
• • 

Rapporteurs 

DI GITAL SYSTEMS DES IGN 

E. L . Gl ase r 

Mr. J. G. Giv e ns 
Mr. N. Gh a ni 
Mr. N. G. Kannellopoulos 

• 

Lecture ~ ~ Design of Digital Systems in the ~ of LSI 

• 

77 

When Brian Rand a ll first asked me to present these 
lectures, I felt qui te comp e tent to write on the subject and to be 
able to present them. Little did I guess at the agony that awaited 
me in the process of getting th e se few thoughts down on paper. The 
source of this disc omfort has been the increasingly rapid change 
that i s taking place in the fi e ld of digital cir c uitry today. 
Dur ing this last week, I found tha t I had to learn of three new 
processo rs that were variants on an existing one, plus two 
additio nal new types of memory a nd switching chips that have not 
been seen before . Thi s is not an unusual week, merely th e most 
recent example . It is like trying to play an athletic match with 
the rules changed during the contest. One thing t hat is sure , any 
d es ign that uses present day c hips will be obso l ete long before it s 
life cycle as a product is completed. 

The next problem to confront me was how to talk about 
design and ed ucation. True, I have been a professor in the past, 
however, I am now what might be ca l led an unfrocked professor. 
Still , I am finding more and more in my return to industry that the 
problems I faced in building lab o ratories within the academic 
enviro nment are no different from t hose that I find facing me daily 
in industry. In both cases , it is necessary to structure 
laboratories that will be good for more than just one projec t , and 
are flexible enough to meet this eve r increasing pace of cha ng e 
facing all of us. 

For this first l ect ure, I should like to ta l k about th e 
problems of digital systems design from the standpoint of circuits. 
Ce r tainly, one of the most important circuit innovatio ns to ever 
take place i s the emergence of the microprocessor . Because of the 
impo rtance o f this innovation , I s hould like to devote the entire 
contents of my second lecture to t he subject of this important 
design element. Dur ing the third lecture, I am going to attempt to 
pu ll t ogether some of t he aspects of systems design that have 
changed because of this c hanging t echno l ogy, and at least pose those 
questions that I conside r to be important. Unfortunately, 
solutions are few. Pe rh a ps , yo u ma y have the answers. I can on ly 
say , I fervently hope so. 

A few year s a go, I was in troduc e d by a friend to an old 
English proverb. At l east he said it was an o l d English proverb. 
Na mely, " An engineer is somebody who could do for a shilling what 
a ny f ool can do for a pound." In short, t h e art of engineering is 
applying organised kn owledge, science, to the solution of problems 
taki ng into account the necessary elements of time, money, 



., ., ., 

78 

resources, and suitability . En gineering is an art s ince i t does 
depend on the value j~dgement and practice of the working engineer. 
Design is the cul~inhtion cif the art of engineering in that it 
produces a coherent structure, be it electrical , physical, chemical , 
or logical, to accomplish a specific end. Thi s structur e must 
first have existed in the mind of the designer. All of these 
points are obvious . · Yet, it does not hurt us to remind ourselves 
that these truisms are still fundamentally true. 

In the practicing of the engineering art, one of the most 
critical factors must be the cost equation that eithe r explicitly or 
implicitly comes to play during an'y design task. Optimisation is a 
concept and a term brought about primarily in the art of 
engineering. We find ou r selves today , however, opt imi sing systems 
often against outmoded concepts of cost and effectivity. I should 
like to give you a specific example that I encountered a bout a month 
and half ago. A parti c ular project in our corporation was usin g 
one of the standard microprocessors . This particular product had 
been in development for sixteen mont hs and it appeared as though it 
could be und er development for another sixteen months. The problem 
was that they were trying to get a single processor to' do many 
tasks. They were doing this in the classical method of comput~r 
scientists, namely, mul tip r ogrammin g . Th e intellectual juggling 
act of multiprogramming is a very satisfying task, but it i s not 
necessarily the best way of solving all problems in computing. I n 
this specific case, only five units were to be built fo~ a special 
application. The cost of design for each unit already was a factor 
of ten over the parts and labour cost of assembling each unit. It 
was found that by going from one to three processors tied togeth~r 
on a common bus, that the software could be finished in 
approxi mat e ly six weeks, and the r esults vlere as predicted. 
Interestingly enough, the total cost of each un it from the 
standpo int of just parts alone d rop ped. Do you see why? It is 
because the amount of program required to run three processors in 
this environment was less than a half that required to run an 
individual one in a multiprogramming mode. Further, the 
programming could be mu c h less abstruse and specific routines did 
not have to be written in several forms in order to optimise 
execution time. So, although three processors were being used, the 
cost was more than offset by . cutting the amou nt o f total ROM 
involved. 

