
•

Rapporteurs

PARALLELISM, PIPELINING AND OTHER FORMS
OF SYNCHRONOUS MULTIPROCESSING

T. Anderson
K. Heron

T. C. Chen

General Multiprocessing

•

49

be taken
time.

The term "multi processing " is often used loosely, and can
to mean simply that many units are operating at the same

The simplest class of multiprocessing designs is that
involvin g the overlapped operation of many units (which together
form a system, for example a computer system). Since all of the
units can be activated and available it seems reasonable to use them
concurrently rather than one at a time, so as to eliminate
unnecess ary queueing and promote overall throughput all at low
extra cost.

Some simple examples are the overlapping of IIO and CPU
activity, the overlapping of decode and execution cycles within a
CPU, and the simultaneous use of many IIO units such as terminals
and sensors.

If multiproceSSing involves an
neverthel ess deSigned into the system, this
deliberate multiprocessing design . There can
adopting this approach:

overhead but is
may be referred to as
be many reasons for

To gain speed without changing the technology more
significant since there is already some indication that the
trend towards faster circuitry is slowing down. Speed of
computation is essential for the solution of certain large
problems, such as weather modelling and (of slightly less
practical importance) the detection of the onset of
turbulence when cream is stirred into coffee.

To lower the cost per module­
deSign over high production volumes
same simple design .

To achieve a satisfactory yield of
minimise testing. This can be
which in turn can be obtained only
long product life.

by spreading the cost of
of components of the

acceptable components and
based on a learning curve
when components have a

To reduce par t numbers, and hence costs.

To decrease the number of component interconnections,
lea st make them more systematic (interconnection cost
a major factor in LSI design) .

or at
being

To permit incremented upgrading or downgrading by adding or

50

., .,

removing
spectrum
needed.

modul es.
this can

By coverIng a range in the performance
reduce Lhe number of distinct designs

To provjde facilit j es
communicati.on.

for internal (and external)

To maintain security (by secur i ng parts of the entire
system) .

To look forward in hope and ex pectat ion for the fulfillment
of the promise of reliability, availability, and
serviceability - not yet achieved in current multiprocessing
design practice.

Some examples of deliberate multiprocessing designs are
given, us i ng a c l assif'ica tion which is no t particularly systematic .

(i) Synchro-parallelism. Many identical modules performing the
same task ("SIMD"), for example, Solomon, Illiac IV, DAP ,
Staran (even the Intel 8080 at the bit level) .

(ii) Pipelining . Many different modules working on the same job
stream, for example, Texa s Instruments ASC, Control Data
Corporation STAR .

(iii) Computer Networks . Many (possibly different) mac hines
sharing communication facilities.

(iv) Polymorphic systems . Many CPUs sharing many memory boxes
through some sort o f crossbar switch, for example, C. mmp .

(v) Tre e structured systems . Hierarchical organisation of many
computers under the supervision of the same overall monitor .

(vi) Loosely-coupled sys t ems. Many and various computing

are
then

resources with limited communications facilitie s.

Correspond ing to the mu l tiprocessed modules of
components of the system whi ch a re shared (if nothing
concurrent execution is not termed multiprocessing) .

Systems Multiprocessed Shared

SIMD Processors Dec ode control

a system
is shared

Pipeline Functional units Precedenc e control
Network Mac hine s Communication facilities
Polymorphi c CPUs , Memory boxes Crossbar linkage
Tree Machines Monitor
Loosely-coupled Resources Communication contro l

(occasional sharing)

Th e principal characteristic of a SI MD machine is its
o peration as N processo r s which them selves operate in unison on
different dat a . Co nsider the following Lrivial e xampl e.

.,

1

L * + ST
L * + ST

N sources of N sinks
information

L * + ST

The instruction sequences are all exactly the same ,
obeyed by a d i fferent processor. Only 4 time steps
with N ope r ation being performed at each of t he steps .
no interconnections are needed, although the classic
SIMD machine, Illiac IV, does have this capability .)

51

each being
a r e needed,
(Little or

example of a

Ce r tain computational problems do appear to be "naturally
paral lel " in this way, principally those involving the solutio n of
par tial differential equations, and t hose directly based on matrix
computat ions . Other highly parallel programs, such as bank ing
system s and payroll programs, usually in clude many exceptional cases
which limit their exploitation on SIMD machines.

Even for the problems mentioned above there are a number
of possible snags . The job width may be too small for the machine,
or the job may include a very high overhead. The algorithm
employed by the job may be inappropriate . (For in stanc e , wh e n
solving the Navi e r-Stokes equation for the Earth's atmosphere a
subdivision int o concentric shells is inappropriate . For a machine
like Illiac IV a subdivision into a grid of columns of air yields an
appropriate algorithm .) The computer execution may have to be non­
synchronous because of exception handling . Avai l able lang uag e
tools may be insufficient . (Certa i nly fortran is not the right
tool . APL is much better but necessitates a great deal of
structure redefinition, possibly becaus e of th e emphasis on array
structures .) Programm in g costs may be excessive . The UNIVAC
report asserted that the ratio of the cost of writing a line of code
to that of executing it was 10 . Pr oblems can also ar ise in
subdividing a task into parallel components , in communicatio n
requir ements between these components, a nd in extra costs due to non
parallel overheads before and after the parallel portion of a task .

