(

DIGITAL SYSTEMS DESIGN

E. L. Glaser

Rapporteurs : Mr. J. G. Givens
Mr. N. Ghani
Mr. N. G. Kannellopoulos

Lecture 1 : Design of Digital Systems in the age of LSI

When Brian Randall first asked me to present these
lectures, I felt quite competent to write on the subject and to be
able to present them. Little did I guess at the agony that awaited
me in the process of getting these few thoughts down on paper. The
source of this discomfort has been the increasingly rapid change
that is taking place in the field of digital circuitry today.
During this 1last week, I found that I had to learn of three new
processors that were variants on an existing one, plus two
additional new types of memory and switching chips that have not

been seen before. This is not an unusual week, merely the mgst
recent example. It is like trying to play an athletic match with
the rules changed during the contest. One thing that is sure, any

design that uses present day chips will be obsolete long before its
life cycle as a product is completed.

The next problem to confront me was how to talk about
design and education. True, I have been a professor in the past,
however, I am now what might be called an unfrocked professor.
Still, I am finding more and more in my return to industry that the
problems I faced in building 1laboratories within the academic
environment are no different from those that I find facing me daily
in industry. In both cases, it is necessary to structure
laboratories that will be good for more than just one project, and
are flexible enough to meet this ever increasing pace of change
facing all of us.

For this first lecture, I should like to talk about the
problems of digital systems design from the standpoint of circuits.
Certainly, one of the most important circuit innovations to ever
take place is the emergence of the microprocessor. Because of the
importance of this innovation, I should like to devote the entire
contents of my second lecture to the subject of this important
design element. During the third lecture, I am going to attempt to
pull together some of the aspects of systems design that have
changed because of this changing technology, and at least pose those
questions that I consider to be important. Unfortunately,
solutions are few. Perhaps, you may have the answers. I can only
say, I fervently hope so.

A few years ago, I was introduced by a friend to an old
English proverb. At least he said it was an old English proverb.
Namely, "An engineer is somebody who could do for a shilling what
any fool can do for a pound." In short, the art of engineering 1is
applying organised knowledge, science, to the solution of problems
taking into account the necessary elements of time, money,

78

resources, and suitability. Engineering is an art since it does
depend on the value judgement and practice of the working engineer.
Design is the culminztion of the art of engineering in that it
produces a coherent structurz, be it electrical, physical, chemical,

or logical, to accomplish a specific end. This structure must
first have existed in the mind of the designer. All of these
points are obvious. -Yet, it does not hurt us to remind ourselves

that these truisms are still fundamentally true.

In the practicing of the engineering art, one of the most
critical factors must be the cost equation that either explicitly or
implicitly comes to play during any design task. Optimisation is a
concept and a term brought about primarily in the art of
engineering. We find ourselves today, however, optimising systems
often against outmoded concepts of cost and effectivity. I should
like to give you a specific example that I encountered about a month
and half ago. A particular project in our corporation was using
one of the standard microprocessors. This particular product had
besn 1in development for sixteen months and it appeared as though it
could be under development for another sixteen months. The problem
was that they were trying to get a single processor to® do many
tasks. They were doing this in the classical method of computzr
scientists, namely, multiprogramming. The intellectual juggling
act of multiprogramming is a very satisfying task, but it is not
necessarily the best way of solving all problems in computing. In
this specific case, only five units were to be built for a special
application. The cost of design for each unit already was a factor
of ten over the parts and labour cost of assembling each unit. It
was found that by going from one to three processors tied together
on a common bus, that the software could be finished in
approximately six weeks, and the results were as predicted.
Interestingly enough, the total cost of each unit from the
standpoint of just parts alone dropped. Do you see why? Tt 18
because the amount of program required to run three processors in
this environment was less than a half that required to run an
individual one in a multiprogramming mode. Further, the
programming could be much less abstruse and specific routines did
not have to be written in several forms in order to optimise
execution time. So, although three processors were being used, the
cost was more than offset by. cutting the amount of total ROM
involved.