Compared to the earlier solution they were working on, 
multiprogramming was a good solution. It was simply the wrong 
solution for the time. This changing cost equation is one of :he 
most fundamental problems that we are all facing today in our design 
activities. 

One final point to be h&mmered ho~e here. Three to four 
years ago, any designer proposing to produce a small desk-top 
machine based on a microprocessor would most likely be using a 
cas sette as his low-cost backing str.re. The same designer working 
as long ago as two and a half years, and perhaps up to today, would 
be working with either a floppy-disk or a mini fl oppy-disk. What 
about the designer of today and next we e k, or next year? Wh at 
happens with t he emergence of butibles? Besides, there is always 
CCD memo r y , with o ur old friend the cassette, as a means of a high
speed load and store . Admittedly, the CCD is rIot the same as a 



"' 

• • 

79 

floppy, it is not removable, and it is vo latile. However, by using 
it as a form o f cache agai ns t a less desirable magnetic tape 
cartridge , the two r equirements of r emovab le non-volatile memory a nd 
random access memory ha ve been divorced, and the same function is 
fllled in a somewhat different method. This lesson is impo rtant. 
Often , we do no t take full advantage of the new technology because 
we are too prone to try to fit the new com ponents into an 
a rchitectural ~nd conceptual design that was based on a previously 
val 7d, but no l o ng e r effectiv e , cost equation. Unfortunat ely , an 
optlmum solution is in today ' s environment one of our most 
perishable commodities. 

Duri ng th e r ema ind er of t his lecture, I sho uld like to 
discuss some of the problems that are new to the digital systems 
environment, as well as some o ld ones and a few that are still 
around but occasionally forg ot ten . First, how does one pick a 
pa rtlcular c ompo n e nt for a job? A good rule of thumb, I have 
found, is that if I can use a si ngle - c hip processor to do the job, I 
probably will. That does not mean that I am going to put in an 
8080 instead of an AND gate . It does mean, however, I may put in 
an F8 or an 8048 to replace a large collection of logic. This 
class of chips is highly " plastic". The designer can form fit in 
any desired chip with whatever characteristic the designer wishes as 
long as the processor i s fast enoug h to meet the design input/output 
requirements. In at l east one case I am familiar with, a single 
c hip processor replaced a servo sys tem that was used to maintain 
constant speed on a disk drive. It is not that the chip processor 
was inherently cheaper than the dis c reet analog components that were 
used previously, rather, it i s because the processor was more 
reliable and being one part instead of fifteen required less labour 
to assemble . Picking the right chip for design is again part of 
the art of engineering. Obviously , the chip has to be sufficient 
to perform the functions the designer requires. If the chip is 
more than sufficient and is economical, why not use it? If 
h o weve r, it will do only a small part of the job and there are many 
of the functions of th e chip that are not usable, then it is highly 
desirable to loo k for ot her solutions . A chip that won't quite 
make the design requirem e nts but that can be supplem e nt ed by other 
exte rnal circuitry, is a perfectly adequate solution. An example 
of picking the wrong ch i p for the job initially was a particular 
automato n des i gn performed here in this country. A bit-slice chip 
was being employed for a partic ular function. After much 
designing, it proved to be totally unfeasible. The devic e needed 
no arithmetic and the c hip was only being used for register storage 
and exclusive OH. Obv ious ly, an MSI desig n was in order in this 
case . 