A consequence of all these potential and actual
limitations is that the successful application of synchro-parallel
techniques is limited to very large, important jobs which must be
performed repeatedly, and requires a careful choice of algor ithm
with greaL care being exercised in its programming an d debugging .

Fortunately there are (a t least) two truly parallel and
worthy problems, namely weather and wind tunn el computat io ns .

A study of synchro-parallelism overh e ad

Consid e r the f ollowing diagram a s indicati ng a job, which
is not quit e uniformly parallel, where the vertical axis indicates
the degree of multiplicity available in the job while the horizontal
axis ind icate s th~ "umber of time steps need ed for each of the
parallel elements of the job.

., ..

52

equipment

Job

I

--+-------------------. t 'ime "teps

A Fortran programmer must transform the job to fit the uniproc essor
provided by the Fortran compiler , thus:

equipment

1 L..--.._----ll. '. 0
__ -+ __________________ ~. time steps

, '

The area of the job in both figures is the same .

adopted.
To be more spec ific a parameterisation of the job can be

equipment

T
w

'J I
~---------------------------
10.11

1 time steps
'T 1 " 14 'T2 ~I

53

The repetition ratio p is defined as

\'ITa
p = -~-= area of rectangle D

area of whole figure Cd:]
Clearly 0 ~ p ~

If W=32 and T]. = Ta then p+97%.

A number cruncher of multiplicity N ploughs through the
job repeatedly until it has been completely covered. (Visual
imagery may be enhanced here by the memory of a dragon with teeth
spread N wide.l The number of sweeps required, n, will be fW/m
that is, wI!:! :,rounded to the nearest integer above. With W=32 and
N=20, W= ~.61 = 2 sweeps are needed.

This study will examine the effects of two mismatches
(i) the mismatch of the job to a perfect rectangle (ii) the mismatch
of the width of the job to the capacity of the number cruncher.

cd] Now, de,fine per farm"ance P as useful work
= time spent Et

Ti + \'ITa
p = ----

T]. + nTa'

1 1;"1 + tlT a
So p =

Ti + Wr2

Ti n
= ---"'--- + - •

W

Now P = ---- and 1 - P =
":].

;

Hence we have

1 n p = 1 - P + -W- p

P = 1/(1 - p +pn/W)

The performance function is therefore defined as

tjl (p ,x) = 1 I (1 - p + p Ix)

For 0 ~ p ~ 1 and ~ x ~ co , C!I increase s with p and with x

= C!I (0 ,x) ~ cp(p,x) ~ 1II(1,x) = x
=1II(p,1) ~ "'(p,x) ~ C!I(p,co) = 1

1-p

.-

54

The growth of cp with respect to x diminis hes as 1 I x'" . Various
upper bounds can now be placed on the performance P.

P =ql(p,W/n) = 1 I (1 - P + pn/W)

(Win ~ W) P ~cp(p,W) = 1 I (1 - p + p IW)

(p S 1) P ~ q)(1, W) = w

(Win < 00) p scp(p,oo) = 1 1(1 - P)

(Win ~ N) P ~4' (p ,N) = 1 I (1 - P + piN)

(P S 1) P ~~(1,N) = N

It seems eminently reasonable that the performance can
never exceed the job width W or the multiplicity N of the number
cruncher . But in fact P is also limited by the nature of the job
(regard l ess of N) to be at most 1/ (1 - + IW) which in turn is
bound ed by 1 I (1 -) .

These bounds are illustrated in the graph below.

1
- -----.- ------ - - - - - - -1--p ~ tp(p ,00)

cp(p, N)
/1''''----- - - - - - - - 1

-r:p~ = W(p,W)

tp(p,W/n) =, P

~ __________________ ~ N

As N i s increased, the performance inc reases in a step-wis e manner
because of i ts dependence on n whi ch depends on t he divisibility of
W by N. The maximum possible value of the performance is reached
when N=W since then n= 1 . Th is maximum is the reachable bound
tIl(p ,W) . A good c ontinuous appr oximation t o P is given by ql(p , N) .

While P can neve r reach tbe bound 1 I(1 - p) it may reach
o. 5 I (1 - p), wh e n x = vi I n = p I (1 - P) (fo r p L a. 5) •

Then q:J(p,W/n) = 1/(1 - P + pn /W) = 11(1 -p + 1 -p)
= 0 . 51 (1 - P)

55

At this pOint, the rate o f growt h o f ~ ha s t he value

~ ~ _1_ ' s;..1.
oX 4p 2

The addition of a n extra processor at this stage will at most give
the benefit of only a half processor .

This little study is rather sobering . Continued
investment in processing capacity for a particular task will not in
the long run yield even a fractional return, since there is a strong
unreachable bound which can be stated in terms of the
characteristics of the job alone. Perhaps we should be satisfied
with attaining 50% of that performance bound since that is usually
possible.

