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THE IMPACT OF CLASSIFIC~TION SCHEMES ON COMPUT EB ARCHITECTURE 

W. Handler 

Rapporteur Dr. D. M. Russell 

~ Remarks on Classification Schemes and Formal ~~t~ms 

Classification schemes, languages, and formal systems of 
all kinds have a considerable influence on our thinking. 
Structures which are inherently the subject-matter of a language as 
well as of classification schemes form the basic material of what 
can be expressed in a language or can be comprehended from its 
position in a classification scheme. The same statement seems to 
be valid for formal systems in a more specific sense . Thus the 
tool can be used in the application area for which it was created. 

For example the Ricci-Calculus performs this role only in 
the area for which it was created, certain areas of physics and 
partial differential equations. Outside this area problems arise 
for which it is not suitable . 

B. Whorf has said that language guides thought [11J and 
that therefore language sometimes prevents the appropriate solution 
of a problem being found. We must admit that in many cases a 
language (it can be referred to as a calculus or notation) can be a 
barrier rather than an aid in solving a problem. It is also true 
that a classification scheme can be a barrier, although it can 
provide an insight into the relationships between the elements of 
some group. 

If such a classification scheme is to be applied to 
animals and plants, then the elements are existing objects and the 
scheme cannot completely fail, although the discovery of a new 
species can present difficulties in fitting it into an existing 
classification scheme. Such a scheme can be called a taxonomy, 
since all the species are considered to be descended from a single 
species, in accordance with the biological theory of evolution. 

It seems more difficult to create a classification scheme, 
or even a taxonomy, for some area of contemporary technology . It 
is necessary to project future advances as well as placing existing 
examples in it. 

The aim of this paper is to show that some existing 
schemes may fail to indicate the right direction for the development 
of computer architecture, as compared with a new and promising 
classification scheme introduced in [3J, [4J. We would, however, 
not claim that the proposed classification scheme will cover all 
computer structures which will arise in the future. We do show 
that the proposed scheme does cover several very interesting 
structures which cannot be placed at an appropriate point in the 
schemes of Flynn [1J and Feng [2J. 

The justification of the proposed scheme is that it should 
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be useful in classifying structures and concepts which will emerge 
in the next years, and be of use to the designers of these 
structures. A further justification of the scheme is that the 
elements of the classification scheme can be decomposed by 
operations which are suitable for the purposes of the computer 
architect, 

~ ContemporaLY. Classification Schemes 

Existing classification schemes differ in the information 
on which they are based. For instance M. Flynn [1] bases his 
scheme on a 'data stream' and an 'instruc tion stream' . By 
combining these simple concepts he can classify many of the new 
computer structures . In contrast, Feng [2] emph~sises the number 
of bits which are processed simultaneously. These schemes are 
outlined in section 2.1 and 2.2 in order to contr~st them with the 
scheme outlined in chapter 3. In section 2.3 the definitions of 
multiprocessing proposed by the American N~tional Standards 
Institute [5] and by Enslow [6] are discussed. 

~ FlYnn~ Classification 

Flynn proposed in 1966 a classification based on the 
instruction streams and data streams . In the conventional 
Princeton type computer a single data stream is processed by a 
single instruction stream. This is described as SISD (single 
instruction single data). 

In an array computer such as ILLIAC IV, a single 
instruction stream processes many data streams . Such a computer is 
known as SIMD (single instruction multipl e data) . In ILL lAC IV 64 
copies of the same instruction are executed simultaneously by 64 
arithmet ic units. The Goodyear STARAN is also a SIMD computer. 
It differs from ILLIAC IV in many respects, in particular in being 
an associative array processor . 

MISD is an abbreviation for multiple instruction single 
data. Some authors include various types of pipeline computers in 
this class though it is doubtful whether this is appropriate, and it 
is unsatisfactory because it does not distinguish between the three 
kinds of pipe lining (see section 3 . 3 below). 

MIMD is an abbreviation for multiple instruction multiple 
data. Here multiple processors are working on multiple data 
streams. The simplest case is where each processo r is executing 
its own program on its own data . The processors can be connected 
via a bus system or can access multi-port memory. The 
classification does not contain any information about the type of 
connection used. 

Flynn's classification is illustrated by Figure 1, where 
many contemporary computers can be clas s ified by assigning them to 
one of the four vertices of a graph. However, the classification 
does not fully satisfy the needs of computer architects because it 
is not fine enough and because the interpretation of the class MISD 
is not clear (cf. [7]) . In the literature many authors restrict 
themselves to the classes SISD, SIMD, and MIMD, A further 
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difficulty occurs if a computer contains both parallelism and 
pipelining . 

