
89

THE IMPACT OF CLASSIFIC~TION SCHEMES ON COMPUT EB ARCHITECTURE

W. Handler

Rapporteur Dr. D. M. Russell

~ Remarks on Classification Schemes and Formal ~~t~ms

Classification schemes, languages, and formal systems of
all kinds have a considerable influence on our thinking.
Structures which are inherently the subject-matter of a language as
well as of classification schemes form the basic material of what
can be expressed in a language or can be comprehended from its
position in a classification scheme. The same statement seems to
be valid for formal systems in a more specific sense . Thus the
tool can be used in the application area for which it was created.

For example the Ricci-Calculus performs this role only in
the area for which it was created, certain areas of physics and
partial differential equations. Outside this area problems arise
for which it is not suitable .

B. Whorf has said that language guides thought [11J and
that therefore language sometimes prevents the appropriate solution
of a problem being found. We must admit that in many cases a
language (it can be referred to as a calculus or notation) can be a
barrier rather than an aid in solving a problem. It is also true
that a classification scheme can be a barrier, although it can
provide an insight into the relationships between the elements of
some group.

If such a classification scheme is to be applied to
animals and plants, then the elements are existing objects and the
scheme cannot completely fail, although the discovery of a new
species can present difficulties in fitting it into an existing
classification scheme. Such a scheme can be called a taxonomy,
since all the species are considered to be descended from a single
species, in accordance with the biological theory of evolution.

It seems more difficult to create a classification scheme,
or even a taxonomy, for some area of contemporary technology . It
is necessary to project future advances as well as placing existing
examples in it.

The aim of this paper is to show that some existing
schemes may fail to indicate the right direction for the development
of computer architecture, as compared with a new and promising
classification scheme introduced in [3J, [4J. We would, however,
not claim that the proposed classification scheme will cover all
computer structures which will arise in the future. We do show
that the proposed scheme does cover several very interesting
structures which cannot be placed at an appropriate point in the
schemes of Flynn [1J and Feng [2J.

The justification of the proposed scheme is that it should

90

be useful in classifying structures and concepts which will emerge
in the next years, and be of use to the designers of these
structures. A further justification of the scheme is that the
elements of the classification scheme can be decomposed by
operations which are suitable for the purposes of the computer
architect,

~ ContemporaLY. Classification Schemes

Existing classification schemes differ in the information
on which they are based. For instance M. Flynn [1] bases his
scheme on a 'data stream' and an 'instruc tion stream' . By
combining these simple concepts he can classify many of the new
computer structures . In contrast, Feng [2] emph~sises the number
of bits which are processed simultaneously. These schemes are
outlined in section 2.1 and 2.2 in order to contr~st them with the
scheme outlined in chapter 3. In section 2.3 the definitions of
multiprocessing proposed by the American N~tional Standards
Institute [5] and by Enslow [6] are discussed.

~ FlYnn~ Classification

Flynn proposed in 1966 a classification based on the
instruction streams and data streams . In the conventional
Princeton type computer a single data stream is processed by a
single instruction stream. This is described as SISD (single
instruction single data).

In an array computer such as ILLIAC IV, a single
instruction stream processes many data streams . Such a computer is
known as SIMD (single instruction multipl e data) . In ILL lAC IV 64
copies of the same instruction are executed simultaneously by 64
arithmet ic units. The Goodyear STARAN is also a SIMD computer.
It differs from ILLIAC IV in many respects, in particular in being
an associative array processor .

MISD is an abbreviation for multiple instruction single
data. Some authors include various types of pipeline computers in
this class though it is doubtful whether this is appropriate, and it
is unsatisfactory because it does not distinguish between the three
kinds of pipe lining (see section 3 . 3 below).

MIMD is an abbreviation for multiple instruction multiple
data. Here multiple processors are working on multiple data
streams. The simplest case is where each processo r is executing
its own program on its own data . The processors can be connected
via a bus system or can access multi-port memory. The
classification does not contain any information about the type of
connection used.

Flynn's classification is illustrated by Figure 1, where
many contemporary computers can be clas s ified by assigning them to
one of the four vertices of a graph. However, the classification
does not fully satisfy the needs of computer architects because it
is not fine enough and because the interpretation of the class MISD
is not clear (cf. [7]) . In the literature many authors restrict
themselves to the classes SISD, SIMD, and MIMD, A further

• •

91

difficulty occurs if a computer contains both parallelism and
pipelining .