Some partial solutions, of an engineering nature, are
poss ib le. The overhead involved in processing the non-parallel
portion of the job (T?) may be overlapped with a separate processor .
Incorporation of thlS feature in Illiac IV (finally achieved this
year) produced a performance improvement factor of more than 2 .
Flexible modules could be designed to handle unusual events . As a
f urther benefit, sufficient flexibility may allow modules to be
slightly out of step relaxing the requirement of strict
synchronism. Centralised decoding can be a mixed blessing because
of the multiple fan-out needed from the central resources (in the
case of Illiac, 64 points must be re a ched simultaneously) . Fan-out
can be reduced by local decoding, and also by systematic time lag .

Jobs should be carefully selected to fit the machine .
With ~ > .99 and W > 100 the performance bounds are less
constraining since then 1/(1 -p) > 100 and 1/(1 - p + p/W) > 50 .
Other guidelines are: to be content with achieving P = 0.5/(1 - p),
to choose N as a divisor of W, and to be prepared to fine tune a
program, guarding against hidden overheads.

A brief summary of the Illiac IV machine may be of
interest. It comprises 64 processing elements (PEs) in an 8x8
array. Parts of the machine can be disabled and withdrawn from a
computation. There is a broadcast capability (for instructions and
data) to all 64 PEs. Flexibility is provided to a PE by means of
local memory with local indexing. Provision is made for
communication traffic to neighbours in the 8x8 array (l eft, right,
front, back). Floating point operations are available. The
design follows the line of developmen t of Coche and Kochen (1958)
and Solomon (1962). Illiac IV i s operational in Mountainview,
California and is running better every day .

Lecture Z - Pipelining

Put succinctly, pipe lining is tim e-synchronised division
of labour along a proce s sing path . To i l lustrate this consider
figure 1 in which a processing segment S, has data bj ..,l entering and
data b, emerging. Data b" emerges after a time T , and work W. , has
been done in the segment. (Note that the term work is used
loosely : it is not necess a rily the same term used in physics). The
graphic approach used in figure 1 illustrates the result of linking

., .,

56

segments together (assuming only a common cycle time
result to pass through a segment). A steady state is
all the segment s are occ upied . Th en , the pe rformance,
work per cycle is 1: Wk.

.,

"f for the
reached when
defined as

Ther e are o f cou r se some limitations to be placed on
pipelines and several of these are touched on , briefly, below .

Speed of Light For a pipeline of length D, the maximum speed at
which data can travel from the input to the output is that of the
velocity of light, and the time taken is minimally D/c . If the
pipeline consists of M segments and cycle time is "f, then it follows

M L Dlc or L DIMc

Time can obviously be v ery small, but the important
point to note is that it 1s the product M"f which is limited , not"f
itself.

Quantum Theory Th e Heisenberg uncertainty principle
limitations on the precision with which a quantity can be
at a given inStant.

t."f t. E ~ 11 (= 10-27 er'g-secs .)

imposes
measured

Arbitrarily small
arbitrarily large ,
Speed equates to high

means arbitrarily small which in turn means
and an arbitrarily large energy reservoir E.
energy.

Atomicity Limitation It is difficult to conceive a pipeline segment
smaller than the diameter of a hydrogen atom . Hence for a segment
length d,

d » 10-8 cm.

Again with the velocity of light as the limiting velocity at which
data can pass through a segment, the cycle time limitation is

"f » d ~ 10-8 ::::: 0 . 3 x 1 0-18 sec. -
C :3x1010

There are still many orders of magnitude in hand over today ' s
tec hnology.

Engineering Limitations Within a segment, latches and logic elements
are required to work on the data stream and to synchronise it to the
next segment. The se physical elements introduce time or " logic "
delays . However, Hallin and Flynn (1972) have shown that for
arithmetic fun ct ions using combi na torial circuits , and a latch
devised by J . Earle, no additional delays a re entailed if the cycle
time is equal to fou r or more logical delays - the latching delay is
overlapped fully.

Pipeline Processing of Jobs

Figure 2 represents a sequence of similar jobs being fed
through a four-segment pipeline . After four cycles job 1 emerges
from the pipeline after work (W1+W2+W3+W4) has been performed on the

., .,

data·. Figures 3, 4
jobs, the latter figure
(represented by area) to

lb E.l ~)

~} ~ 2

~ ~)

Equipment

57

graphically represe nt the work done on the
representing the redistribution of work
facilitate calculation .

• ~

S:a)----. ~

S:a 2 S3) .b..