2.2 Fen~ classification 

Feng [2J classifies according to the word-length, that is, 
the number of bits which are processed in parallel in a word, and 
the number of words which are processed in parallel . A compute r 
structure is represented by a point in a plane (Figure 2) where the 
abscissa is the wordlength (normally 12, 16, 24 , 32, 48, 60 or 64), 
and the ordinate is the number of words processed in parallel. The 
latter can be determined by the number of processors. For example 
C.mmp which contains 16 PDP-11's with wordlength 16 bits is 
represented by (16,16) . The ordinate can also be determined by the 
number of arithmetic and logical units in an array processor. Thus 
ILL lAC IV is represented by (64,64) . 

Thus Feng's classification does not allow us to 
distinguish between multiprocessors like C.mmp and array processors. 
This caused Enslow [7J to repre~ent C.mmp in " gang " mode by 
(16 , 256). But C.mmp in gang mode can be regarded as similar to 
ILL lAC which would giYe the point ( 16, 16) which is the same as when 
gan g mode is not used. The classification also does not 
distinguish b~twee n autonomous processors which execute programs and 
ALU ' s which execute operations, that is, it does not distinguish 
between processing levels. 

The TIASC (Texas Instruments Advanced Scientific Computer 
is represented as (64,2048) . The number 2048 is obtained from the 
4 pipelines each consisting of 8 stages with 64 bits. However the 
number 20 4 8 can be obtained in many ways, for example 8 pipelines, 8 
stages, 32 bits. Thus the ' classification cannot represent a 
multiple pipeline structure like the TIASC accurately. 

It is also not possible to represent the pipeline 
structure at the program level of PEPE. PEPE is characterised as 
(32,16), and the fact that each set of data (up to 288, each 
representing a flying object) is processed successively in three 
different ways is not represented. This is performed in three 
separate series of ALU's, and we can regard this as a three stage 
macropipeline (cf. section 3.3) . 

The lack of a rigorous definition of pipelining in the 
context of Feng's classifi cation scheme leads to difficulties in 
classifying structures containing both pipelining and parallelism. 
Thus the ( scheme is not entirely satisfactory for the computer 
architect eithe r . ' , 

~ Definition of Multiprocessing 

Similarly to classification schemes, if definitions are 
too narrow, some viable computer structures may be excluded from 
consideration. 

The American National Standards Institute [5J defines a 
multiprocessor as: 

" A computer employing two or more processing units under 
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integrated control. " Manufacturers of systems containing two to 
four processors did not find themselves in conflict with this 
definition. The definition did not exclude future developments in 
computer architecture, but does not seem to have had any impact on 
contemporary architecture . Subsequently Enslow suggested a more 
detailed definition in his excellent book [6] which included 

1. Two or more processors, having access to a common memory, 
whereby private memory is not excluded, 

2. Shared I/O, 
3. A single integrated operating system, 
4 . Hardware and software interactions at all levels, 
5. The execution of a job must be possible on different 

processors, 
6. Hardware interrupts. 

We will concentrate on the first characterist ic: 

A common memory is mandatory. Such a structure is shown 
in Figure 3. It is easily seen that as the number of processors 
increases the congestion in the access to the common memory will 
also increase. Thus Enslow' s definition seems to excl ude system 
containing very large numbers of processors. Microprocessors 
costing a few dollars are now available, so that systems containing 
thousands of processors are now possible. Some of the more 
progressive projects of computer architecture such as PRIME [9] are 
also excluded. On the other hand some structures which satisfy 
Enslow's definition are subject to severe limitations on their 
expandibility and application due to their use of an expensive 
cross-bar switch [10]. 

Thus Enslow's definition also does not either satisfy the 
requirements of com temporary computer architecture. We therefore 
propose that the definition of multiprocessing be extended to 
include systems containing two or mor e processors each of which has 
access to a subset of the memory blocks, and in which each processor 
can transmit information to any other via a chain of memory blocks. 
This definition would include the configuration shown in Figure 7. 

2.4 The Influence of Classification Schemes and Definition 

We have tried to show in the previous sections that 
definitions and classification schemes have their limitations and 
can prove a hindrance beyond a certain point . The computer 
architect should recognise when this point has been r eached, and 
consider whether an entirely new class ification scheme or definition 
is needed, which will ideally include a ll existing structures within 
a particular area and also all structures which will be considered 
in this area in the future . There is no doubt that one should 
consider very carefully the consequences of introduc ing a new 
classification, because of its possible educational and normative 
effects. 