2.2 Fen~ classification

Feng [2J classifies according to the word-length, that is,
the number of bits which are processed in parallel in a word, and
the number of words which are processed in parallel . A compute r
structure is represented by a point in a plane (Figure 2) where the
abscissa is the wordlength (normally 12, 16, 24 , 32, 48, 60 or 64),
and the ordinate is the number of words processed in parallel. The
latter can be determined by the number of processors. For example
C.mmp which contains 16 PDP-11's with wordlength 16 bits is
represented by (16,16) . The ordinate can also be determined by the
number of arithmetic and logical units in an array processor. Thus
ILL lAC IV is represented by (64,64) .

Thus Feng's classification does not allow us to
distinguish between multiprocessors like C.mmp and array processors.
This caused Enslow [7J to repre~ent C.mmp in " gang " mode by
(16 , 256). But C.mmp in gang mode can be regarded as similar to
ILL lAC which would giYe the point (16, 16) which is the same as when
gan g mode is not used. The classification also does not
distinguish b~twee n autonomous processors which execute programs and
ALU ' s which execute operations, that is, it does not distinguish
between processing levels.

The TIASC (Texas Instruments Advanced Scientific Computer
is represented as (64,2048) . The number 2048 is obtained from the
4 pipelines each consisting of 8 stages with 64 bits. However the
number 20 4 8 can be obtained in many ways, for example 8 pipelines, 8
stages, 32 bits. Thus the ' classification cannot represent a
multiple pipeline structure like the TIASC accurately.

It is also not possible to represent the pipeline
structure at the program level of PEPE. PEPE is characterised as
(32,16), and the fact that each set of data (up to 288, each
representing a flying object) is processed successively in three
different ways is not represented. This is performed in three
separate series of ALU's, and we can regard this as a three stage
macropipeline (cf. section 3.3) .

The lack of a rigorous definition of pipelining in the
context of Feng's classifi cation scheme leads to difficulties in
classifying structures containing both pipelining and parallelism.
Thus the (scheme is not entirely satisfactory for the computer
architect eithe r . ' ,

~ Definition of Multiprocessing

Similarly to classification schemes, if definitions are
too narrow, some viable computer structures may be excluded from
consideration.

The American National Standards Institute [5J defines a
multiprocessor as:

" A computer employing two or more processing units under

• •

92

integrated control. " Manufacturers of systems containing two to
four processors did not find themselves in conflict with this
definition. The definition did not exclude future developments in
computer architecture, but does not seem to have had any impact on
contemporary architecture . Subsequently Enslow suggested a more
detailed definition in his excellent book [6] which included

1. Two or more processors, having access to a common memory,
whereby private memory is not excluded,

2. Shared I/O,
3. A single integrated operating system,
4 . Hardware and software interactions at all levels,
5. The execution of a job must be possible on different

processors,
6. Hardware interrupts.

We will concentrate on the first characterist ic:

A common memory is mandatory. Such a structure is shown
in Figure 3. It is easily seen that as the number of processors
increases the congestion in the access to the common memory will
also increase. Thus Enslow' s definition seems to excl ude system
containing very large numbers of processors. Microprocessors
costing a few dollars are now available, so that systems containing
thousands of processors are now possible. Some of the more
progressive projects of computer architecture such as PRIME [9] are
also excluded. On the other hand some structures which satisfy
Enslow's definition are subject to severe limitations on their
expandibility and application due to their use of an expensive
cross-bar switch [10].

Thus Enslow's definition also does not either satisfy the
requirements of com temporary computer architecture. We therefore
propose that the definition of multiprocessing be extended to
include systems containing two or mor e processors each of which has
access to a subset of the memory blocks, and in which each processor
can transmit information to any other via a chain of memory blocks.
This definition would include the configuration shown in Figure 7.