Figure 1

~~~~Wal-t.~ 

w" Wa Wa w" Wa w" w" 

time 

Figure 2 

equi ment 

4 L • 
4 4 4 4 4 4 4 • I 

3 3 3 3 3 3 3 
M 

2 ;? 2 2 2 2 2 , , 
1 1 1 1 1 1 1 1 • 

time 

1otI~l---- M+L-l 

Figure 3 



58 

Equipment 

... 41---- L ---I.~ +14-1+ 

4 4 4 4 4 4 4 

3 3 3 3 3 3 3 
2 2 2 2 2 2 2 

1 1 1 1 1 1 1 

F i gur e 4 

same as 

i 
1 

L-___ ~ ___ _L ___ ~ ___ ~ 

Figure 5 

------l.~ time 



·, 
"' 

., 

59 

Then use f ul wo r k = LM, 
and time spen t i n doing i t = L+M-1 cycles 
Then defining performance P = useful work 

time spent doi ng it 

P = LM 
L+M-1 

= M[1 M-1 
L+M-1 

] 

The fract~ onal loss of performance power 

= M-1 
L+M-1 

Once the las t job ha s ente red t he pipeline, it g r adually empties 
with succeeding cycles - it drains . As the number of contiguous 
jobs in a batch subm itted to the pipeline increases (represented by 
L) the fractional loss of performance, due to draining of the 
pipe line, grows small e r. 

L = (M-1) 
Fractional loss = ~ 

2 (M-1 ) 
1 

"3" 

4 (M-1 ) 
.L • 

k (M-1 ) 
1 

k+T 

The moral is clear: try to extend L, that is, keep the pipeline 
full. In consequence, the pipeline should not be "normalised " 
unnecessarily . (Normalised used here to mea n draining the pipeline 
completely before entering new data). The sort of error condition 
which might be met by normalising the pipelin e is floating-point 
overflow , but even in this case it is possibl e to think of avoiding 
norma~ising the lin e by labelling the "over flow data" as being in 
error and processing later. 

Cost of Engineering the Pipeline 

The cost of installing ~atches (simple forms o f memory) 
and logic in pipelines was in earlier days, enormous, but the 
present day technol og y means that the cost can now be trivial . 
(Back in the days of STRETCH, the cost of the CPU was rec koned to be 
proportional to the number of register bits in the CPU.) There is, 
however, the hidden cost of finding the right algorithm to permit 
equal time division - really an art. Sometimes it is necessary to 
smuggle in something e lse, namely synchro-parallelism. 

Th e pipeline must be well utilised . 
use is low, the pipelin e is un de r-used. 
i llustrated in Figure 5 . I t is c l ear that with 
lIse, a s impl e non-pipelined processor is just as 
the defin ition of performance 

P = LM 
M+L-1 

If L = 11M, P = LM = M 
M+1 /M-1 M"-M+"! 

If the frequency of 
This is graphical ly 
such a frequency of 

good . Recalling 



., ., ., ., 

60 

In the case o f the und er-used f ou r-segment pi pe line of Figure 5, 
P = 4/13 but in the case of t he non-pipelined sys tem, M=l a nd P=I. 

Anoth e r conc ern i n the cost of pipelines is the fact that 
pipel in e segments are spec i al purpose, and this ma y involve high 
development costs. Today one prefers s ystematic construct i on , eac h 
bit the same. The classical form of pipeline seems to violate 
this. Perhaps the non-classical form will do better . 

Synchro-Parallelism and Pipelining 

Table 1 se ts out to compare parallelism (exemplified by a 
~ingle In struction Multiple Qata stream mechanism, SIMD) and a 
pipeline. To permit closer comparison of " perfo rmance", p is 
defined by p = 1 - L. (This p, an e ff ective r epetitious rat io , was 
thought at fir st to be important, but later it was decided that it 
had little implication, except for comparing formulae). As can be 
seen from the t a ble, more pe rformance bounds can be placed on the 
SIMD mechani sm that on the pipelin e . Nev er the l ess they share 
certain attributes . Both a r e tightly - coupled multiprocessor 
systems and, as will be brought out later, they can complement one 
another. Both are now easie r and cheaper to implement using r ecent 
developments in electronics - 1arge ~cale Integration. 

kept 
about 

They both suffer fr om loss of performance worries when no t 
fully busy, but the solution i s to ma ke the modules flexible -
this, more later. 

Some examples of how Synchro-Parallelism 
compat ibl e and indeed compl ementary 

Pipelines 

Th e first par t of Figure 6 s hows a pipl el in e segment with 
inputs a and b, and outputs c and d. Th e se c ond part of the figure 
shows the crosslinking of the pipeline segments to give three 
horizontal pipelines o perating in synch r o-parallelism and four 
ve rtical pipelines also ope r ating in strict syn chro-parallelism . 
It is not clea r whether this is a synchro-parallel design or a 
pipeline design, but the answer is that it does not r eally matte r . 

The next figur e , 7, shows a sol ution to the problem of a 
pipeline segment which has a cyc le time four times that o f the other 
segments . Rather than slow down the cyc l e time for all segments to 
match tha t of the "long " segment, fo ur such long s egments are 
harnessed in parallel. Outpu t fr om the preceeding shor t segment is 
cyclically presented to each long segment input . The outputs are 
cycled again into the next short segment. Hence t he fir st job to 
pass down the pipeline will take four c ycles to appear at the output 
of the pa rallel ed long segments, but subsegment jobs will appear one 
per cycle thus maintaining throughput rate of one per cycle. 



"' 

61 

to V I 
"SIMDtt pipeline 

Tight ly coupled YES YES 

Mul tiplici ty N M 

Modules Erocessing ~lements, Special purpose 
no decode 

Cost Lower ed by mass Latch insertion 
production is cheap 

Performance 1 ML 
1- p-ti!l M+L-1 

w D f"" 1 1 e lmng P= - L 
n is number of s weeps 1 
