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SPECIFICATION OF DIGITAL SYSTEMS 

G. A. Blaauw 

Rapport e ur: Dr. S . K. Shr i vastava 

Introduction 

The design of a digital system starts with the 
specification of the architecture of the system and continues with 
its implementation and its subsequent realisation. The talk 
concentrates upon the first two design areas, as is shown in figure 
1. For reference the subjects taught in our department are given 
in figure 2. 

Design areas 

A few definitions are in order, . so as to avoid any 
confusion (see figure 3). By architecture I mean ' appearance to 
the user' . it is the functional s pecification of the system (its 
behavioura l appearance). By implementation I mean 'internal 
logical organisation which performs the functions specified by the 
architecture ' and by realisation I mean 'the physical components in 
which the logical organisation is embodied'. The main 
characteristics of these areas in terms of product, language 
requirements, purpose, and quality are shown in figure 4. For 
example, from the figure we see that the purpose of architecture is 
to provide a function. Once that function is established, the 
purpose of implementation is to give a proper cost-performance and 
the purpose of realisation is to build and maintain the appropriate 
logical organisation. 

As an example, when we design a multiprocessing system, we 
must ask the question ' Do we mean the implementation, the 
architecture or both?' In case we talk about the architecture we 
want a system with the outer appearnace of multiple processes going 
on simultaneously . The system need not be implemented that way -
quite often there is on l y one processor available. When looking at 
multiprocessing from an implementation point of view, our purpose is 
reliability or performance . If may be necessary to adhere to the 
outer appearance of a single process (see figure 5). 

Design languages 

The many types of design descriptions that are employed 
are summarised in figure 6. The written description can not be 
mi s sed an info rmal de sc ription i s essential. It is ambiguous, 
however- what is more, any attempts to make it unambiguous ma y make 
the description unreadable like an insurance policy! Timing 
diagrams, fl o w diagrams etc. are useful as an illus t ration. They 
supplement the written descriptio n, but sin c e they are not complete 
they do not remove the ambiguities . What is necessary is to 
supplement the written description with a rigorous description in an 
irredundant formal language. It is preferable to use both methods 
side by side so that possible misconceptions in the written text and 
the illustrations can be resolved by the formal language 
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specifications, wherea s the latter in turn can b e e xplained by text. 

Ma ny formal languages are available for t he desc ription of 
hardware design; a few are shown in figure 7. Two o f these 
languages have been used to some exte nt in actual machine design . 
Bell and Newel's PMS/ISP has been used for the PDP11 ser ies of 
computers and Iverson's APL has been used for the description of the 
IBM system/360 . 

Desiderata 

A hardwa re design language 
lev el, (ii) conversational, (iii) 
structured (see figure 8). 

should be (i ) sufficiently high 
general purpose, and (iv) 

(i) High Level: The language should be able to express easily , and 
directly the desired fu nction . Also, it should avoid suggesting an 
implementation (fo r example, by introducing unnecessary concepts). 
It sho uld avoid involved or clever language constructs and it should 
be understandable to the users (that is, readable, pronouncable and 
not cryptic) . 

(ii) Conversational: A language that is available conversationally 
aids the description by the elimination of errors through syntax 
checks . Also, the description is executable and thus demon st rates 
the architecture. It is of course not possible to verify the 
architecture - there is nothing to compare it with. What is 
possible is to check the implementation against the architecture . 
By selectively substituting im plementation for arc hit ecture one can 
perform efficient simulation experiments. 

(iii) General purpose When the language is ge neral purpose the 
same language can be used for all levels of design (architecture, 
implementation, realisation) . Similarly, design tools necessary 
for testing, collecting performance statistics, editors, tracers 
etc . can also be built using the same language . Thus a general 
purpose l anguage represents a desirable economy of thought for the 
designer. 

(iv) Structured A language that exhibits good structure permits 
the designer to show the structure of hi s design . It allows the 
designer to develop his specifications in a top-down way so that 
design details can be developed and expressed gradually. 