• • 

~ The ~angen Classification Scheme 

~ Introduction 

The Erlangen classification 
mainly in order to avoid the drawbacks 
schemes, as outlined in section 2. 

The basic requirements are 
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scheme (ECS) was developed 
of existing classification 

1. The objects to be classified should not be unnecessarily 
restricted. Any kind of computer system - in particular parallel 
processors, array processors, multiprocessors, pipeline processors 
must be classifiable in the scheme; 

2. The classification must be sufficently fine to express those 
differences between the objects considered important; 

3. The classification must be unambiguous. 

The clasification scheme dev e loped was also found to be a useful 
technique in computer architecture, in the sense that: 

4. Composed computer configurations can be described by using 
operators which are applied to primitive eleme nts of the scheme. 

5. It can be used in evaluating archite c tural configurations, in 
particular with reference to cost. 

6. It provides a measure for the flexibility of a system. 

7. It provides a starting point for scheduling of flexible 
structures 

The objects of the classification are not necessarily 
computers only. This will be amplified below. The flexibility 
mentioned in 6. above is connected with the fact that a computer can 
be represented by more than one point in the classification. The 
various points which represent a computer will be referred to as 
modes. The more modes a computer has, the more choice of mode it 
has for a particular application, and so the greater is its 
flexibility. 

The classification scheme can be used for algorithms as 
well as for computers, and demonstrates the inherent partitioning of 
the algorithm into parallel sections and pipeline stages. The 
classification of algorithms must then be related to the 
classification of the computers on which they are to be run. In 
general, jobs must be investigated to identify the classes of the 
algorithms contained, and matched to the classes of the computers on 
which they are run. A more detailed discussion of this question 
will be given in another paper. 
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~ Parallelism 

Our c lassifica tion aims at characterising the parallelism 
and pipe lining present in a computer system. The connections 
between the processors and the memory blocks are not included in the 
classification. It is assumed that the connections can carry the 
expected traffic and provide the required availability . In such a 
case the performance of the system is mainly determined by the 
processors, including their capability to transfer information 

The classification is based on the distinction between 
three processing levels: 

1. Program control unit - Using 
registers, and, in most cases, a 
interpre ts a program instruction by 

a program counter and some other 
microprogram device, the PCU 

instruction. 

2. ~rithmetic and logical unit - The ALU uses 
of a microprogram device to execute sequences of 
according to the interpretation process performed 

the output signals 
microinstructions 

by the PCU. 

3- Elementary logic circuit - Each of the microoperations which 
make up the microoperation set initiates an elementary switchins 
process _ The logic circuits belonging to one bit position of all 
the microoperations are called an ELC. 

A computer configuration can include a number of PCU's. 
Each PCU can control a number of ALU's all of which perform the same 
ope r ation at any given time. finally , each ALU contains a numb er 
of ELC's, each dedicated to one bit position. The number of ELC's 
is commonly known as the word-length. 

If we disregard pipelining for the moment, the number of 
PCU's, ALU ' s per PCU, and ELC ' s per ALU form a triple, written 

t (computer type) : (k, d, w). 

We give some examples of the triple, where we assume that 
the reader is familiar with at least some of the computers: 

t(MINIMA) : (1,1,1) 

The "classical" serial computer. 
computers were of this form . 

T(IBM701) = (1,1,36) 

Some early European 

An example of the early "parallel" (on the 3rd level) 
Princeton computers . 

T(SOLOMON) = (1,1024,1) 

The historical concept of an array processor. 

T(ILLIAC IV) = (1,64 , 64) 

The famous array processor developed at the University of 
Illinois (without PDP 10) . 
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T(STARAN) = (1,8192,1) 

The well-known associative array processor (without host 
and sequential control processor) fully extended (32 frames of 256 
bits each) . 

T(C . mmp) = (16,1,16) 

The Carnegie-Mellon University mUlti-mini project using 16 
PDP-ll's . 

T(PRIME) = (5,1,16) 

The University of California, Berkeley, project in which 
time-sharing is replaced by multi-processing. 

The different systems exhibit 
parallelism, which is uniquely attached to one 
The numbers which make up the triple show this 

different kinds of 
of the three levels. 
directly. 