Th e choice of circuit famil ies is one that produces many 
a~g um en ts at all desig n meeting s . Today, life is getting easier 
Slnce mo st circuits are compatible wit h TT L levels even thoug h they 
may not b e t rue TTL internally . The key here is comp a tibility . 
It does not seem worthwhile to des ig n a system which is rather 
small, must inter face wit h othe r TTL circuitry, and yet for the sake 
of some other designer's whim be implemented entirely 1n ECL. 
Equivalently, if I am designing a very larg e system where speed is 
o f th e essence, ECL might be the best so lution, interfacing with the 
TTL environment only when necessary. Let the application dictate 
the circuit fami ly to be chosen. Although, if you have already a 



80 

set of circuit cards in production and at ha nd th ~t will do the j ob, 
then economics becomes a very strong factor . 

In terms of details of circuiting design, it seems 
to express them as a set of random thoughts dressed up as 
they were law. Let us call these the follow-on to Murphy's 
all the things -that the digital designer shou ld know and do 
probably forgotten: 

easier 
though 

law, or 
but has 

1. Cleanliness is next to godliness and this is particularly 
true for gro und, power, clock, and signals. 

2. A nanosecond is almost a zero but not quite, and the 
approximation falls down when the nanoseconds come in large 
numbers. 

3. Although the design of a system may be digit~l , it is 
implemented in an analog world; and although YQg may forget, 
mother nature docs not. 

4. Unless you are interested in job security, remember that 
somebody else is going to have to maintain and modify what 
you design. Therefore, make it possible to be maintained 
by a highly-train ed gorilla. 

In conclusion, the process of design has become more 
interes ting because we have more interesting co~po nents to deal 
with, but because of this, th e challenge to fit them together has 
also increased. Optimisation is something to be striving for, 
however, let ' s make sure that we are o ptimi s ing the right thing. A 
design that will cut 5% of the cost of a final item t o be produced 
is of no interest if that additional engineering adds 10% to each 
item produced because of the large non recurring cost that must be 
spread out over the items that are produced . Remember, although 
something is designed once but is produced and maintained for the 
long term , unless the number being produced is large, the design 
never is free but is inherently cost ly. 

DiscLlssion 

Professo~ Hoa re began the discussion by suggesting that in 
order to solve a design problem, one shou ld go to a place where 
design costs are negat ive (that is, a university). He felt that 
the things that should be taught ~ r e those as~ects of computer 
science which are less ephemeral, such as algorithms, ideas 6f 
structure, and organisation . As an example , Eu c lid'S algorithm 
will still be with us indepe nd ent of ~ast or futur e hardware 
developments. 

Professor ~Q..Ke~!l.1!.:1. asked about t he proble~ll of re-educating 
pra ctising engineers in firms such as Dr. Glaser ' s. Dr . Glaser 
replied that although he tried the usual methods, for example, 
seminars, c ourses, eto., he f elt that less than half of hi s present 
staff woulrl make the transition to the new technology . These 
people would have to be put into an environment where they could 
still do useful w~rk, we ll buffe r ed from the new ideas. He pointad 
out that this was s imply history repeat ing it ~e lf, in that the same 
pro blem" - appeared in the transition f r om rel ays and plugbc;a rds t·::> 
flip -flops and stored-pro gram logic. 



., 

.. 

ephemeral 
able to 
example , 
not just 

., ., 

81 

Turning to Professor Hoare's comments, he agreed that non
topics should be taught, but felt that people should be 
cope with all aspects of the design environment. For 

they should know how to produce a working design quickly, 
one that was fast or cheap. 

Professor Page wondered whether Professor Hoare had over
simplified the situation in assuming that the primitives used in 
algorithms would remain constant. Dr. Glaser added that certain 
a l gorit hms tend to be taken for granted, because certain primitives 
are taken for granted. For example, division was not a primitive 
at one time; now some people take transcendental functions as 
primitives. Professor Heath asked if this was the old argument of 
top-down versus bottom-up. He tended to advocate going from the 
middle outwards, while keeping an eye on both top and ' bottom. 