The Digital Technique sub -department of the Twente 
University o f Technol og y uses APL for the design of architecture and 
implementati on (properly supplemented by a written description and 
illustrations). I have found that it adequately meets the above 
criteria . 

Specification of the Implementation 

The implementation is derived from the formal 
specification of the architecture. A first step may be to restate 
the architecture. For example, the architecture of a 
multiplication is g iven in figure 9(a) and is restated in figure 
9(b). In figure 9(a), the two ' s compleme n t interpretations of a 
signed in teger , multiplier and multiplicand are multiplied to get a 
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product. The arch i tecture spe c ifies that the product is 
represented by the numb e r o f digits which is the sum of the lengths 
of multipli er and th e multiplicand. Figure 9(b) on the other hand 
shows an e quiv alent multiplier architecture with extended operands . 
By extending the ope r a nd s the representations can be treated as 
unsigned binary numbers, which simplifies the implementation. 

The transition fr om such a (restated) architecture to an 
implementation is usually not self evident. For example the use of 
positional r epresentatio n of most arithmetic processes originally 
required considerable imagination and many centuries of development, 
although by now it is familiar. The basic implementation 
algorithm, such as a rippl e adder, which bridges the gap between 
architecture and implementation is called the initial implementation 
algorithm. 

The architec ture , the initial implementation, as we ll as 
all subsequent d es i gn algorithms can formally be stated in APL . 
Therefore the algorithms can be simulated and verified against each 
other, giving a controlled design process. 

The initial algorithm uses operators that represent 
available components, such as AND and OR circuits, or system 
components, such as adders, counters, and registers of which the 
implementation is known . The initial algorithm can be modified to 
obtain a first rough opt imum of cost and performance (for example a 
' restoring division' can be modified to 'non-restoring division ' ). 

Once an opt imal initial algorithm is obtained it can be 
separated in two parts: datapath and its control (see figure 10) . 
The datapath contains gates which direct the flow of information 
through the path . The control specifies the setting of these 
gates. 

Specification of the architecture 

Quality . 

A fir st subject concerned with the specification of an 
architecture is its evaluation. A good architecture should be 
consistent. that is with a parti a l knowledge of the system the 
remainder of the system can be predicted . The use of a consistent 
architectural specification leads us not to link what is 
independent, not to introduce wh a t is immaterial, and not to 
restrict what is inherent, which are the concepts of orthogonality. 
propriety, and generality. 

The stack description of the Burroughs B5500 illustrates 
how superfl uou s imp l ementation details can enter the architectural 
specification . The B5 500 stack is described as a 48-bit A 
register, a 48-bit B register, and a portion of core. Validity of 
information in the A and B register s is indicated by the control 
flip-flops AROF and BROF respectively. A 15-bit S register (stack 
pOinter) addres ses the top word in the core portion of the stack . 
Figure 11 shows that four configurations are possible, which 
functionally are all equivalent. 

Every time some word of information is pushed on or popped 
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from th e stack , on e o f th ese f o ur possible configurations must be 
specified. The B5 500 do c umentation manual, ho wev e r, does not 
specify explicitly the resulting stack confi guratio n. Presumably 
in the interest of brevity all changes of the stac k are specified by 
the phra se : ' the d escr ip t i o n of the ope r ations assumes the necessa ry 
stack adj ustments '. This already suggests that it is unimportant 
to know whi ch co n figuration at a particular moment is actual . 
Indeed, at a functional level it is of no interest to know of the 
existence o f A or B registers: all we need to know is that there is 
a conceptual STACK, from which information can be popped or on which 
information can be pushed , irres pec tive whether part of this STACK 
resid es in registers, and other parts in core. 

As another e xamp le , figure 12 shows an 
th e addressing of I NT EL 8080 . The 8080 addresses 
right to l eft. The byte addressing is al s o fr om 
memory . I n registers, however, it i s from left to 

Steps 

inconsistency in 
its bits from 

right to left in 
right. 