At first sight, the triples are able to classify all 
viable structures, particularly in regard to parallelism. But 
although parallelism is the most important phenomenon in 
contemporary computer architecture, pipelinin g must also be 
considered. The examples above exhibit parallelism but not 
pipelining. In the next section the classification is extended to 
include pipelining . 

.1,3 Pipelining 

Pipelining can also 
described in section 3.2, i. e. 

be implemented at the three levels 
1. PCU, 2 . ALU, and 3. ELC. 

For example level 3 pipe lining is 
pipelining of the arithmetic unit used in the CD 
TIASC. The STAR-l00 uses a four stage pipeline and 
eight stage pipeline. 

the well-know n 
STAR-l00 and the 

the TIASC an 

An arithmetical pipeline can be regarded as a "vertical " 
replication of ELC ' s, compared with the " horizontal " replication 
used in a parallel ELC. It is therefore r easonable to multiply the 
number of ELC's, w, by the number of stages in the pipeline, w' , to 
characterise the ALU. For the TIASC we have then 

t(TIASC) = (1,4,64x8). 

The multiplication sign will be used 
separate the number representing the degree of 
number representing the number of stages in the 

at all levels to 
parallelism from the 
pipeline. 

The next higher level of pipelining is instruction 
pipelining . This involves the existence of a number of function 
units which can operate simultaneously to process a single 
instruction stream. It is based on the inspection of instructions 
prior to execution to identify those instructions which can be 
executed simultaneously without conflict. This is done by a 
scoreboard, in the terminology of Control Data . These instructions 
are executed as soon as a suitable function unit is free. This 
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techniqu e is referred to as "instruction lookahead", "in s truction 
pipelining", or " parallelism of function units " . 

A classical example of this kind is the CD 6600 compute r. 
Disregarding for the moment the input-output section (that is, the 
peripheral processors) , the internal st ruct ure of CD 6600 with 10 
function units becomes: 

t(CD 6600 central proc . ) = (1,1x10,60). 

The 10 units in this case are highly specialised (for 
example floating point multiplication, integer addition , 
incrementation, etc. ) and therefore a gain of a factor of 10 cannot 
be achieved. The real factor depends on the special program 
actually running. An average of 2. 6 is a typical figure according 
to information available from Control Data . A combination of 
several function units of the same type seems to be quite reasonable 
regarding the better utilisation of equipment on the one hand and 
the now available large -scale integration technology on the other 
hand. These latter considerations nevertheless are not directly a 
subject of this paper. 

Finally, we have to consider the pipel ining concept of 
level 1, which is so far not very known. This concept can be 
cal l ed "macro-pipel inin g " [12] . Assuming that a data set has to be 
processed by two different tasks sequent ially, then it can be 
performed in two different processors, eac h one processing one task. 
The data stream then passes the first processor (1 . task), is sto red 
in a memory block , which the second processor also has access to, 
and will then pass the second processor (2. task) . Since both 
processors can work at the same time (on different data), the 
effective processing speed can be in an ideal case doubled in 
comparison with the use of only one processor. In such a way 
stepping from processor to processor the data are 'refined' [1 2] by 
or are ' integrated ' [13, 8] in the case of ordinary differential 
equations . 

The PEPE a rray (without the host installation) then is 
characterised as 

t(PEPE) = (1x3,288,32) (3-fold macropipelining) . 

Summarising, the triple has been extended to a sixtuple to 
incorporate pipelining. Nevertheless, we will continue to refer to 
it as a triple because the three levels of consideration (as 
introduced in 3- 2) suggest that we think in three terms, which have 
to be extended in some cases by an additional term, attached to the 
other value (of the same level) by using the sign x. 
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The triple now reads as follows: 

t= (kxk',dxd',wxw ' ) 

number of: I 
PCU's in parallel~ 
(multi-processor) 

PCU's in pipelining --------......1 
(macro-pipe lining) 

A L U ' s in par a 11 e 1 -------------------' 
(array computer) 

ALU's in pipelining---------------------J 
(instruction pipe-
lining-loo~ahead) 

ELC in parallel--------------------------~ 
(wordlength) 

ELC in pipelining -------------------------------J 
(arithmetic pipe-
lining) 
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, ~ll entities are independent of one another. All 
combinatio~s therefore can appear. 