Professor McKeeman countered by quoting a Polish proverb, 
"When cross ing a swamp, keep one foot on solid ground," implying 
that by starting in the middle, one may have nothing to stand on . 

Dr. Glaser "Design is an art; part of it is taste, and 
we put into it as much rigour as we can." His definition of a good 
design was one that did what it was supposed to, at the right time 
and the right price. 

Professor 
as saying "Any fool 
build a bridge that 

Randall quote d one 
can build a bridge, 
can only just stand 

of the designers of Colossus 
it takes an engineer to 

up." 

Professor Vranesic turned the discussion back to teaching 
by asking about the problem of selecting devices for the shelves of 
a digital laboratory. 

Professor 
kept empty and asked 
teaching. 

Diikstra suggested that such shelves should be 
why such devices should be used at all in 

Dr. Glaser's r esponse was that he wanted to be reassured 
that someone could produce a design that would work. He would 
prefer to employ someone who had proved that he could produce 
working designs, rather than someone who had designed many things 
but had proven nothing. He used the analogy of trying to teach 
someone to swim without putting him in the water. 

Professor McKeeman said that some of his students who went 
into industry complained that while the things they had been taught 
were of long-term value, they had learned nothing that could be used 
in the first year in industry. 

Dr. Glaser pointed out that programming is design as well. 
He compared the idea of a laboratory with empty shelves to a 
computing science department with no computer, where people did not 
have to bother with the problem of getting programs to run. 
Professor Michaelson felt that proving a design with pencil and 
paper was fine, as long as the proof was total, which is difficult, 
and as long as the proof corresponded precisely to the real world, 
which is very difficult. Computer scientists have to be able to 
match up ill -defined user needs to partial theories, and this 



-, -, 

82 

r e quires intuition which c an only be gai ned though experience. 

Lecture Z ~ Enter the ~icrQp.ro~ss o,-

The historian, George Santyana, once said that that nation 
which does not read history is do omed to repeat it. Today , a 
microprocessor seems to be repeating all of comput er history kn 0wn 
to date. True, th e early ones were not quite back to Babb~ge 
although some appea r ed to be designed s o th . t they could be powered 
by steam . It is both regrettable and lamentabl e that digital 
sys t e ms are being designed today in microprocessors, and yet no 
account is taken o f software requirements. Forgetting some of the 
things that we dis c ussed in the previous l ecture , about the cha nging 
optimisat ion, t he fact i s th ~ t a $30,000 instruct ion program i s 
stil_l a l arge one . Th e fact that this program, consisting of 
individual instructions each of which is only a byte o r two byte s , 
is housed in a ve ry small area, namely a few ROM or PROM chi~ ~ , d08s 
not in any w·ay make it a simpler pi ece of softwar = to p(, '_J duce. In 
fact , compared t o many moder n-da y- l arge , and e~ en med i lln a nd smdl l 
computing systems,_ the microprocesso(' p ~ esents a prioi t ive, if not 
positi vely savage , environment, Ce('tdinly, it cannot be described 
as friendly. In addi tion, system designers are finding, again , 
that it is not the arithmetic ~ rocess in g that is dif f icult, or even 
th'e normal flo;l, but ",,,th'lr t'1e initia lisation, the exceptions, and 
above all the input/output programmin g th8t is difficulc . Shoulj 
we reall y be t hat surpris ed? 

For the purpo se of discussi o n, it is u 5~ ful to break the 
field of mi c r oprocesso r s into three olasses . 

1) the single chip processor, such as the Fa l ~~hi 'j FS or the 
Intel 80 48. 

2) the microp r ocessor bas ed on a c hi p family such as the I nte l 
8080 , Mot o rola 6800, Zil?g Z80. 

3) the bit slice system such ~s t he AMD 2900 famil y . 