Th e a r chitectural des ign process may be vi ewe d as a top 
down pro cess , as de pi cted in fi gure 13. We start with a list of 
user primitives - elementary fun ctions , which the user needs to 
express him self directly and completely. At a lower level sets of 
architectural alte rn a tiv es are propose d . Th e y are evaluated by 
exp r essing the primitives in terms of these alternatives . Also the 
initial implementations fo r these alte rn at ives are developed. Thus 
the ability t o use and to build the a r c hitecture is tested. As an 
example consider the simple case of integer addition . The starting 
point for th e architecture is so me statement like: " we hav e two 
o pe rands on which an operatio n is performed to give a result " . The 
first step at th e architectural level is to realise that we do not 
work with numb e r s but their representation (see figure 14) . One 
starts with bit patterns which a re inte rpreted as numbers . To 
store the r esult , o n e ' goes down ' to its r e presentation. Th ere are 
exceptions however - as shown by the dotted line - when the result 
is n o l onger in the representable domain. What is ne e d ed is a 
domain function to bring the result b ac k into the representabl e 
domain. The design of such a function i s a c rucial aspect of the 
addition arc hit ecture. 

Starting with the mathematical c oncepts of ad d ition , we 
can decompos e the a r c hitecture in (i) interpretation, (ii) 
representation, (iii) o pera ti on, (iv) domain function , and (v) 
signalling (for indicating whether the result is + , - , 0 , has an 
overfl o w, or a carry). 

Since our representation r a nge i s limited, we must be able 
to extend it - hence we must satis f y the extended addition user 
primitive . We take the repr e senta tion of multiple fields, 
in te rpret the m as numbers , add t h e m and r epresen t them ag ain. The 
procedure f o r this primitive mu st use the no rmal inst ructions like 
add. Thu s the add instr uction should s ignal a carry o ut and the 
carry must be added in a subsequent ' add with carry ' operation. If 
we hav e signalling in single precision we should have the same 
signalling in extended precision. As far as I know , n o machine 
does this properly (that is, tells wh e ther the extended result is +, 
- o r 0). The solution is to add t h e carry and set the signals such 
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that their previous value is taken into account. 

Questions 

Professor McKeeman questioned the suitability of APL as a 
specification language on the grounds that is not very readable. 
Professor Blaauw conceded that there is the initial temptation to 
'writ e everything in a line '. Every description technique however 
has to be learned so that its tools are used properly. Professor 
Pyle asked whether there is any significant difference between a 
design/specification language and a programming language. The 
speaker replied that in essence there is little difference between 
the two; his remarks, however, apply specifically to the design of 
digital systems . 

With reference to figure 9(a) and (b), Professor Diikstra 
asked the speaker whether he has proved the equivalence between the 
two specifications of the same design . The speaker replied that 
while he has not proved the equivalence, as a designer, he has 
sufficient confidence in their equivalence. (The speaker was in 
error here; he has proved it on pages 74 and 75 of the book 
mentioned below.) Lastly, Professor Randell asked whether the 
speaker ' s recent book (Digital System Implementation, Prentice Hall, 
1976) matches the courses given at his institution. Professor 
Blaauw replied that his book is used as a text book for his course 
on the implementation of digital systems on the system component 
level. 
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WORK AT TWENTE TECHNICAL UNIVERSITY 
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DESIGN LANGUAGES 

DESIDERATA 

SPECIFICATION OF THE IMPLEMENTATION 

STEPS 

VERIFICATION 

SPECIFICATION OF THE ARCHITECTURE 

QUALITY 

STEPS 



., ., 

SUB-DEPARTMENT OF DIGITAL TECHNIQUE 35 

TWENTE UNIVERSITY OF TECHNOLOGY 

.ARCHITECTURE 
5 COMPUTERS 

5 INTERFACES 
(5) NETWORKS 

IMPLEMENTATION 

3 COMBINATORIAL AND 
SEQUENTIAL CI RCUITS 

4 SYSTEM COMPONENTS 

REALISATION 
PLACEMENT AND 
ROUTING 

5 REALISATION WITH 
MICROPROCESSORS 

BLAAUW 
RAATGERINK 
GEERDINK 
VISSERS 
V.D. DOLDER 

BONNEMA 
V. D. KNAAP 

BLAAUW 
V. D. DOLDER 

AL 
V.D. KNAAP 

WILMINK 

Legend: The number i ndicat es the year i n the curriculum in which the l ecture is 
given. The name of t he l ectur er i s under lined. Other names i ndi cate 
staff engaged in r esear ch i n t his area. . . 