, Regarding the 'completeness' we claimed in section 3.1, we 
would have tb prove that, apart from the three levels mentioned in 
section 3"~, no essential other level can be defined, and that there 
are also no phenomena apart from parallelism and pipelining. This , 
is not don~ in detail here, because this paper centers on another 
topic, ~he impact of classification schemes on computer 
architecture. But there is some evidence regarding the 
completenes~ of our classification. While there are some 
modifications in details, according to how the level 2 pipelining is 
designed, there are no doubts about the other levels. With respect 
to parallelism and pipelining there is an exclusive duality as is 
known from other fields of science where parallelism and serial ism 
also appear. 

Regarding the triple notation, we introduced the following 
simplications: 

k=1, or k'=1, or d=1 etc. mean, respectively, the simple cases, in 
which no parallelism or pipelining appear; 

we write them 

( 1 xk ' ,dxd ' ,wxw ' ) = (xk ' , dxd, wxw' ) 

(kx1,dxd',wxw') = (k,dxd ' ,wxw ' ) 

(kxk' , 1 xd ' ,wxw') = (kxk', xd ' ,wxw ' ) 
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(kxk',dx1,wxw ' ) = (kxk',d,wxw') 

(kxk' , dxd ' , 1 xw ' ) = (kxk', dxd ' , xw ' ) 

(kxk' , dxd ' , wx 1) = (kxk ' , dxd ' , w) 

If there is any form of pipelining then the char~cter x is 
preserved in the corresponding level. In the case of no pipelining 
the triple degenerates to 

t(MODEL) = (k,d,w). 

This convention contributes to the clearness considerably 
as well as to the transparency of notation . Therefore we will use 
this convention in the following. 

~ Operations Qfi Triples 

As a triple 
certain homogeneity, a 
operator can denote 

characterises ~ 

combination of 
computer structure of a 

triples connected by an 

a) a more complex computer structure (as exhibited, for 
example, by a special I/O section of processors or by a 
special host, which are connected to a specific computer 
configuration); 

b) a selection of operation modes of a structure, which can be 
used alternatively, fitting to different needs, according to 
the algorithmic nature of different applications. 

It should be noted in connection with b) that for any 
application there can exist a number of algorithms, each one fitting 
a different computer structure. For example, one algorithm which 
is a solution to a given problem can be highly suited for execution 
on a conventional Princeton type computer, while another may be 
better suited for a parallel or pipelining computer. 

The complete structure of the forementioned computer CD 
6600 would be represented using a multiplication sign x, as: 

t(CD 6600) = (10, 1 ,12) x (1,x10,60). 

The first term on the right hand side of "= " denotes the 
existence of ten processors of a simple structure with a word length 
of 12 bits. The second term is the characterisation of the nucleus 
of the CD 6600, as it was given earlier. The multiplication sign 
exhibits the fact that all algorithms· (programs) must be forwarded 
through the peripheral processors first, in order to be processed in 
the central processor (1,x10,60). 

PEPE 
7600 

Another example of comtemporary computer architecture is 
(Parallel Element Processor Ensemble). Its host is one CD 

with the characeristic 

t(CD 7600) = (15,1,12)x(1,x9,60), 

PEPE then becomes 
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t(PEPE) = (15,1,12)x(1,x9,60)x(3,288,32) 

where the last term 
structure, As, in 
penetrates the three 
corresponding terms. 

to the actual PEPE 
flow of information 

used between the 

(x3,288,32) corresponds 
this example, a certain 
structures, the sign x is 

The structures characterised by the primitive terms in 
these examples are very different. Therefore a further 
condensation of the presentation is not suggested. A further 
decomposition can be indicated, for example by the use of other 
operators, for instance in the special case of a CD 7600 by 

(15,1,12)x(1,x9,60) = 

~(1,1,12) + (1,1,12)+ . . .. +(1,1,12)]x(1,x9,60), 
.:... ~:""-:~"':"---'--'--'---~-...r ) 

15 times 

where (n,d,w) = (1,d,w)+(1,d,w)+. . (1,d,w). 

We note that the operators x and + again reflect 
parallelism and pipelining in a certain sense. The last example 
shows 15 equal processors allocated in parallel. A given job (or 
task) will be forwarded to the central processor. It may also be 
necessary to allocate processors serially, if there are different 
tasks to be performed one after another. This is supported by the 
use of functionally dedicated processors, specialised to the 
respective task. 

The last operator we have proposed so far is the 
'alternative' operator v, which is to be understood as an 'exclusive 
or'. for the c.mmp project which can be used in three different 
kinds of operation modes, an expression becomes: 

t ( c . mm p) = (1 6 , 1 , 16) v ( x 1 6 , 1 , 1 6 ) v ( 1 , 1 6 , 1 6 ) . 