It co uld be drgued tha t ther e is a f(lur th class , namely, 
t he sma! l minicomputer s uc h as the LS I-II. True, suc h systems do 
appear to hav e r ough l ; the same cap& bi ~ itles as the upper en j of the 
sello nd fami ly , howe ver, this really begs the qu ~ stl o n. The Int e l 
sing l e - board computer i s really equivalent t<' th e same c la ss of 
min i , an ~ wh at we are designing is pa c k3g ing. The qllestion r eal ly 
co mes to "Who is goi ng t o manufacture that pR('t i cular assembly ? " 
If the de s i gner can deal wi ~ h the individ il8: chip, then ther~ is 
mor6 flexibil ity , but also rn ':l('e r Jom f :) t' eri'or and also, more de s ign 
work to be d on.l . CertaLnly , in si-'eoi f ic des ign, small minis s ho uld 
be cons ider ad a9 ther3 is soft ware that a lready runs un them, and is 
th~ ma jor part of the d esign efl'o r t in many cases . 

In the first lec turd , we ~ave already look~d some at the 
use o f t h~ single-chip ~roce S 8 or . The se elements CRn be though t of 
as designe r -sp ~ clfied, speciaJ. purpo s~ -chips . Tney can be use d in 
a gr8at ma :IY CRAes where a cont:'oller , R timer, or some o th~r f o rm 
0f 3equen~ ial logic is needed. T~eir versatility is o nly n o~ ~ ~ ing 
fu ll y understood , a nd is yet to be fully exploited . The un Jsual 



• • • 

83 

design aspects they present to the system architecture are not 
significantly different from those presented by the more common 
microprocessors such as the Intel 8080. True, the single-chip 
processor may have a more bizarre structure , but other than that the 
problems are similar. 

The question is , what to do about getting a microprocesso r 
programmed? Here again, there are no neat, concise answers . The 
approach, too many times, has ended up being, "Put a large enough 
group of programmers on the job and you can get anything to work 
almost !" It is not clear what the " almost " modifies, the working 
or anything, or perhaps both. Most microprocessor manufacturers 
supply development systems. They are usually barely adequate to 
handle the design idiosyncrasies of the particular manufacturer's 
processor, and little else . We are beginning to see the emergence 
of new instruments from various instrumen ts manufacturers aimed at 
this problem. Both Hewlett-Packard and Tektronixs are now offering 
systems that are meant to help in the programming of 
microprocessors. Unfortunately, a ltho ugh these systems are 
independent of a specific manufacturer's hardware, they also are 
independent of modern high level languages and some of the necessary 
aids . These deficiencies will probably be rectified in the future, 
and in fact, there is evidence that these corrections are already 
starting to take place. 

Whatever has been stated about microprocessors goes even 
harder in the area of bit-slice architecture and true microcode. 
First, the bit slices require a much higher degree of sophistication 
in design. Second, in general, signals are higher speed and 
therefore more care has to be taken in the actual fabrication. 
Third, if a system is large enough, the actual system may consist of 
at least two and perhaps three o r more somewhat independent 
processors. An example of this last structure would be using the 
arithmetic chips to form the actual cent r a l arithmetic element or 
mil. A microsequencer is used to drive the central unit and 
implement the details of the microcode. A third coupled system 
might employ a different type of bit slice for the macro instruction 
interpretation . There are no nice in circuit emulators to help 
c heck-out such a system. There are no really adequate languages in 
which to write the software. (In t hi s case, software or firmware 
really means true microcode which more closely approximates logic 
design than anything else.) It is true that writing microcode does 
not have to be all that difficult if the architecture has been done 
properly. That " if " and " properly " are both large constraints. 

One additional point needs to be made with respect to 
microprocessors before closing. Microprocessors in their early 
stages were designed by whatever methods were availabl e and were 
simply required to fit on a chip. Today, that simplistic approach 
has been replaced by the design of microprocessors to meet ce rtain 
needs. Unfortunately, one of the requirements for which 
microprocessors have been designed is compatibility with designs 
from the past. Compatibility and maintaining of standards are 
desirable when the effect of this is to promote growth in an 
industry. Under some conditions, however, it i s a mechanism to 
perpetuate our own bad mistakes. In the future, we may see 
microprocessors that present a more friendly environment. To date, 
most of them have been based on very simplistic views of processing 



