwards 
from cell 3 to cell 1 which allows ORl to be activated again. 

This is quite essential for orderly design of control 
nets, and has been endlessly discovered and given different names by 
designers. Another typical requirement is that the blockhead must 
have a connection to all operators , and all operators must have a 
connection to the block-end. ' 

The data graph can be loosely viewed as the data-flow 
diagram of, for instance, a CPU. However, there can be control 
nets buried in each data operators as long as there is only one 
signal-pin which can start the operation and one pin which signals 
completion. Thus control function 2 is linked to the divide 
ope ration by two signals, as shown in Figure 11. Because of the 
formalism this whole graph can be shrunk to two operators at the 
next higher level of design (Figure 5), giving an unlimited 
hierarchy. 

Turning to analysis methods, pp. 15-17 of the Appendix 
show that one can either use forms of Warshall's algorithm (matrix 
closure) or grow the entire tree of vector state possibilities in 
order to find out useful properties of the design, and each block 
can be treated individually. The first is preferable whenever 
possible, since it needs about one hundredth of the time and a tenth 
of the memory of the second method. 

A very simple analysis will check for hung control states, 
as well as races /haza rds in the design. 

Hardware d~signers may say that all the bistables slow 
things do~n - if we can make microcomputcrs work in parallel we do 
not need to squeeze the last ounce, or perhaps I should say 32 
grams, out of our des i gns. 

It is also possible to do timing calculations in the form 



109 

of least time, mean time and max. time for the block . 

Resource allocation and fault-tolerant 
same calculation) are both possible but there is 
lengthy tree-growing procedure. 

design (really the 
no avoiding the 

Lastly as a result of work by Douglas Bain, it is possible 
to design a computation in completely serial form and then process 
it by the fast matrix method into its maximally parallel form. 
This is important, not just for the obvious re asons but because Bain 
has therefore proved that schemas of this type have a canonical 
reduction. 

Before leaving this portion let me answer one possible 
objection. We know (you may say) that a computation can never be 
proved correct by its structure: it must be run (or simulated). 
This is true, and the directed graph methods above will never tell 
you whether the computation is correct. However, the fact of each 
block being proved logically sound me ans that testing or simulation 
can be brought down to very mana geable times. (Of course, being a 
universal design method you can, if you want, design a system using 
bigraphs which is quite unreasonable to test.) 

Computer Education 

There is no doubt that in the early days nobody bothered 
at all about consistency. As one Ferranti engineer said in the 
early fifties "We are all going to make a fortune writing articles 
about logic design", and some people did, usually writing basically 
the same article several times in different places. 

What I have observed since then is that discipline has had 
to be intr oduced to the art of hardware design. Each stage o f 
discipline was resisted initially by the practitioners, however once 
accepted a great improvement in design productivity ensued . 

Key design stages where the workers revolted were:-

1) Going from wired chassis to packages (1956). 
2) Not being allowed to design new logic for each project (1962). 
3) Not being allowed t o have an unlimited range of circuits from 

the same family in a design (1966). 
4) Having to use a CAD system for logic layout and inter­

connection (1968). 

What is noticeable about these? We've never taught any 
of them! So if directed graphs are the new discipline for system 
designers, why should we treat it any differently than the hardware 
predecessors? 

I think that directed graphs are quite different in 
quality from these previous design landmarks, and quite definitely 
worth introdu cing into teaching methods, both underRraduate and 
postgraduate. In a way, historical hardware was a necessary step 
to computer systems since there was no other way. Today however 
each LSI chip is a separate processor of one sort or another, and 
most behave like a data-operator in the graphs. The natural design 



110 

environment is therefore multi-processor , and all the pr oblems of 
synchronisation and sequencing need a design discipline . 

On the other hand there is little need for a higher level 
of element - the specification can be processed into MSI/LSI by one 
designer process, and the directed graph discipline is very 
suitable. 

What about software? Our work has shown me that talking 
about linking processors often turns imperceptibly into talking 
about co-operating processes, and sometimes a pair of graphs which 
started as hardware finish up as software. Sometimes it goes the 
other way, and a program finishes up as a PROM with simple 
sequences. So, in my view, the new environment needs directed 
graphs, and if yo u can't afford the CAD, using the formal 
definitions gives considerable insight into what is going on. It 
is worth noting that the combination of a control operator with data 
operator and input and output registers is the equivalent of one 
statement in a Register Transfer language, with affinities with APL. 

At Heriot-Watt we have taught the method s to electrical 
engineers at final Honours and M.Sc . level for the last few years . 
The course follows one on sequenti al circuits and is concerned with 
the design of control networks with proper behaviour. At the 
M.Sc. research level we have designed and instructed a set of 
control modules with which we can plug-up a wide range of circuits. 
These are similar to the macr o-modules of Wesley Clark and the PDP 
16 "ev oke " modules except that certain disadvantages have been 
avoided by the formal approach. Several Ph.D. students have 
written their theses on the development of the methods while others 
have seen the work and incorporated it in their own activities. 