2.4 The Influence of Classification Schemes and Definition

We have tried to show in the previous sections that
definitions and classification schemes have their limitations and
can prove a hindrance beyond a certain point . The computer
architect should recognise when this point has been r eached, and
consider whether an entirely new class ification scheme or definition
is needed, which will ideally include a ll existing structures within
a particular area and also all structures which will be considered
in this area in the future . There is no doubt that one should
consider very carefully the consequences of introduc ing a new
classification, because of its possible educational and normative
effects.

• •

~ The ~angen Classification Scheme

~ Introduction

The Erlangen classification
mainly in order to avoid the drawbacks
schemes, as outlined in section 2.

The basic requirements are

93

scheme (ECS) was developed
of existing classification

1. The objects to be classified should not be unnecessarily
restricted. Any kind of computer system - in particular parallel
processors, array processors, multiprocessors, pipeline processors
must be classifiable in the scheme;

2. The classification must be sufficently fine to express those
differences between the objects considered important;

3. The classification must be unambiguous.

The clasification scheme dev e loped was also found to be a useful
technique in computer architecture, in the sense that:

4. Composed computer configurations can be described by using
operators which are applied to primitive eleme nts of the scheme.

5. It can be used in evaluating archite c tural configurations, in
particular with reference to cost.

6. It provides a measure for the flexibility of a system.

7. It provides a starting point for scheduling of flexible
structures

The objects of the classification are not necessarily
computers only. This will be amplified below. The flexibility
mentioned in 6. above is connected with the fact that a computer can
be represented by more than one point in the classification. The
various points which represent a computer will be referred to as
modes. The more modes a computer has, the more choice of mode it
has for a particular application, and so the greater is its
flexibility.

The classification scheme can be used for algorithms as
well as for computers, and demonstrates the inherent partitioning of
the algorithm into parallel sections and pipeline stages. The
classification of algorithms must then be related to the
classification of the computers on which they are to be run. In
general, jobs must be investigated to identify the classes of the
algorithms contained, and matched to the classes of the computers on
which they are run. A more detailed discussion of this question
will be given in another paper.

I
I

. I

94

~ Parallelism

Our c lassifica tion aims at characterising the parallelism
and pipe lining present in a computer system. The connections
between the processors and the memory blocks are not included in the
classification. It is assumed that the connections can carry the
expected traffic and provide the required availability . In such a
case the performance of the system is mainly determined by the
processors, including their capability to transfer information

The classification is based on the distinction between
three processing levels:

1. Program control unit - Using
registers, and, in most cases, a
interpre ts a program instruction by

a program counter and some other
microprogram device, the PCU

instruction.

2. ~rithmetic and logical unit - The ALU uses
of a microprogram device to execute sequences of
according to the interpretation process performed

the output signals
microinstructions

by the PCU.

3- Elementary logic circuit - Each of the microoperations which
make up the microoperation set initiates an elementary switchins
process _ The logic circuits belonging to one bit position of all
the microoperations are called an ELC.

A computer configuration can include a number of PCU's.
Each PCU can control a number of ALU's all of which perform the same
ope r ation at any given time. finally , each ALU contains a numb er
of ELC's, each dedicated to one bit position. The number of ELC's
is commonly known as the word-length.

If we disregard pipelining for the moment, the number of
PCU's, ALU ' s per PCU, and ELC ' s per ALU form a triple, written

t (computer type) : (k, d, w).

We give some examples of the triple, where we assume that
the reader is familiar with at least some of the computers:

t(MINIMA) : (1,1,1)

The "classical" serial computer.
computers were of this form .

T(IBM701) = (1,1,36)

Some early European

An example of the early "parallel" (on the 3rd level)
Princeton computers .

T(SOLOMON) = (1,1024,1)

The historical concept of an array processor.

T(ILLIAC IV) = (1,64 , 64)

The famous array processor developed at the University of
Illinois (without PDP 10) .

.,

95

T(STARAN) = (1,8192,1)

The well-known associative array processor (without host
and sequential control processor) fully extended (32 frames of 256
bits each) .

T(C . mmp) = (16,1,16)

The Carnegie-Mellon University mUlti-mini project using 16
PDP-ll's .

T(PRIME) = (5,1,16)

The University of California, Berkeley, project in which
time-sharing is replaced by multi-processing.

The different systems exhibit
parallelism, which is uniquely attached to one
The numbers which make up the triple show this

different kinds of
of the three levels.
directly.