Compared to the earlier solution they were working on,
multiprogramming was a good solution. It was simply the wrong
solution for the time. This changing cost equation is one of %the
most fundamental problems thzt we are all facing today in our design
activities.

One final point to be hzmmered home here. Three to four
years ago, any designer proposing to produce a small desk-top
machine based on a microprocessor would most likely be using a

cassette as his low-cost backing store. The same designer working
as long ago as two and a half years, and perhaps up to today, would
be working with either a floppy-disk or a mini floppy-disk. What

about the designer of today and next week, or next year? What
happens with the emergence of bubbles? Besides, there 1is always
CCD menory, with our old friend the cassette, as a means of a high-
speed load and store. Admittedly, the- CCD is not the same as a

79

floppy, it is not removable, and it is volatile. However, by using
it as a form of cache against a less desirable magnetic tape
cartridge, the two requirements of removable non-volatile memory and
random access memory have been divorced, and the same function is
filled in a somewhat different method. This lesson is important.
Often, we do not take full advantage of the new technology because
we are too prone to try to fit the new components into an
architectural and conceptual design that was based on a previously
valid, but no longer effective, cost equation. Unfortunately, an
optimum solution is in today's environment one of our most
perishable commodities.

) During the remainder of this lecture, I should like to
discuss some of the problems that are new to the digital systems
environment, as well as some old ones and a few that are still

around but occasionally forgotten. First, how does one pick a
particular component for a job? A good rule of thumb, I have
found, is that if I can use a single-chip processor to do the job, I
probably will. That does not mean that I am going to put in an
8080 instead of an AND gate. It does mean, however, I may put in
an F8 or an 8048 to replace a large collection of logic. This
class of chips is highly "plastic". The designer can form 48 4n

any desired chip with whatever characteristic the designer wishes as
long as the processor is fast enough to meet the design input/output

requirements. In at least one case I am familiar with, a ging;e
chip processor replaced a servo system that was used to maintain
constant speed on a disk drive. It is not that the chip processor

was inherently cheaper than the discreet analog components that were
useq previously, rather, it is because the processor was more
reliable and being one part instead of fifteen required less labour

to assemble. Picking the right chip for design is again part of
the art of engineering. Obviously, the chip has to be suffic1ept
to perform the functions the designer requires. If the chip is
more than sufficient and is economical, why not use it? LE

however, it will do only a small part of the job and there are many
of the functions of the chip that are not usable, then it is highly
desirable to 1look for other solutions. A chip that won't quite
make the design requirements but that can be supplemented by other
external circuitry, is a perfectly adequate solution. An egample
of picking the wrong chip for the job initially was a partloulgr
automaton design performed here in this country. A bit-slice chip
was being employed for a particular function. After much
designing, it proved to be totally unfeasible. The device needed
no arithmetic and the chip was only being used for register storage
and exclusive OK. Obviously, an MSI design was in order in this
case.

The choice of circuit families is one that produces many

arguments at all design meetings. Today, life is getting easier
since most circuits are compatible with TTL levels even though they
may not be true TTL internally. The key here is compatibility.

It does not seem worthwhile to design a system which 1is rather
small, must interface with other TTL circuitry, and yet for the sake
of some other designer's whim be implemented entirely in EC;.
Equivalently, if I am designing a very large system where speed 1S
of the essence, ECL might be the best solution, interfacing with the
TTL environment only when necessary. Let the application dictate
the circuit family to be chosen. Although, if you have already a

80

set of circuit cards in production and at hand that will do the job,
then economics becomes a very strong factor.

In terms of details of circuiting design, it seems easier
to express them as a set of random thoughts dressed up as though
they were law. Let us call these the follow-on to Murphy's law, or
all the things ‘that the digital designer should know and do but has
probably forgotten:

1« Cleanliness is next to godliness and this is particularly
true for ground, power, clock, and signals. i

2 A nanosecond 1is almost a 2zero but not quite, and the
approximation falls down when the nanoseconds come in large
numbers.

i Although the design of a system may be digital, it is

implemented in an analog world; and although you may forget,
mother nature does not.

y, Unless you are interested in job security, remember that
somebody else 1is going to have to maintain and modify what
you design. Therefore, make it possible to be maintained
by a highly-trained gorilla.