P is P = 1-p+ £.. 
w is M 

M is number of segment s 
L is number of jobs 

throua:h pipeline 
Performance Bounds W L 

N M 
win 

1 
1-p+pw 

1 
1-p+pN 

1 
1-p 

Table 1 : Synchro-paralleli sm and Pipe lining 



62 
Cross Linking in Pipelines 

b 

~ 

a --t.~ 

Figure 6 

., 



63 

Th e next figur e sho ws a Wallace multip l ie r . Three ope rands through 
a carry save add e r ar e s qu eezed int o two. After the first stage of 
Figur e 8 , n ine wo rds in become s ix words. The s ix output s report 
to two e l ements i n the s econ d stag e and are reduced to four words. 
A delay is introduced in the third stage to carry an operand to t he 
final stage to c ombine wi th the o ther two operands . Thu s a nine-
number problem is redu c ed Lo a two-number problem. Each s t age 
could be considered as a pipe l ine segment , or the whole unit could 
become a pipeline segment. In t he latter case a huge multiplier 
tree could be built up, and in principle, the fastest-multiplier can 
be made in this way . The compression ra t io for the Wallace 
multip l ier is 3/2 or 1.5. One can progress by a dding seven words 
tog et her and compreSSing them into three (compression ratio better 
than 2) . This is possible becaus e adding the ith bits of each of 
the seven words results in a maximum sum of 7, which means that any 
such issue wo uld be r e pr esente d by at most thr ee bi t s . He nce 7 
wo r ds compr ess to three , and it follows that 15 words compress to 4 
etc. 

Figur e 9 shows the VA MP design (VAMP for ~ecto r Arithmetic 
Hulti Eroc essor ) described by Senz i g and Smith. The inte rl eaved 
memory lS under bus ma nagement a nd the " processors " are just 
registers plus a few bits, wh ich can be masked "off " . Arithmetic 
i s perform ed in a common pipeline wi th staggered sequencing of jobs 
to fit the pipe line, and th e jobs are returned to the originating 
" processors" or registers. Because of the sequenti al element in 
the data stream (the pipeline), this design should really be called 
a ~erial In struction Virtual Multi Data st re am (SIVMD) rath e r than 
on SIMD. Howev er, this approach may-well present the best SIMD 
pipeline compromise. 

The section below the solid line i n Figure 10 r epresents 
the virtual processors. The instruction enters the first 
" proc e ssor " A, a nd data is sent to the pipeline . Th e i nstruction 
then passes to Band B sends data to t he pipeline while A' s job 
passes int o the second segme n t of the pipeline etc. It is worth 
noting that disabled "processing elemen ts " do not withdraw 
performance from the arithmetic uni t, because, unlike the Illiac IV 
scheme, the a rithmetic unit is not masked off when th e processing 
element is mask ed off . 

Pipeline Summary and conclUSions/proposals. 

By judicious installation of latches (for time 
synchronisation) it i s possible to achieve high thnoughput 
performance. The cost of these l a tc hes is relatively low but the 
segments are still special purpose . It is not always poss ib le to 
i nstall a pipeline in a given situati on . 

Pipelines, far fr om rivalling, comp l ement and are 
complemented by s ynchro - pa r all elism . Cer t a inly pipeline networks 
need more study . Th e bigg est pro blem of pipelines , pipeline 
draining, can be remedied by multipr ogramming in t he small , having 
segment s suff i ciently flexible to avoid emergency drains and perhaps 
by allowing l ocal autonomy under time pulse constraint . 

special 
One way 

segm ents 
of avoiding 

might be to 
some 
use 

of the development costs of 
a microprocessor to permit 



"' "' "' 

64 

"personalisability" . 

Paralleling a long Segment in a pipeline 

'T 'T 'T 'T 

C""",--) _),,--) o ) C-.......<....) ~) __ ) 

Figure 7 () 0 ') o ""----------.,-)-
Throughput maintained at one job per cycle 

The Wallace Multiplier 

Figure 



., 

Control 

pipelined Arithmetic Units 

to virtual processor 

Figure 9 

Equip 

4 

3 3 3 
2 2 2 2 

1 

Figure 10 

., 

Bus 

3 3 
2 

interleaved 
memory 

., 

Virt ua l processor s 
( regi st er s ) 

A.U i pi pe line 

Time 

~ Synchr o-
par a llel 
regs . 



66 

A few important 
pipelines are listed below. 
Project Stretch, IBM 195X) 

machines which did or do incorporate 
(The name pipeline probably arose in 

IBM Stretch It is not known as a pipeline machine but it had 
lookahead, a four-segment pipeline and a variable field length unit 
with pipelined data access. 

IBM 1.9.5.Q 
byte wide. 

Pipelined access, monitoring, processing but only one 

IBM 360/91 
operation. 
occurrence 

: Pipelined floating add 
Floating multiply 

is small. 

in two cycles, one cycle 
is not pipeline because 

per 
the 

CDC 7600 : Pipelined multiply duration, D=5 with a rate of two 
cycles per operation. 

CDC Star: Pipeline machine with 40ns cycle. 

~ ~ Advanced ~cientific ~omputer (ASC) 
60ns cycle, but now discontinued. 

Lecture .3. 

Pipeline machine with 

The simplest pipeline possible can be pictured as a string 
of bits riding a railroad as shown in the first part of figure 1. 
At time ~ +T, the bits have advanced one place to the right. This 
of course is the familiar shift register and is the form of the 
bubble devices and charge-coupled devices now becoming so important. 
If the shift register is fed back to itself it becomes a loop, a 
memory. Such closed-loop registers are reminiscent of disks and 
are sometimes called electronic disks. If one were to characterise 