At first sight, the triples are able to classify all
viable structures, particularly in regard to parallelism. But
although parallelism is the most important phenomenon in
contemporary computer architecture, pipelinin g must also be
considered. The examples above exhibit parallelism but not
pipelining. In the next section the classification is extended to
include pipelining .

.1,3 Pipelining

Pipelining can also
described in section 3.2, i. e.

be implemented at the three levels
1. PCU, 2 . ALU, and 3. ELC.

For example level 3 pipe lining is
pipelining of the arithmetic unit used in the CD
TIASC. The STAR-l00 uses a four stage pipeline and
eight stage pipeline.

the well-know n
STAR-l00 and the

the TIASC an

An arithmetical pipeline can be regarded as a "vertical "
replication of ELC ' s, compared with the " horizontal " replication
used in a parallel ELC. It is therefore r easonable to multiply the
number of ELC's, w, by the number of stages in the pipeline, w' , to
characterise the ALU. For the TIASC we have then

t(TIASC) = (1,4,64x8).

The multiplication sign will be used
separate the number representing the degree of
number representing the number of stages in the

at all levels to
parallelism from the
pipeline.

The next higher level of pipelining is instruction
pipelining . This involves the existence of a number of function
units which can operate simultaneously to process a single
instruction stream. It is based on the inspection of instructions
prior to execution to identify those instructions which can be
executed simultaneously without conflict. This is done by a
scoreboard, in the terminology of Control Data . These instructions
are executed as soon as a suitable function unit is free. This

96

techniqu e is referred to as "instruction lookahead", "in s truction
pipelining", or " parallelism of function units " .

A classical example of this kind is the CD 6600 compute r.
Disregarding for the moment the input-output section (that is, the
peripheral processors) , the internal st ruct ure of CD 6600 with 10
function units becomes:

t(CD 6600 central proc .) = (1,1x10,60).

The 10 units in this case are highly specialised (for
example floating point multiplication, integer addition ,
incrementation, etc.) and therefore a gain of a factor of 10 cannot
be achieved. The real factor depends on the special program
actually running. An average of 2. 6 is a typical figure according
to information available from Control Data . A combination of
several function units of the same type seems to be quite reasonable
regarding the better utilisation of equipment on the one hand and
the now available large -scale integration technology on the other
hand. These latter considerations nevertheless are not directly a
subject of this paper.

Finally, we have to consider the pipel ining concept of
level 1, which is so far not very known. This concept can be
cal l ed "macro-pipel inin g " [12] . Assuming that a data set has to be
processed by two different tasks sequent ially, then it can be
performed in two different processors, eac h one processing one task.
The data stream then passes the first processor (1 . task), is sto red
in a memory block , which the second processor also has access to,
and will then pass the second processor (2. task) . Since both
processors can work at the same time (on different data), the
effective processing speed can be in an ideal case doubled in
comparison with the use of only one processor. In such a way
stepping from processor to processor the data are 'refined' [1 2] by
or are ' integrated ' [13, 8] in the case of ordinary differential
equations .

The PEPE a rray (without the host installation) then is
characterised as

t(PEPE) = (1x3,288,32) (3-fold macropipelining) .

Summarising, the triple has been extended to a sixtuple to
incorporate pipelining. Nevertheless, we will continue to refer to
it as a triple because the three levels of consideration (as
introduced in 3- 2) suggest that we think in three terms, which have
to be extended in some cases by an additional term, attached to the
other value (of the same level) by using the sign x.

.,

The triple now reads as follows:

t= (kxk',dxd',wxw ')

number of: I
PCU's in parallel~
(multi-processor)

PCU's in pipelining --------......1
(macro-pipe lining)

A L U ' s in par a 11 e 1 -------------------'
(array computer)

ALU's in pipelining---------------------J
(instruction pipe-
lining-loo~ahead)

ELC in parallel--------------------------~
(wordlength)

ELC in pipelining -------------------------------J
(arithmetic pipe-
lining)

97

, ~ll entities are independent of one another. All
combinatio~s therefore can appear.