In conclusion, the process of design has become more
interesting because we have more interesting components to deal
with, but because of this, the challenge to fit them together has
also increased. Optimisation is something to be striving for,
however, let's make sure that we are optimising the right thing. A
design that will cut 5% of the cost of a final item to be produced
is of no interest if that additional engineering adds 10% to each
item produced because of the large non recurring cost that must be
spread out over the items that are produced. Remember, although
something is designed once but is produced and maintained for the
long term, unless the number being produced is 1large, the design
never is free but is inherently costly.

Discussion

Professor Hoare began the discussion by suggesting that in
order to solve a design problem, one should go to a place where
design costs are negative (that is, a university). He felt that
the things that should be taught Are those aspects of computer
science which are less ephemeral, sucn as algorithms, ideas of
structure, and organisation. As an example, Euclid's algorithm
will still be with wus independent of past or future hardware
developments.

Professor McKeema: asked about the problem of re-educating
practising engineers in firms such as Dr. Glaser's. Dr. Glaser
replied that although he tried the wusual methods, for example,
seminars, courses, etz., he f21t that less than half of his present

staff would make the transition to the new techrology. These
people would have to be put into an environment where they could
still do useful work, well buffered from the new ideas. He pointed

out that this was simply history repeating itself, in that the same
problems appeared in the transition from relays and plugboards to
flip-flops and stored-program logic.

81

Turning to Professor Hoare's comments, he agreed that non-
ephemeral topices should be taught, but felt that people should be
able to cope with all aspects of the design environment. For
example, they should know how to produce a working design quickly,
not just one that was fast or cheap.

Professor Page wondered whether Professgrvﬂgare had over-
simplified the situation in assuming that the primitives wused in

algorithms would remain constant. Dr. Glaser added that certain
algorithms tend to be taken for granted, because certain primitives
are taken for granted. For example, division was not a p?lmltlve
at one time; now some people take transcendental functions as
primitives. Professor Heath asked if this was the old argument of

top-down versus bottom-up. He tended to advocate going from the
middle outwards, while keeping an eye on both top and bottom.

Professor McKeeman countered by quoting a Poliﬁh proverb,
"When crossing a swamp, keep one foot on solid _ground, implying
that by starting in the middle, one may have nothing to stand on.

Dr. Glaser : "Design is an art; part of it is taste, and
we put into it as much rigour as we can." His definitlon_of a g90d
design was one that did what it was supposed to, at the right time
and the right price.]

Professor Randall quoted one of the designers of_Colossus
as saying "Any fool can build a bridge, it takes an engineer to
build a bridge that can only Just stand up."

Professor JVranesic turned the discussion back to teaching
by asking about the problem of selecting devices for the shelves of
a digital laboratory.

Professor Dijkstra suggested that such shelves should be
kept empty and asked why such devices should be wused at all in
teaching.

Dr. Glaser's response was that he wanted to be reassured
that someone could produce a design that would work. He would
prefer to employ someone who had proved that he could produce
working designs, rather than someone who had designed many things
but had proven nothing. He -used the analogy of trying to teach
someone to swim without putting him in the water.

Professor McKeeman said that some of his students who went
into industry complained that while the things they had been taught
were of long-term value, they had learned nothing that could be used
in the first year in industry.

Dr. Glaser pointed out that programming is design as well.
He compared the idea of a laboratory with empty shelvgs to a
computing science department with no computer, where people did not
have to bother with the problem of getting programs to run.
Professor Michaelson felt that proving a design with pencil and
paper was fine, as long as the proof was total, which is difficult,
and as long as the proof corresponded precisely to the real world,
which is very difficult. Computer scientists have to be able to
match up ill-defined wuser needs to partial theories, and this

82

requires intuition which can only be gained though experience.