a conventional disk briefly one could say that it was (i) cheap per 
bit, (11) had a long access time, (iii) inflexible loop size and 
(Iv) a large package (say 10 inch diameter disks). By comparison 
"electronic" disks are (i) costlier per bit, but with (ii) short 
access time, (iii) flexible loop size and (iv) small package size. 
Also magnetic-bubble devices are just as non-volatile. The cost of 
such devices is coming down - Texas Instruments is selling a 92k-bit 
magnetic bubble device for $400 - and there is a place already for 
them in relatively small memories (filling the gap between mainstore 
and disks). 

Returning now to the simple shift register loop - it still 
lacks the means of getting data in and out. One solution to this 
problem is the special switch, shown diagramtically in f i gu r e 2. 
This switch has two inputs A and B, and two outputs C and D. (The 
switch was designed for bubble systems where tracks can cross. 

The sWitch can assign inputs to outputs in two possible ways 
shown in figure 2. A can be assigned to C and B to D. This is 
the "avoidance" switch condition or "off" condition. In the second 
switch condition, A is connected to D and B to C, the "crossover " or 
"on" switch condition. 



"' I 
I 

., 

Figure 1 

Figure 2 

Figure 3 

The Ladder 

., 

0 

I 

A 

1 0 

I I 

0 1 

I I 

C 

D 

S4 

L4 
S5 

0 1 

I I 

0 0 

I I 

A 

B 

1 

I to 

1 1 

I I t o+ 'T 

closed loop 

Avoidance 
conditiqn (off) 

C A 

B 

61 

Crossover 
condition (on) 

C 

D 



i 

• • 

68 

These sw i tches can be incorporated as linking mechanisms between 
shift register storage loops. Shown in figure 3 is a set of six 
loops connected by five switches S1 to S5, with a furt her switch SO 
serving as an inputloutput switch. Such an arrangement has been 
entitled a "ladder". 

It will be observed that to get information in or out o f 
loop 5 takes the longest time, while for LO it takes the least. 
(As an as id e - there i s a problem with real bubble devices, that to 
convert from bubble to electrical signal for the outside world 
requires a l ot of chip area, so one cannot affo r d too many such 1/0 
areas.) 

The general ladder has N loops, each with 2M bit s - a 
symmetric structure with arms of equal length. One may define a 
macro cycle for the lad der as the time to rotate one bit around a 
l oop from point A back to point A. (Also cal l it a period.) 

To load say the nth loop can take n macrocycles. First 
loop LO is filled. Switch S1 is set to " crossover " or " on " (from 
default of "avoidance") and LO and L1 are exchanged. L1 a nd L2 can 
be exchanged and the process may proceed to a ny depth in the ladder. 
In t his way N records may be loaded into this pipeline-with­
steering-switc hes. Each record for these purposes i s of 2M bit s 
and each occup i es a loop. If all switches are set off, data will 
be trapped in the loops because data reaching a switch will be 
connected back to its own loop by the switch. The data pattern 
will repeat every period. If a l l switches are set off, the ladd er 
is said to be in the IDLING condition. Obviously with a mec hani s m 
which allows exchanging of records, all permutations of records are 
possible - given eno ugh exchanges. (Record contents of course are 
not sh uf fled and indeed, within the loops may un dergo reflection, 
but no matter where data records have been stored and no matter ho w 
many reflections have been experienced when the data emerges from 
the 1/0 switch it is as it was when it went in). 

One can consider the ladder system as a basis f or a 
multilevel storage hierarchy. In figure 3, the loop on top, LO 
enjoys t he easiest access, while L5 has the worst. The principle 
of storage management says that if one wants to get some thing fr om 
the middle, say L4, one should get it and move everything else down 
one notch. This is the most-recently-used demotion in a two-level 
hierarchy. Dynamic storage management says that loop labels are 
really indicators of depth of loop. If the record from loop 4 is 
needed it is necessary to perform what is known as " topping " fr om 
loop 4 t o t he top. This is a permutation operation and, therefore 
mu st be capable of being done with the system described. Figur e 4 
demonstrates how a record "E" can be brought i nto the top loop 
(occupied initially by " A"). At time t ,the switch between "E" 
and "D" is changed to "crossover" and E and D begin to exc hange . 
One period later at t +T, the next switch up the ladder is changed 
to "crossover" and the first switch returned to " avoidance ". At t 
+2T the next switch pair changes, and so on. After four periods, 
the record E is trapped in t he top l oop , and al l records formerly in 
loops a bove E have been demoted by one level. Toppi ng from a depth 
k (to a depth 0) takes exact l y k periods by e xchange. However, by 
a single extension of the exchange idea it is possible to improve on 
k periods. 



., ., 0' 0' 

j: 

to to+T to+2T to+3T to+4T 
69 

A A A A E 

" B B B E A 

C C E B B 

D E C C C 

E D D D D 

L4 F F F F F 

' . 
~ 

Figure 4 Topping from depth k to depth ¢ 

" I 

a ) b) 

Figure 5 Sli thering 



-, -, 

70 

Slithering 

It is reasonable to require that data in a buried loop 
should take the shortest path to the top. In figure 5b, data in 
Qn& arm of the selected loop can reach the top loop in the shortest 
time by taking the path shown, that is by traversing only one of the 