, Regarding the 'completeness' we claimed in section 3.1, we
would have tb prove that, apart from the three levels mentioned in
section 3"~, no essential other level can be defined, and that there
are also no phenomena apart from parallelism and pipelining. This ,
is not don~ in detail here, because this paper centers on another
topic, ~he impact of classification schemes on computer
architecture. But there is some evidence regarding the
completenes~ of our classification. While there are some
modifications in details, according to how the level 2 pipelining is
designed, there are no doubts about the other levels. With respect
to parallelism and pipelining there is an exclusive duality as is
known from other fields of science where parallelism and serial ism
also appear.

Regarding the triple notation, we introduced the following
simplications:

k=1, or k'=1, or d=1 etc. mean, respectively, the simple cases, in
which no parallelism or pipelining appear;

we write them

(1 xk ' ,dxd ' ,wxw ') = (xk ' , dxd, wxw')

(kx1,dxd',wxw') = (k,dxd ' ,wxw ')

(kxk' , 1 xd ' ,wxw') = (kxk', xd ' ,wxw ')

., ., ., .,

98

(kxk',dx1,wxw ') = (kxk',d,wxw')

(kxk' , dxd ' , 1 xw ') = (kxk', dxd ' , xw ')

(kxk' , dxd ' , wx 1) = (kxk ' , dxd ' , w)

If there is any form of pipelining then the char~cter x is
preserved in the corresponding level. In the case of no pipelining
the triple degenerates to

t(MODEL) = (k,d,w).

This convention contributes to the clearness considerably
as well as to the transparency of notation . Therefore we will use
this convention in the following.

~ Operations Qfi Triples

As a triple
certain homogeneity, a
operator can denote

characterises ~

combination of
computer structure of a

triples connected by an

a) a more complex computer structure (as exhibited, for
example, by a special I/O section of processors or by a
special host, which are connected to a specific computer
configuration);

b) a selection of operation modes of a structure, which can be
used alternatively, fitting to different needs, according to
the algorithmic nature of different applications.

It should be noted in connection with b) that for any
application there can exist a number of algorithms, each one fitting
a different computer structure. For example, one algorithm which
is a solution to a given problem can be highly suited for execution
on a conventional Princeton type computer, while another may be
better suited for a parallel or pipelining computer.

The complete structure of the forementioned computer CD
6600 would be represented using a multiplication sign x, as:

t(CD 6600) = (10, 1 ,12) x (1,x10,60).

The first term on the right hand side of "= " denotes the
existence of ten processors of a simple structure with a word length
of 12 bits. The second term is the characterisation of the nucleus
of the CD 6600, as it was given earlier. The multiplication sign
exhibits the fact that all algorithms· (programs) must be forwarded
through the peripheral processors first, in order to be processed in
the central processor (1,x10,60).

PEPE
7600

Another example of comtemporary computer architecture is
(Parallel Element Processor Ensemble). Its host is one CD

with the characeristic

t(CD 7600) = (15,1,12)x(1,x9,60),

PEPE then becomes

., ·,

99

t(PEPE) = (15,1,12)x(1,x9,60)x(3,288,32)

where the last term
structure, As, in
penetrates the three
corresponding terms.

to the actual PEPE
flow of information

used between the

(x3,288,32) corresponds
this example, a certain
structures, the sign x is

The structures characterised by the primitive terms in
these examples are very different. Therefore a further
condensation of the presentation is not suggested. A further
decomposition can be indicated, for example by the use of other
operators, for instance in the special case of a CD 7600 by

(15,1,12)x(1,x9,60) =

~(1,1,12) + (1,1,12)+ +(1,1,12)]x(1,x9,60),
.:... ~:""-:~"':"---'--'--'---~-...r)

15 times

where (n,d,w) = (1,d,w)+(1,d,w)+. . (1,d,w).

We note that the operators x and + again reflect
parallelism and pipelining in a certain sense. The last example
shows 15 equal processors allocated in parallel. A given job (or
task) will be forwarded to the central processor. It may also be
necessary to allocate processors serially, if there are different
tasks to be performed one after another. This is supported by the
use of functionally dedicated processors, specialised to the
respective task.

The last operator we have proposed so far is the
'alternative' operator v, which is to be understood as an 'exclusive
or'. for the c.mmp project which can be used in three different
kinds of operation modes, an expression becomes:

t (c . mm p) = (1 6 , 1 , 16) v (x 1 6 , 1 , 1 6) v (1 , 1 6 , 1 6) .