Lecture 2 : Enter the Microprocessor

The historian, George Santyana, once said that that nation
which does not read history is doomed to repeat it. Today, a
microprocessor seems to be repeating all of computer history known
to date. True, the early ones were not quite back to Babbage
although some appeared to be designed so that they could be powered
by steam. It is both regrettable and lamentable that digital
systems are being designed today in microprocessors, and yet no
account. 1is taken of software requirements. Forgetting some of the
things that we discussed in the previous lecture, about the changing
optimisation, the fact is thet a $30,000 instruction program is
still a 1large one. The fact that this program, consisting of
individual instructions each of which is only a byte or two bytes,
is housed in a very small aresa, namely a few ROM or PROM chips, does
not 1in any way make it a simpler piece of softwarz to produce. In
fact, compared to many modern-day-large, and even mediim and small
computing systems,. the microprocessor presents a prinitive, if not
positively savage, environment. Certainly, it cannot be described
as friendly. In addition, system designers are finding, again,
that it is not the arithmetic sprocessing that is difficult, or even
the normal flow, but rather the initialisation, the exceptions, and
above all the input/output programming that is difficulz. Should
we really be that surprised?

For the purpose of discussion, it is useful to break the
field of microprocessors into three c2lasses.

1) the single chip processor, such as the Fairz2hi'd F8 or tLhe
Intel 8048.
2) the microprocessor based on a chip family such as the Intel
8080, Motorola 6800, Zilog Z80.
34 the bit slice system such zs the AMD 2900 family.
It could be argued that there is a fourth c¢lass, namely,
“he small minicomputer such as the LSI-11. True, such systems do
appear to have roughly the same capabi®ities as the upper end of the
second family, howaver, this really begs the quastion. The Intel
single-board computer 1is rszally equivalent to ths same class of
mini, and what we are designing is packaging. The quastion really

comes to M"Who is going to manufacture that particular assembly?"
If the designer can deal wi<h the individuz® chip, +then there Iis
more flexibility, but also more room for error and also more design
worx to be done. Certainly, in specific design, small minis should
be counsiderzd as ther: is software that already runs on them, and is
the major part of the design effort in many cases.

In the first lecture, we have already look=2d some at the
use of the single-chip procasior. These elements can be thought of
as designer-spzcified, special purposs-chips. They can be used in
a gr=at many cases where a controller, a timer, or some other form
of sequential logic is needed. Their versatility is only now being
fully understood, and is yet to be Ffully exploited. The unasual

83

design aspects they present to the system architecture are not
significantly different from those presented by the more common
microprocessors such as the Intel 8080. True, the single-chip
processor may have a more bizarre structure, but other than that the
problems are similar.

The question is, what to do about getting a microprocessor
programmed? Here again, there are no neat, concise answers. The
approach, too many times, has ended up being, "Put a large enough
group of programmers on the job and you can get anything to work
almost!™" It is not clear what the "almost" modifies, the working
or anything, or perhaps both. Most microprocessor manufacturers
supply development systems. They are usually barely adequate to
handle the design idiosyncrasies of the particular manufacturer's
processor, and little else. We are beginning to see the emergence
of new instruments from various instruments manufacturers aimed at
this problem. Both Hewlett-Packard and Tektronixs are now offering
systems that are meant to help in the programming of
microprocessors. Unfortunately, although these systems are
independent of a specific manufacturer's hardware, they also are
independent of modern high level languages and some of the necessary
aids. These deficiencies will probably be rectified in the future,
and in fact, there is evidence that these corrections are already
starting to take place.