two arms of each intervening loop. Thus if the switch connecting 
the selected loop to the next higher loop is switched to "crossover" 
at time t , and subsequent switches are set to "crossover" at t 
+T/2, t + 2T/2, t + 3T/2 etc. data from one arm of the selected loop 
(the two arms assumed equal in length in a loop) will be transferred 
to the top loop as required . Displaced "arm" data from each loop 
traversed will be transferred down . So topping from a depth of k 
using the "slithering" approach requires (k+1)/2 periods - the extra 
half period to allow data to curl over in the top loop. This of 
course compares with k periods for loop exchange. 

Sorting 

Having got this far with storage management one is tempted 
to try to increase the operations which can be done . For example, 
why not attempt something else which is of a permutation nature, 
namely sorting. Sorting can consume 25% of a l arge machine's time 

a quotation from Knuth . Classical sorting time is proportional 
to Nlog N with N records and one machine. Now, with the 
possibility of multiprocessors giving simultaneous compare and 
moves, sorting time might be made more linear with N. As has 
already been s hown, data movement can be achieved with the ladder by 
the appropriate setting of switches, at the correct times. But 
what sets the switches at the right times? The bubble memory 
described is not up to the job so it probably requires a 
microcomputer (packaged in close proximity to the information). 
However, before describing the details of such microcomputer 
control, it is appropriate to mention the Qdd ~ven Iransposition 
~ort (OETS). 

Starting with a set of N records, there are two ways of 
grouping these records by neighbouring pairs as shown in figure 6. 
It may happen that one or both of the end records are not paired. 
Starting from either pairing scheme, the components of each pair are 
compared and conditionally permuted. Using the alternate pairing 
scheme, the pairs are again compared and conditionally permuted. 
This process is repeated until the N records are sorted. Figure 7 
shows an example of the sorting of six records. There is a theorem 
which says that complete sorting can be accomplished in N stages. 

It would appear that sll.:!h a sorting scheme could be 
implemented as a pipeline, but at great cos\-in )terms of hardware. 
Regardless of whether N were even or odd , ~N-I_ comparators would 
be required by such a pipeline as well as N Zstorage positions, N 
input ports and N output ports. Such a pipeline would be too good 
and just too expensive. 

If the example of figure 7 is re-examined, it is clear 
that the sort has repeated sections. An even/odd sort pair is 
followed by an even/odd sort pair followed by an even/odd sort pair. 
This suggests the possibility of using one section three times 
(three for this specific example). This folding back would 



• • 

71 

increase the overall cycle time when compared with the full pipeline 
but it would reduce the hardware by roughly a factor of three. 
Figure 8 shows this pictorially. Figure 9 shows only the 
transpositions of figure 8 and it immediately suggests the further 
folding or telescoping of figure 10. In the latter, switch sets 
"a" and "b" are activated in alternate cycles. Hence an OET sort 
can be implemented by using a single set of switch elements N times, 
taking care only to activate alternate switch sets each cycle. 
Such a scheme closely resembles the ladder described above, with its 
storage loops (latches) connected by avoidance/crossover switches. 
With the ladder, however, data is loaded via the "top" storage loop 
instead of directly into the latches is envisioned above (figures 11 
and 12). This introduces an overhead in time not present in the 
pipelined sorter outlined above. Nevertheless it is possible to 
compare directly the pipelined scheme and the ladder scheme 
(delaying for now the explanation of how the necessary comparisons 
and switch make/break decisions are made). Table 1 draws 
comparisons. 

Note the great reduction in hardware in the case of the 
ladder even though a sort can take the same time in each case (with 
the pipeline, throughout is N times). 

It is appropriate now to turn to the problem of a possible 
comparison and switch-setting mechanism. This me chanism might well 
be implemented with a microprocessor, packaged in close proximity to 
the ladder. Such a scheme is shown in figure 13. Data is loaded 
into the ladder and "keys", corresponding to the ingoing data 
records, are deposited with the micropr ocessor. The processor 
permutes the keys based on an odd/even transposition sort, and 
generates a number of inputs to a status register. The status 
register bits control the settings of the avoidance/crossover 
switches of the ladder. Thus in principle the records in the 
ladder can be sorted - and in linear time. Of course the processor 
needs to be faster than the record movement in the ladder, something 
like a factor of N faster. Although the "keys" should be as small 
as possible, the associated records can be as large as need be since 
there is nothing to prevent parts of records being held in parallel 
ladders, under common status-register control. 

A somewhat embarassing problem is raised by this 
ladder/CPU sorter and that is that the OET sort can be achieved in N 
perio~s using exchange (and~ using slithering) but input takes 
N perlods by exchange and output N periods by exc hange. He nce t he 