-, -, -, 

84 

machines. It can be argued that since most of the microprocessors 
are not going to be in a mul ti prog ramming environment, what are the 
needs f o r which some o f the techniques ha ve been developed recently? 
The answer can be, shortening the time to produce a working system. 
If the majority of the system cost is still non-recurring, except in 
those cases of very high produc tion, then any reduction of 
deve lopment cost c an affect either the price of the final product o r 
the profit to the company. Th e re is at least one small c ompany 
tha t I am awar e of whose existence depe nds upon the fact that 
processors are no t as well designed as they might be. It is called 
Microforth. The system they produce is strictly software. It is 
an interpreter package that makes it possible to program a 
micropro cesso r in a much more friendly and reasonable environment. 
The resulting code i s sOlnewhat larger than had it been done by a 
champion assembly-code programmer. However, the time req uired to 
produ ce the code is 3 ignificantly less and the running time is not 
t hat much wo rse, roughly a factor of two. Of course, we all have 
l a rge armies of su~erb assembly-code programmers that nev er mak e 
mistakes and are always happy to merely make simple additions to 
other people ' s code without putting in their own id eas . 

In concluding this lecture, we find the same problems i n 
the use of microproce sso rs as we do in the d es ign of any othe r 
digital system based on more c onv entiona l co'nponents. The question 
mus t be a nswered early in the de sig n phase , " How many of thes .- units 
a r e we gOing t o build and sell? " Th e answer t o this questi on will 
guide us in the amount of tiDe, en ~ rgy an d equipment tha t we are 
going to spend during thd design phaS E' . There has been an 
unwritten maxim in the field of co!nputer engineering for years whi c h 
states that assembly code is more efficient than highe r-level 
languag e . A corollary to this is that interpreters a re 
fund amen tally bad. One might reason Hbly ask the following 
question; 1) " Wha t does effi c iency me an?" 2) Wh at are we 

I a ttempting to optimise? 3) Is it really de sirable t o s a ve 10 J 
_I bytes o f ROM when we must put the entire chip in anyW"~y? 4) Wher e 

do we need to make our most efficient use of re sou r ces ? 5) Is the 
problem to minim i se c hips in a final pruductio n mode l? 6) Is the 
problem one o f producing a dev i ce that can be sold at a low, non
recurrin g e ngin ee ring cost in a s ho rt time? We can always improve 
it later. Thi s last option has not always be e n available, but 
today it can be since the change is prima rily in how many ROMs we 
have plugged in. 

Discus s ion 

Professor Heath commented th~t goo d computer scien ce 
solutions were requir ed f o r the probl e:ns of developing 
microprocessor software. For example, in us ing a manufacturer's 
de velopment system he found th,t he had t o cope with four distinct 
languages. 



., ., ., ., 

85 

~~ture } ~ Computers and hircui~ do not ~ system make 

What is a system? Answers are many. "A collection of 
components which mayor may not work together satisfactorily tu 
perform some undefinable tasks. " " A complex system is one in which 
the benefits are imaginary, but the costs are quite real_" " A 
system is what you build when you do not know what is 
needed_" These cynical comments have been typical of many made in 
the literature_ The prime factor prompting these comments can be 
interpreted as our escalating desires for more complex and 
sophisticated systems. In the case of computer operating systems , 
the one which almost works on system N is scrapped for a much more 
sophisticated and comple~ system that will almost work on system 
N+l. Tragically, this has been too often the situation in our 
field. Still, as systems in their various forms become more 
pervasive in all parts of our society , our needs rightfully escalate 
since the very availability of the tool is changing the way we wish 
to do business. The problem is not building more sophisticated 
systems , it is building these mo r e sophisticated systems with the 
same old concepts of system organisation and design. 