Whatever has been stated about microprocessors goes even
harder in the area of bit-slice architecture and true microcode.
First, the bit slices require a much higher degree of sophistication
in design. Second, 1in general, signals are higher speed and
therefore more care has to be taken in the actual fabrication.
Third, if a system is large enough, the actual system may consist of
at least two and perhaps three or more somewhat independent
processors. An example of this last structure would be using the
arithmetic chips to form the actual central arithmetic element or
mil. A microsequencer is wused to drive the central unit and
implement the details of the microcode. A third coupled system
might employ a different type of bit slice for the macro instruction
interpretation. There are no nice in circuit emulators to help
check-out such a system. There are no really adequate languages in
which to write the software. (In this case, software or firmware
really means true microcode which more closely approximates logic
design than anything else.) It is true that writing microcode does
not have to be all that difficult if the architecture has been done
properly. That "if" and "properly" are both large constraints.

One additional point needs to be made with respect to
microprocessors before closing. Microprocessors in their early
stages were designed by whatever methods were available and were
simply required to fit on a chip. Today, that simplistic approach
has been replaced by the design of microprocessors to meet certain
needs. Unfortunately, one of the requirements for which
microprocessors have been designed is compatibility with designs
from the past. Compatibility and maintaining of standards are
desirable when the effect of this is to promote growth in an
industry. Under some conditions, however, it is a mechanism to
perpetuate our own bad mistakes. In the future, we may see
microprocessors that present a more friendly environment. To date,
most of them have been based on very simplistic views of processing

84

machines. It can be argued that since most of the microprocessors
are not going to be in a multiprogramming environment, what are the
needs for which some of the techniques have been developed recently?
The answer can be, shortening the time to produce a working system.
If the majority of the system cost is still non-recurring, except in
those cases of very high production, then any reduction of
development cost can affect either the price of the final product or
the profit to the company. There is at 1least one small company
that I am aware of whose existence depends upon the fact that
processors are not as well designed as they might be. It is called
Microforth. The system they produce is strictly software. i R
an interpreter package that makes it possible to program a
microprocessor in a much more friendly and reasonable environment.
The resulting code 1is somewhat larger than had it been done by a

champion assembly-code programmer. However, the time required to
produce the code is significantly less and the running time is not
that mucn worse, roughly a factor of two. Of course, Wwe all have

large armies of superb assembly-code programmers that never make
mistakes and are always happy to merely make simple additions to
other people's code without putting in their own ideas.

In concluding this lecture, we find the same problems in
the use of microprocessors as we do in the design of any other
digital system based on more conventional components. The question
must be answered early in the design phase, "How many of these units
are we going to build and sell?" The answer to this question will
guide us in the amount of time, enargy and ~ equipment thzt we are
going to spend during the design phase. There has been an
unwritten maxim in the field of computer engineering for years which
states that assembly code 1is more efficient than higher-level

language. A corollary to this' is "that interpreters - are
fundamentally bad. One might reasonzably ask the following
question; 1) "What does efficiency mean?" 2) What are we

attempting to optimise? 3) Is it really desirable to save 100
bytes of ROM when we must put the entire chip in anyway? 4) Where
do we need to make our most efficient uss of resources? 5) Is ‘the
problem to minimise chips in a final production model? 6) Is the
problem one of producing a deviece that can be sold at a 1low, non-
recurring engineering cost in a short time? We can always improve
it later. This last option has not always been available, but
today it can be since the change is primarily in how many ROMs we
have plugged in.

Discussion

Professor Heath commented that good computer science
solutions were required for the problemns of developing
microprocessor software. For example, in using a manufacturer's
development system he found that he had to cope with four distinct
languages.

85

Lecture 3 : Computers and Circuits do not a system make

What is a system? Answers are many. "A collection of
components which may or may not work together satisfactorily to
perform some undefinable tasks." "A complex system is one in which
the benefits are imaginary, but the costs are quite real." "A
system is what you build when you do not Kknow what 1is
needed." These cynical comments have been typical of many made in
the 1literature. The prime factor prompting these comments can be
interpreted as our escalating desires for more complex and
sophisticated systems. In the case of computer operating systeums,

the one which almost works on system N is scrapped for a much more
sophisticated and complex- system that will almost work on system
N+1. Tragically, this has been too often +the situation in our
field. Still, as systems in their various forms become more
pervasive in all parts of our society, our needs rightfully escalate
since the very availability of the tool is changing the way we wish
to do business. The problem is not building more sophisticated
systems, it is building these more sophisticated systems with the
same old concepts of system organisation and design.