Our current view is that a happy mixture of register­
transfer language statements and graphics is needed to give the 
modern designer what he needs, and this is the present aim of ou r 
resear ch work. However, it no longer seems impossible, at present 
hobbie s prices, to give each designer his own colour-graphs 
microcomputer graphics design system and link a number of designers 
into one more powerful processor, holding the design data-base and 
carrying out all the major algorithms design tests. 

Discussion 

Rapporteur Mr. E. Best 

Professor Dijkstra What you show is counter to all my 
experience, intuition and prejudices. The problem is: I have a 
feeling that if in a discipline pictures are used for representing 
anything non-spatial, that is a sign of immaturity of that 
profession. The second thing I mean is the degree with which you 
seem to promote the use of gadgetry. You wish us people to use 
computer aided designing tools. I ' m a little bit amazed by that. 

Professor Heath: Are you aga inst CAD? 

Professor Dijkst ra : I'm not for or against; but most 
certainly I would never use it . 



1 1 1 

After extensive experiments on how people solve problems, 
one of the things that I learned was that there is a great tendency 
to make a mess of it as soon as they resort to mechanical aids suc h 
as pencil and paper; and as soon as they use more mechanical aids I 
expect the mess becomes greater . 

Professor Heath Well I remember a famous lecture that 
Sydney (Professor Michaelson) gave; it was to about 500 people in 
Edinburgh (IFIP 68 I think). I remember his saying there that 
really the way to write programs is to have himself and his two best 
chaps sitting in a pub with an endless supply of beer, and they 
could then solve almost any programming problem in the world far 
better than IBM could. And then I remember the chief programmer 
for IBM standing up and saying: it's not quite like that, because 
people have to work t oge ther . 

My feeling is that what you say is fine if it's just you 
who is involved. Anyone of us can get to know a machine and its 
programming so well that pencil and paper become almost superfluous 
to us; but in industry, or in university where the next lot of 
students have to mend what the last lot left behind them, rec ording 
information is terribly important. Most computers could not be 
built from a non-CAD basis (the diagrams we all know are never fully 
accurate) . The only reason I have for introducing this is to try 
and get the computers to a wider audience, not just to experts. 

People who are not so immature do use a lot of diagrams 
and a great numb er of practising electronic engineers like nothing 
better than a schematic diagram. 

Professor Dijkstra "Like" that's true. But I 
interpret that as a symptom of the way people have been educated. 

Professor Heath Well suppose 
transfer language stream of statements, say, 
logic block. Can you quickly modify it from 
listing? I know lots of pe ople who say they 

you take a 
defining some 
that register 
cannot. 

register 
specific 
transfer 

Dr. Glaser: I think we have to be a bit more ca reful 
about the-choice of graphics. I'm perhaps a funny guy to say that 
I'm purely picture-driven. But, seriously, what most people appear 
not to be aware of is that the braille language which is used by the 
blind is in esse nce a string language. There is a rather mature 
notation that most of us do not think about as being graphical, it 
is called music. One of the rea sons , it actually has been looked 
at by several pe ople - including Shannon and others - is that it is 
one of the most dense, most mature coding forms ever developed by 
man. Braille is purely symbolic and string; and there has never 
been an adequate format for music for the blind because braille is 
only one -dimensional . I picked that only as an example. I think 
that when Fred (Professor Heath) talked about pictures he has 
integrated some of his work. I think that another way of looking 
at it might be to say that given the fact that he replaced 
(potentially) a technology of pencil and paper (or typewriter - I 
don't want to go back to an older technology such as stone chipping 
or cuneifo rm) with the ability to deal with a two-dimen sional 
representation in a two-dimensional language, the formalism in terms 
of the kinds of opera tors that can be applied to the structure ga ins 



112 

considerably in significance, and looking at it from the standpoint 
of symbolic representation we can design much better, the difference 
being that we are not being destroyed by one dimension. 

Professor Edwards I have been involved in reasonably 
small machines with about 20,000 integrated circuits; I do not see 
how you can make that sort of thing without some form of CAD. It ' s 
just absolutely impossible. 

Dr. Glaser 
recommendea;-it hurts. 

I can form those in my head, but it is not 

Professor Edwards If you give me a tool, as a designer 
there is always scope for using it properly as an aid or using it 
badly; and I would not want to make excuses for designers who use 
aids in an attempt to do the design, instead of thinking themselves. 
However, some form of CAD is such an invaluable aid that, as I said, 
you can't really do without it . The problem that I really want to 
put to you is why should we use LOGOS as opposed to other techniques 
which are currently available. What you have not given me is any 
figure of merit or scale of device that you design, the size of 
machine that you need to run on, the time involved in doing the 
process, and the sort of information that you go through to come out 
with a successful design; or any comparison of that with other 
exercises like simulation. That is really why, as it were, I can't 
put LOGOS on some sort of comparitive scale. 