., 

The emerging architecture of distributed systems is a step 
towards a very different kind of system organisation . In the past , 
we have talked about computing systems as containing a central 
processing unit and main memory. The disk was thought of as 
auxiliary memory or peripheral memory. These terms, when fi r st 
used about twenty years ago, were totally accurate. Unfortunately, 
today, they give us a stereotype that is incommensurate with the 
classes of systems that we need to build. Why do we share the 
high-speed memory of a processor? First, it does permit a form of 
inter - processor communication that does not need to be fully thought 
through at the time the design decision is made. Second, it makes 
it possible for programmers to finish the design in expedient ways 
that get the system out the door but makes it difficult , if not 
impossible, to analyse. We have already discussed the problems of 
sharing a processor by means of multiprogramming. A concept that 
was valid with the programming costs significantly less than the 
processor . The reverse is too often true today. Communication 
between major elements of a distributed system is one of the r eal 
areas of fundamental research and development today . As we develop 
more comprehensive and truly distrubuted systems, this 
intercommun ication requirement looms larger. Such networks can be 
major problems. However, they offer one of the more intBresting 
and perhaps the only solution to building more complex and reliable 
systems. The trick is to cause the various major elements of the 
system to cooperate towards a single solution, and still at the same 
time maintain their isolation and independence so that er'rors in one 
element do not propagate into another. Looking at such a system 
from the standpoint of the quantum mechanic, we are not too 
concerned with the local strong interaction, but the global weak 
interactions can kill us. 

There are newer systems being built and marketed today 
that only a few years ago we would have all called medium to large 
systems. They have been produced by a very few number of people , 
in some cases only one _ The reason for their capabilities is 
simply the microprocessor. The availability of more power in 
smaller packages has made it feasible to build quite sophisticated 



• • 

86 

systems for a low price. As a c ons e qu e nce , they have not been the 
management impediment that we o ften think of as management controls 
laid on the smaller system s . Ev e n wit h t he s e s mall microprocessor 
based systems, however, th e activ i ty o f design is s till inherently 
labor intensive. The difference is t hat in the case of a 
microprocessor-based system, often the designer has a microprocessor 
aid at his disposal. These aids, which we discussed in the 
previous lecture, are less than fully adequate. Still, the 
availability of an aid to an individual designer cannot be 
overlooked. Time-sharing was a mechanism whereby we all hoped that 
this kind of power could be placed in the hands of the system 
designer. Unfortunately, we were in the position that to design a 
time-sharing system we really needed a go od time-sharing system. 
Other design aids are starting to make their appearance today. 
None of them is ideal. But the lesson that can be drawn from the 
microprocesso r-ba sed system design is that management of a project 
should exert control without hampering the actual design proces s . 
Many systems have gone into the field improperly structured because 
it was easier to do that than to fight the necessary changes through 
the two or three layers of review committees. 

For the remainder of this lecture, I should like to 
examine various levels of design aids and use as examples those that 
I am personally familiar with. These are not answe rs for every
one. It is not even clear they are answers for me. They do 
represent various classes of aids that ar e of signifi c ant utility. 

The need for good simulation no longer has to be sold, but 
getting good simulation is not always possible. Many simulation 
languages are currently avai lable and are very useful in the de s ign 
activity. The problem, however, with many of these languages is 
that they are aimed at the professional simu l ator. Some of the 
problems faced by the system designer c an be cast into the form of 
queues, flows, etc. Others have to be cas t into· c omplex logical 
interactions of both a combinatorial an d sG que nt ial nature. APL 
over the last few years has emerged as one o f the more interesting 
simulation environments. It is quite capable of supporting all of 
the logica l types of simulation as well a s some of the flow and 
queueing models. Unfortunately, ther e are no t s ome facilities 
available in APL as there are in some langua ges s uc h a s SIMULA. In 
most cases, this has not been a drawback. Th e SIMULA class of 
simulation has been useful in very larg e flow mod e l s . APL, on the 
other hand, has been very useful for s imul a ting e v erything from a 
simple algorithm to a chip layout to a flow in a network of 
processors. 

The world is still looking f o r a g oo d implementation 
language. That is not to say there are no t goo d implementatio n 
languages already around. The problem i s that the y always seem to 
exist on a machine not available to the projec t. With those in 
which I cannot escape to machine langua ge, I hav e a difficult time 
talking about specific addresses that are required by the 
architecture. With those in which escape to machine languages is 
poss ible, then control of unwanted us e of assembly language is 
virtually impossible . There is also the probl em o f convincing a 
programmer that it is not degrading to eithe r th e ir intellectua l 
capability, their moral standards, o r their manhood to write in a 



• 

87 

high-level language . 