The emerging architecture of distributed systems is a step
towards a very different kind of system organisation. In the past,
we have talked about computing systems as containing a central
processing unit and main memory. The disk was thought of as
auxiliary memory or peripheral memory. These terms, when first
used about twenty years ago, were totally accurate. Unfortunately,
today, they give us a stereotype that is incommensurate with the
classes of systems that we need to build. Why do we share the
high-speed memory of a processor? First, it does permit a form of
inter-processor communication that does not need to be fully thought
through at the time the design decision is made. Second, it makes
it possible for programmers to finish the design in expedient ways
that get the system out the door but makes it difficult, if not
impossible, to analyse. We have already discussed the problems of
sharing a processor by means of multiprogramming. A concept that
was valid with the programming costs significantly less than the
processor. The reverse 1is too often true today. Communication
between major elements of a distributed system is one of the real
areas of fundamental research and development today. As we develop
more comprehensive and truly distrubuted systems, this
intercommunication requirement looms larger. Such networks can be
major problems. However, they offer one of the more interesting
and perhaps the only solution to building more complex and reliable
systems. The trick is to cause the various major elements of the
system to cooperate towards a single solution, and still abt the same
time maintain their isolation and independence so that errors in one
element do not propagate into another. Looking at such a system
from the standpoint of the gquantum mechanic, we are not too

concerned with the local strong interaction, but the global weak
interactions can kill us.

There are newer systems being built and marketed today
that only a few years ago we would have all called medium to large

systems. They have been produced by a very few number of people,
in some cases only one. The reason for their capabilities 1is
simply the microprocessor. The availability of wmore power in

smaller packages has made it feasible to build quite sophisticated

86

systems for a low price. As a consequence, they have not been the
management impediment that we often think of as management controls
laid on the smaller systems. Even with these small microprocessor-
based systems, however, the activity of design is still inherently
labor intensive. The difference is that in the case of a
microprocessor-based system, often the designer has a microprocessor
aid at his disposal. These aids, which we discussed in the
previous 1lecture, are less than fully adequate. Still, the
availability of an aid to an individual designer cannot be
overlooked. Time-sharing was a mechanism whereby we all hoped that
this kind of power could be placed in the hands of the system
designer. Unfortunately, we were in the position that to design a
time-sharing system we really needed a good time-sharing system.
Other design aids are starting to make their appearance today.
None of them is ideal. But the lesson that can be drawn from the
microprocessor-based system design is that management of a project
should exert control without hampering the actual design process.
Many systems have gone into the field improperly structured because
it was easier to do that than to fight the necessary changes through
the two or three layers of review committees.

For the remainder of this 1lecture, I should 1like to
examine various levels of design aids and use as examples those that
I am personally familiar with. These are not answers for every-
one. It is not even clear they are answers for me. They do
represent various classes of aids that are of significant utility.

The need for good simulation no longer has to be sold, but
getting good simulation 1is not always possible. Many simulation
languages are currently available and are very useful in the design
activity. The problem, however, with many of these languages is
that they are aimed at the professional simulator. Some of the
problems faced by the system designer can be cast into the form of
queues, flows, etc. Others have to be cast into "~complex logical
interactions of both a combinatorial and ssquential nature. APL
over the last few years has emerged as one of the more interesting
simulation environments. It is quite capable of supporting all of
the logical types of simulation as well as some of the flow and
queueing models. Unfortunately, there are not some facilities
available in APL as there are in some languages such as SIMULA. In
most cases, this has not been a drawback. The SIMULA class of
simulation has been useful in very large flow models. APL, on the
other hand, has been very useful for simulating everything from a
simple algorithm to a chip layout to a flow in a network of
processors.