Similarly, the EGPA project (4x4 array of processors, 
having a 32 bit word-length, described for example in [13]) reads 

t(EGPA 4x4) = (16,1,32)v(x16,1,32)v 

( 1 , 16,32) v ( 1 ,512, 1) . 

The last term of this expression denotes the operation 
mode "vertical processing " in which the 16 processors are used, each 
as if it consisted of 32 one-bit processors working in parallel. 
16 processors then result in an ensemble consisting of 16x32 one-bit 
processors. Information then is oriented to one-bit vertical 
streams (items) and the machine-word of the memory becomes what is 
called a 'bit-slice ' in associative processors. 

The operator v visualises alternatives regarding the 
processing modes which can basically be used. An extended operator 
+ can be used for a further partitioning of a system in which the 
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ensemble is working . Scheduling algorithms have to be developed 
which has to centre on the best utilisation of the system with 
r espect to a given set of jobs . The scheduling problems, however, 
are not covered by this paper . 

A remark on the ' flexibility ' shou l d be adde d . The 
num ber of available processing modes of a system seems to be a 
re asonable measure for its flexibility . Therefore we define 
(F=Flexibi lity) : 

F ( t (MODEL)) = 

I(k xk ' , d xd ' ,w xw') v (k xk ' ,d xd' ,w xw ' )v . . . \ 

where II gives the number of triples connected by the v sign. 

For the examples pr esented above we ha ve: 

F(t(C . mmp)) = 3 and F(t(EGPA 4x4)) = 4. 

In this sect i on we hav e tried to show that a 
classification scheme becomes operable if it is carefully chose n_ 

Nevertheless, it is not the aim of this paper to introduce 
ECS completely. We have used it as a further example of the 
dis cussion about th e 'impact of classification schemes on comput e r 
architecture ' . 

~ Summary ~nd Outlook 

We have shown that ECS can be used for structures , which 
cannot be adequately r epresented by any of the systems mentioned 
earlier (chapter 2). Although we do not claim th at ECS i s the on l y 
possib le classification scheme, we have found it useful for 
evaluating computer structures , throughput , flexibility etc. 

In this respect ECS seems, as briefly presented here, to 
be an approach wh i ch can become a viab l e design tool. It 
classifies enough objects and it does not limit too seriously the 
set of objects. The only l imitation we perceive so f ar is th e 
inherentl y binary nature of the defi nition of w (wordlength) . If a 
computer is based on anothe r modulonumber system , then we would have 
to s lightly modify th e ECS as presented . 

If, f o r historical reasons, we have to, for example, 
include the old mechanical calculating machines of Charles Babbage, 
then it would be nec essary to extend ECS. Also excluded from ECS 
are computers of the a na lo gue type. But this limitation seems to 
be quite natural in that analogue data processing is quite 
different. 

The only criticism which a t thi s time can be made within 
th e a ims of this paper could cen tr e on the number of l eve ls we 
introduced in chapter 3 . There we defined a triple acco rding to 
t hree processing levels, If perhaps in a lat e r step of evolution a 
level above the pro gram int e rpret at ion level will be created , then 
we would have to e xtend the triplet to a quadruplet. 
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But precisely this step to achieve a new level of computer 
structure is a real evolution step we are searching for at present. 
It was exactly for this that the classification scheme has been 
developed as a tool. ~bout such an evolutionary step a decision 
cannot be made in advance. It is rather the ECS classification 
scheme and the operations defined on the elements (triples) which 
seem to be the appropriate starting point for investigations of that 
kind. We hope that ECS will not limit too narrowly a future 
development, for it includes all structures which so far have been 
pr oved to be viable examples of computer architecture. 
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~gure 3 

memory 

processors 

P.E. Enslow's definition of a multiprocessor leads 
to "one common memory block" (private memory blocks, 
owned by a processor exclusively, are not excluded 
by the definition). 

Execution of one instruction .in 4 stages 
w'=4 

stage 1. 

stage 2. 

stage 3. 

stage 4. 

~gure 4 Arithmetic pipelining (level 3 pipelining) 



Figure 5 Instruction-pipelining 
(level 2 pipe-lining) 
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Figure 6 Macropipelining (level 1 pipelining) 

105 



106 

PROCESSORS 

Figure 7 
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This illustrates our definition of multiprocessing which does 
not exclude multiprocessing as defined by Enslow. 