We have already jiscussed the use of small machines to 
support the designer. A microprocessor-development system, 
available from some manufacturers, has been discussed in the last 
two lectures. There are uses for other small machines to aid the 
designer. . In pa rticular , during the development of a bit-slice
based system, machine aids can be invaluable. The same can be said 
of any system in which a fully checked - out processor is not one of 
the components. Such a small machine can be used to simulate the 
usual panel of lights, buttons and switches that all such checkout 
environments now require. The advantage of using . a small machine 
is that all actions taken can be logged so that if erroneous results 
are produced, it is possible to find out the cause. There are a 
number of minis that can meet this requirement. A specific unit 
found useful in our laborat ories has. been the Hewlet-Packard 9825 
programmable calculator. This is only a mini with a built-in 
interpreter and interrupt structure that can be invoked in a high
level language. Since in a particular configuration it is aimed at 
the process control and instrumentation enviro nm ent, it is more than 
adequate for many of o ur tasks. (It has 64 parallel I/O lines, 
with the ability to transfer data at up to 400,000 words per 
second . ) The advan tage of using a machine of this type is that the 
designer is primarily concerned with solving his design problems 
rather than those of the manufacturer of a larger system either of 
hardware or software. 

There are a number of instruments coming on the marke t 
that aid the designer in analysis of complex logic . Logic 
analysers, in-circuit emulators, logic tracers, are all examples of 
these forms of instrume nts. Some have come from the classic area 
of instrumentation now being applied to the digital domain. 
Others , the in-circuit emulators , are an attempt to give the 
hardware software designers better t ools based on microprocessor 
technology, and aimed at microprocessor-based systems . 

All of the above are aids that are of specific use at 
various points of the design process. Each attacks a particular 
problem. What is not currently available is any aid that permits 
the design process to be operated closed loop. In other words, a 
system in which it will be possible to determine the full effect of 
a design decision, and depending upon the results of the analysis 
iterate the design ir. a rational, coherent, and organised fashion. 
Such tools are still in the research, o r at best, advanced 
development stage; many are based on network analysis forms. These 
graph - theoretic models first emerged in the early ' 60s. Their use 
is still confined olm os t entirely to university research. The 
system I am most famil i ar with is one called LOGOS. It was the aim 
of this system to make jt possible for the designer to defer the 
hardware/software trade - offs in 0 system as late as possible. 
Further, it was aimed as a system to aid the designer in hardware 
trade-offs in terms of classes of equipment at both macroscopic and 
microscopic levels. The LOGOS class systems were all developed 
within the environment of a time-shared cent r al system. The most 
compact version of s~ch a system is currently running at Heriot
Watts University at Edinburgh on a large PDP-11. These systems , 
however , do appear to give a type of support and design environment 
lacking in any other systems. Trade-off analysis and flow analysis 



• 

88 

can both be conducted in th e s am e e nvironment to det e rmine the 
effect o f one upon the other. It is not, at present, easy to 
.translate the r esult s of such s ystems into hard-running code for a 
particular processor or specifi c l ogic design. The latter is in 
somewhat bet ter s hape . It might prove interesting to see what such · 
systems could do if proper "compilers" wer e available to produce 
running code. Equally, it mig ht be interesting to see what the 
compatibility would be betwe en s uch a design, analysi s tools, and 
proper implementation languag es. Finally, what would the effect be 
in our field if design tools of this power could be microprocessor 
based and placed into the hands of individual designers? 

De s ign is one of the highest aspects of engineering art 
and system design can be one of the highest aspects of all design. 
It is doubtful that there i s an "ultimate" solution to the system 
design problem since it, in itself, is a system. We can yearn, 
however, for more systematic approaches to system design. We can 
take comfort ~n the fact that this has been a "cry" for centuries. 
We could even imagine that some lowly draughtsman in Egypt 4,000 
years a go, while slaving over his stone tablet, raised the question, 
"Why can't we use softer stone for the rough draft?" 