sorting, embarassingly, is too fast taking less time than 
input/output. The answer may be that in the future, the data may 
already be in memory eliminating input/output, or, the sort may be 
hidden in the input/output time - a zero-so~t-time situation. 



., 

72 

CD 
CD 
CD 

EVEN 

a) 

"' 

10n Sort (OEl'S) Odd Even T ransposit' 

0 
G) 

Figure 6 

F 

ODD 

b) 

OEl'S Exam ' pie 

even odd even 

Figure 7 

even odd 

odd even 

repeat 3 t· lome s 

Figyre 8 

., 

odd 



• 

73 

Figure 14 details the sorting of four numbers as they are 
passed in and out of a CPU-controlled ladder. The numbers enter in 
the order 3,4,1,2 and emerge in the order 1,2,3,4. Each snapshot 
shows the contents of the loops each half period (period is the 
exchange period). The first few snapshots show the numbers 
slithering into the ladder until "3" occupies the deepest loop 
completely. At this point the CPU control determines whether to 
set the switch at the junction of the deepest and next deepest loop 
to "crossover" or "avoidance". In this example this switch is set 
to "crossover" and in half a period "4" reaches the deepest part of 
the deepest loop and "3" appears at the switch between the highest 
loop and the middle loop. Now the CPU allows the switch into the 
deepest loop to remain at "crossover" and the other loop-connecting 
switch is set to "avoidance". Thus at the end of this half period, 
"4" is trapped in the deepest loop "3" in the middle loop and "1" in 
the highest loop. In the next half period "1" and "2" begin to 
exchange and "3" and "4" remain trapped. In the following half 
period, "1" emerges completely from the ladder and "2", "3" and "4" 
remain trapped in successively deeper loops. In successive half 
periods the other numbers follow "1", sorted in the order required. 
Note that the sorting takes place within the input/output time. 

Concluding Remarks 

This final section is an attempt to draw together some of 
the conclusions of previous sections and to suggest the general way 
forward. Comparison of pipelining and synchro-parallelism has 
shown that both systems are tightly coupled and Q£n complement one 
another, but that both suffer wasted computing power, the result of 
lack of flexibility. Large Scale Integration (LSI) of logic 
elements can help by making tightly coupled systems more economical 
and can add decoding power to processing elements (for synchro­
parallelism) and can permit the installation of tagging to postpone 
drastic actions in pipelines such as draining. Also LSI can 
provide general-purpose "personalisable" modules from which special 
pipeline stages can be made by changing read-only memory~ 

The future promise should be in a linked network of 
general-purpose micro-modules in a tree architecture with localised 
linkages to reduce the total amount of communication cost. The 
speaker, in 1972, gave the name "Polycentric Computing" to the 
relatively loosely-coupled system. 



·, ., ., 

74 

~/ 
>{~ • 

X~ 
X. ~ 

X· 
X • ){~ 

• >:. x· 
){. • x· 

~ • 
Figure 9 Figure 10 Figure 11 Figure 12 

Pipeline sorter Ladder sorter 

Comparators needed N(N-1 )/2 N-1 

Storage (latches ) N2. N 

Inputs N 1 

Outputs N 1 

Repetitions None N-1 

I/O time None yes 

Duration Nstages Nstages 

Table 1 

key CPU 

Figure 13 



" 

Figure 14 

" 

" \ 
T 3T 

to t.,+ '2 to+ T to+ 2" t + 7T ---J 
V1 



., ., "' "' 

76 

In the con t ex t of a system whic h is loosely coupled, 
H. St o ne d e s c rib e s a pr oblem. In it he has two processors and n 
program modules spread be t ween th e two . Run time on both. 
processo rs i s kn own . He pr oposes that the calling cost between 
modules in the s ame proc ess or be ze ro , while there is a previously 
known cost wh e n ca l lin g ac ross t he boundary between processors. 
The question is ho w to assi gn module s to processors. The answer is 
that the problem is the same a s the multiflow graph problem, so that 
time proportional to n is need e d t o solve for an optimal assignment 
of modules. (Dinic sugge s t n) . If the problem is extended to 
three or more processors, the o ptimal assignment is unsolved. So, 
except when the computing problems being solved on such a system are 
very well known it is difficult to get optimum solutions. One must 
be content with approximate good solutions. Nevertheless, there 
are still at least two vector processing problems suitable for 
synchr o-paral l el or pipe l i ne machines - the present Illiac IV and ' 
future machines. 

The elementary pipeline is becoming a commercial reality 
with charge-coupled devices (CCD) and magnetic bubbles. There are 
already 92k-bit bubble memories on the market and within two years, 
bubble memories with a capacity of a million bits are expected. 
However, there are still problems to be solved with the necessary 
steering logic. They are tricky problems and will have simple 
solutions - just need to find them. 

The right sort of micro-processor for these 
memories is probably not available or planned, so one 
important questions for the future may be how to influence 
micro-processor design to achieve the goals promised by the 
and CCD technology. 

References 

bubble 
of the 

future 
bubble 

Hallin, T. G. and Flynn, M. J. 1972, Pipelining of Arithmetic 
Functions I.E.E.E. Trans . on computing C-21 : 880-86. 

Senzig, D. N. and Smith, R. V. 1965. 
Array Processing. AFIPS Conf . Proc. 

Computer Organisation for 
1965 FJCC 27 (Part 11) 117-28. 