The world is still 1looking for a good implementation
language. That 1is not to say there are not good implementation
languages already around. The problem is that they always seem to
exist on a machine not available to the project. With those in
which I cannot escape to machine language, I have a difficult time
talking about specific addresses that are required by the
architecture. With those in which escape to machine 1languages 1is
possible, then control of unwanted use of assembly language is
virtually impossible. There is also the problem of convineing a
programmer that it 1is not degrading to either their intellectual
capability, their moral standards, or their manhood to write in a

87
high-level language.

We have already discussed the use of small machines to
support the designer. A microprocessor-development system,
available from some manufacturers, has been discussed in the last
two lectures. There are uses for other small machines to aid the
designer. . In particular, during the development of a bit-slice-
based system, machine aids can be invaluable. The same can be said
of any system in which a fully checked-out processor is not one of
the components. Such a small machine can be used to simulate the
usual panel of lights, buttons and switches that all such checkout
environments now require. The advantage of using.a small machine
is that all actions taken can be logged so that if erroneous results
are produced, it is possible to find out the cause. There are a
number of minis that can meet this requirement. A specific unit
found useful in our laboratcries has been the Hewlet-Packard 9825
programmable calculator. This is only a mini with a built-in
interpreter and interrupt structure that can be invoked in a high-
level language. Since in a particular configuration it is aimed at
the process control and instrumentation environment, it is more than
adequate for many of our tasks. (It has 64 parallel I/0 lines,
with the ability to transfer data at up to 400,000 words per
second.) The advantage of using a machine of this type is that the
designer 1is primarily concerned with solving his design problems
rather than those of the manufacturer of a larger system either of
hardware or software.

There are a number of instruments coming on the market
that aid the designer in analysis of complex logic. Logic
analysers, in-circuit emulators, logic tracers, are all examples of
these forms of instruments. Some have come from the classic area
of instrumentation now being applied to the digital domain.
Others, the in-circuit emulators, are an attempt to give the
hardware software designers better +tools based on microprocessor
technology, and aimed at microprocessor-based systems.

All of the above are aids that are of specific use at

various points of the design process. Each attacks a particular
problem. What 1is not currently available is any aid that permits
the design process to be operated closed loop. In other words, a

system in which it will be possible to determine the full effect of
a design decision, and depending upon the results of the analysis
iterate the design in a rational, coherent, and organised fashion.
Such tools are still in the research, or at best, advanced

development stage; many are based on network analysis forms. These
graph-theoretic models first emerged in the early '60s. Their use
is still confined almost entirely to wuniversity research. The
system I am most familiar with is one called LOGOS. It was the aim

of this system to make it possible for the designer to defer the
hardware/software trade-coffs in a system as late as possible.
Further, it was aimed as a system to aid the designer in hardware
trade-offs in terms of classes of equipment at both macroscopic and
microscopic levels. The LOGOS class systems were all developed
within the environment of a time-shared central system. The most
compact version of such a system is currently running at Heriot-
Watts University at Edinburgh on a large PDP-11. These systems,
however, do¢ appear to give a type of support and design environment
lacking in any other systems. Trade-off analysis and flow analysis

88

can both be conducted in the same environment to determine the
effect of one wupon the other. It is not, at present, easy to
translate the results of such systems into hard-running code for a
particular processor or specific logic design. The latter is in

somewhat better shape. It might prove interesting to see what such
systems could do if proper "compilers" were available to produce
running code. Equally, it might be interesting to see what the

compatibility would be between such a design, analysis tools, and
proper implementation languages. Finally, what would the effect be
in our field if design tools of this power could be microprocessor
based and placed into the hands of individual designers?

Design is one of the highest aspects of engineering art
and system design can be one of the highest aspects of all design.
It is doubtful that there is an "ultimate" solution to the system
design problem since it, in itself, is a system. We can yearn,
however, for more systematic approaches to system design. We can
take comfort in the fact that this has been a "ery" for centuries.
We could even imagine that some lowly draughtsman in Egypt 4,000
years ago, while slaving over his stone tablet, raised the question,
"Why can't we use softer stone for the rough draft?"