Similarly, the EGPA project (4x4 array of processors,
having a 32 bit word-length, described for example in [13]) reads

t(EGPA 4x4) = (16,1,32)v(x16,1,32)v

(1 , 16,32) v (1 ,512, 1) .

The last term of this expression denotes the operation
mode "vertical processing " in which the 16 processors are used, each
as if it consisted of 32 one-bit processors working in parallel.
16 processors then result in an ensemble consisting of 16x32 one-bit
processors. Information then is oriented to one-bit vertical
streams (items) and the machine-word of the memory becomes what is
called a 'bit-slice ' in associative processors.

The operator v visualises alternatives regarding the
processing modes which can basically be used. An extended operator
+ can be used for a further partitioning of a system in which the

f

-, -,

100

ensemble is working . Scheduling algorithms have to be developed
which has to centre on the best utilisation of the system with
r espect to a given set of jobs . The scheduling problems, however,
are not covered by this paper .

A remark on the ' flexibility ' shou l d be adde d . The
num ber of available processing modes of a system seems to be a
re asonable measure for its flexibility . Therefore we define
(F=Flexibi lity) :

F (t (MODEL)) =

I(k xk ' , d xd ' ,w xw') v (k xk ' ,d xd' ,w xw ')v . . . \

where II gives the number of triples connected by the v sign.

For the examples pr esented above we ha ve:

F(t(C . mmp)) = 3 and F(t(EGPA 4x4)) = 4.

In this sect i on we hav e tried to show that a
classification scheme becomes operable if it is carefully chose n_

Nevertheless, it is not the aim of this paper to introduce
ECS completely. We have used it as a further example of the
dis cussion about th e 'impact of classification schemes on comput e r
architecture ' .

~ Summary ~nd Outlook

We have shown that ECS can be used for structures , which
cannot be adequately r epresented by any of the systems mentioned
earlier (chapter 2). Although we do not claim th at ECS i s the on l y
possib le classification scheme, we have found it useful for
evaluating computer structures , throughput , flexibility etc.

In this respect ECS seems, as briefly presented here, to
be an approach wh i ch can become a viab l e design tool. It
classifies enough objects and it does not limit too seriously the
set of objects. The only l imitation we perceive so f ar is th e
inherentl y binary nature of the defi nition of w (wordlength) . If a
computer is based on anothe r modulonumber system , then we would have
to s lightly modify th e ECS as presented .

If, f o r historical reasons, we have to, for example,
include the old mechanical calculating machines of Charles Babbage,
then it would be nec essary to extend ECS. Also excluded from ECS
are computers of the a na lo gue type. But this limitation seems to
be quite natural in that analogue data processing is quite
different.

The only criticism which a t thi s time can be made within
th e a ims of this paper could cen tr e on the number of l eve ls we
introduced in chapter 3 . There we defined a triple acco rding to
t hree processing levels, If perhaps in a lat e r step of evolution a
level above the pro gram int e rpret at ion level will be created , then
we would have to e xtend the triplet to a quadruplet.

·1
I

101

But precisely this step to achieve a new level of computer
structure is a real evolution step we are searching for at present.
It was exactly for this that the classification scheme has been
developed as a tool. ~bout such an evolutionary step a decision
cannot be made in advance. It is rather the ECS classification
scheme and the operations defined on the elements (triples) which
seem to be the appropriate starting point for investigations of that
kind. We hope that ECS will not limit too narrowly a future
development, for it includes all structures which so far have been
pr oved to be viable examples of computer architecture.

Ac knowledgem.ent

The assitance of Mr. R. K. Bell and Dr. V. Sigmund in the
preparation of this paper is gratefully acknowledged.

References

[1] M. ["lyyn, " Very high computing systems " , ProQ. ... of the IEEE
~ (1966), 1901-1909.