Professor He ath: That's a valid criticism. When we 
discovered that we were in a no-sale situation about 18 months ago, 
we realised that the great flow of opinion - and justifiably so 
was for a register transfer language statement at some stage of the 
proceedings. It really does seem quite essential. The diagrams 
are not enough for many aspects of design or manufacture and 
therefore we changed our tack and decided to add that onto it; 
whereas, I think, perhaps in your group you were doing register 
transfer work earlier. Possibly you did not see that problem. 
But certainly I had one student go through the design of the 8008, 
for instance, and I ' m quite sure that he did it much quicker than 
Intel did. 

The thing that used to get me at ICL (you know the factory 
floor I'm talking about) was that, say, they would put down the 
prototype, the designers would sit down with it, and I don ' t know 
how many man-months were consumed really getting it off the ground. 
Now that ' s the problem. Manufacturers are used to the overheads 
working in that way, therefore they think it is part of nature. 
It's not. If you can take a design that is block-structured all 
the way, and if you know from the analysis that each of those blocks 
may not do the right thing but is logically sound and works, then 
you have a great way of getting into simulating it on the one hand 
or wo rking it up from scratch on the other hand; because (you know 
what it is like) a piece of equipment gives a different answer every 
time, you don ' t know if there is a timing problem or what else have 
you. With these system!> you do e;et. r.hllnk!> that defini tely work if 
the hardware is functional, and they always do the same thing. 
That seems to me a terribly valuable feature for shortening 
simulation. 



113 

Professor Edwards You have not convinced me, though. 

Professor Heath: I'm sure I have not. Would you like 
to know, for instance, that each block of a design is logically 
sound? If you say, I don't want to know that .. 

Professor Edwards: Let's make the scale ridiculous. If 
I can only design a decade counter with it, that is not very much 
use to me, and what I want to know is where does your system start 
running into difficulties; I want to know the snags. 

Dr. Glaser: I think I can answer that. You know I 
started the-work and I am out of it now and I'm probably coming back 
in as a customer and picking up some of Fred's things. There are 
two points I can make in terms of an active, ongoing designer right 
now. 

First, there is no simulation for doing what you were 
saying. In the particular system we are building (probably several 
versions of it) the simplest one will have 100 independent 
processors; that's the baby. The big one will have exactly 3500. 
They range in size fr om simple chip processors to one with several 
boards and are dedicated to a very specific task. They are highly 
asymmetrical, some of them are close-coupled, some of them are not. 
We have got to get the first one out in approximately a year's time, 
and there are no o ther tools around that can give us a chance of 
doing it. We have done enough simulation to find that simulation 
in a useful form does not work. 

And the other count: by being able to develop a hierarchy 
of interfaces so that we could say: if this block works correctly it 
cannot in any way be changed by anything external to it, or, 
equivalently; if this block works incorrectly then it will still be 
consistent and will not in any way damage other blocks; now this 
returns the problem from a totally global interaction of processes 
to a Markov-type process where we can look at direct linkages. It 
means that we have reduced the combinatorics to something which is 
feasible. In itself that's not a very helpful statement. But you 
know I am in a commercial environment; we have looked at virtuallv 
everything else that is available. There is nothing that will 
touch it. We went once and tried to do it on our simulation model. 
We currently have a 158 and the company said I could not have it, 
because that's about what it would take to do the job - full time. 

Mr. Pinnell I should like to commend the use of 
directed graph methods not so much as a visual tool, but as a means 
of achieving computability. There was a case in IBM where the 
specifications of a communications interface were audited by first 
expressing the interface control sequences as a directed graph, and 
then tracing the paths so as to find any conditions which had not 
been provided for. The designer then knew that all possible 
sequences had been checked. 

Professor Heath: And that was without machine analysis? 

Mr. Pinnell: No, with machine analysis. 

Professor Dijkstra It took 18 seconds or minutes or so, 



114 

and they had to investigate 25000 transition pairs, and the 
technique was such that they wanted to investigate a network of 3 
nodes. The number of transition triples to be investigated would 
be well over 800,000 to investigate a four-node network, according 
to that technique - now they were absolutely helpless. 

Professor Heath: That sounds like a tree of states. 

Professor Dijkstra 
of that whole approach. 

And it shows the complete silliness 

Professor Heath I'm told to close, so let me just do so 
by saying that after I gave this lecture with great hope in San 
Rafael last year I came home and heard nothing, until one day a 
letter came from Eduard Mumprecht in Switzerland, sayinR 
substantially: since listening to your lecture, my wo r k on real time 
programming has been transformed for the better. 