[2]

[3]

[4]

T. ["eng, " Some characteristics
processing " , Proc . of the .1TIg
Syracuse University , 1972, 5-16.

of associative parallel
Sagamore Compo Conf . ,

W. Handler, " On
post-von-Neumann
~ Jahrestagung,
Computer Science

classification schemes for computers in
era " , in: D.. Siefkes (ed.) ,
Berlin, Okt. 1974, Lectu r e Notes
~ Springer, Berlin (1975), 439-452.

the
GI::.

in

W. Handler, " Zur Genealogie, Struktur und Klassifizierung
von Rechnern " , Parallelismus in der Informatik ,
Arbeitsberichte des IMMD, Universitat Erlangen-Nurnberg , ~
(1976)/8, 1-30

[5] " Vocabulary for Information Processing " , American National
Standard~ X.3.12-1970.

[6] Ph. E.. Ens low, Mul tiprocessor and Paralle 1 Processing, John
Wiley and Sons, New York , 1974 ..

[7] p, H. Enslow, "Multiprocessors and other parallel systems -
an introduc t ion and overview " , W. Handler (ed ..) , Computer
Architecture , Workshop of the GI, Erlangen, May 1975,
Springer Verlag Berlin (1976), 133-198.

[8] W. Handler, "Aspects of Parallelism in Computer
Architecture", ProQ.~ Q[the IMACS iAICA)-GI-Symposium Qn

Parallel Computers, Parallel Mathematics~ Munich (Marc h
1977), North Holland Am s terdam, to appear.

[9] H. B. Baskin,
architecture
pp. 431-437.

Borgerson and Roberts , " PRIME
for terminal-oriented systems " ,

- a mod ul ar
SJCC 1972 ,

[10] W. A .. Wulf, C. G .. Bell, " C .. mmp - A Multi-Mini-Processor " ,
Al"IPS Conf .. Proc. FJCC ~ !:U... pp. 765-777.

j

102

[11] .. Whorf, "LanguagjL,. Thought and Reality" , M. I. T. Press,
:ambridge, Massachusetts, 1963.

[12] ~. Handler, "The concept of
availability ", Elektronische
p. 269-274.

macro-pipelining with high
Rechenanlagen 12 (1973),

[13] W. Handler, F. Hofmann, H. J. Schneider, " A General Purpose
Array with a Broad Spect r um of Applications ", W. Handler
(ed.) , CompuJ&.r. Architecture , cf. [7].

Figure 1 M. Flynn ' s c lass ification

2048

256

64

16

with some examples MIMD

mul tiprocessors

MISD
TIASC (?)
STAR (?)

SISD

SIMD
ILLIAC IV,
SOLOMON
STARAN

Pri nceton-type computers

t': STARAN·1 MODULE
/ (1, 256)

I

t ..

i---f-- ---- ------i

C.nunp, 16 GANGED
(1 6,256) PROCESSORS

1
1
1

FULLY FJARALLEL

1 I ¥ /'
r -------------- ----,
1

C.nunp, SEPARATE
MULTIPROCESSORS

\ (16,16) PEPE 1 1

" / MODULE (32,1'6)
1- - - - - - - - ., 1

TIASC,
4 PIPELINES
(64,2048)
8 s tages

ILLIAC IV,
1 QUADRANT
(64,64)

1 BIT , . /' IBM 360/50 1
1 1 SER~ _ _ ~¥ 32 j WOR!!. SJ:'l~I~

1 16 32 64

BAS I C MACHINE WORD SIZE (BI'IS)

Figure 2 T. Feng ' s classification
with s ome exampl es

103

104

~gure 3

memory

processors

P.E. Enslow's definition of a multiprocessor leads
to "one common memory block" (private memory blocks,
owned by a processor exclusively, are not excluded
by the definition).

Execution of one instruction .in 4 stages
w'=4

stage 1.

stage 2.

stage 3.

stage 4.

~gure 4 Arithmetic pipelining (level 3 pipelining)

Figure 5 Instruction-pipelining
(level 2 pipe-lining)

\
\

Ins tructions

~
I-------I~. "'--0

.'-..... ..
" -, .!'.. fun ction
~ units

proc. 1 ~-----+"
task 1

ask 2
proc . 2 - -"',

ask
proc. 3

memory
data

Figure 6 Macropipelining (level 1 pipelining)

105

106

PROCESSORS

Figure 7

MEM.
BLOCK

MEM.
BLOCK

MEM.
BLOCK

MEM.
BLOCK

This illustrates our definition of multiprocessing which does
not exclude multiprocessing as defined by Enslow.