( ) i n preparati on. 

Figure 2 
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SOME DEFINITIONS 

ARCHITECTURE 

POSITIVE: APPEARANCE TO USER 
NEGATIVE : INNER STRUCTURE NOT KNOWN 

IMPLEMENTATION 

LOGICAL STRUCTURE 

WHICH PERFORMS ARCHITECTURE 

REALISATION 

PHYSICAL STRUCTURE 
WHICH EMBODIES IMPLEMENTATION 

Figure 3 
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IMPLEMENTATION 

ARCHI TECTURE 

MULTIPROCESSING 

PURPOSE 

RELIABILITY 
PERFORMANCE 

ORTHOGONALITY 
PROPRIETY 

Figure 5 
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COMMENTS 

NEEDED 

ILLUSTRATION 

HIPO'S TOOL 

DECISION TABLES 

FORMAL STATEMENTS 

Figure 6 : Description of design 
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40 A FEW HARDWARE DESIGN LANGUAGES 

1952 RTL, REED 

1962 APL, IVERSON 

1964 RTL, SCHORR 
LOTIS, SCHLAEPPI 

1965 COL, CHU 

1966 CASSANORE, MERMET 

1967 DOL, DULEY & DIETHEYER 

1968 AHPL, HILL & PETERSON 

1969 ALERT, FRIEDMAN 

1970 PMS, BELL & NEWELL 
ISP 

1973 AHPL, HILL & PETERSON 

ALSO: HARGOL, APDL. HDL, CONLAN 

Fi gure 7 
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HIGH LEVEL 
CONVERSA nONAL 
GENERAL 
STRUCTURED 

Figure 8 
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~ ARCHMPY;PRODUCT 
PRODUCT -+ (TWOC VL) + (TWOC MR) x TWOC MD 
PD1'-«p MR,MD)p2)T PRODUCT 

" N+-TWOC R 
[1] N +-2 J.(-H R), R 

[ 1] 
[2J 
[3] 
[4J 
[5] 
[6J 
[7J 

PROGRAM 3 -1 MULTIPLIER ARCHITECTURE 

Figur e 9(a) 

. 
'V ARCHMPYX; VLX;MRX;MDX; PRODUCT 

'V 

A OPERAND EXTENSION 
VLX~(p MR) EXTEND VL 
MRX+-(pMD) EXTEND MR 
MDX~(pMR) EXTEND MD 
A MULTI PLICATION 
PRODUCT+-(21.. VLX)+(21..MRX)x 2..LMDX 
PD~«p MRX)p 2)T PRODUCT 

'V RX+-N EXTEND R 

'V 

RX+-R [NpO] ,R 

PROGRAM 3 - 3 MULTI PLIER ARCHITECTURE 
WITH EXTENDED OPERAND~ 

Fi gure 9(b) 
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CONTROL 
~ 

test signa ls g ate setting 

DATAPATH 

Fi gure 10 : Relatior, between datapath and contro l 
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CONFIG. 1 2 3 4 

AROF OJ 1 

',BROF [JJ 1 

, Sreg-

K 1 Areg 

L IBreg 

OJ I K 1 [QJ IL...------II [QJ IL...------I 
[QJ "--I ----II IT] 1 K I [QJ ,---I ----I 
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core 

L -- L 
M M 

N N 

Figure 11 : Possible configurations of words 
in a B5500 stack 
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DIGIT ADDRESSI NG : 

HIGH LOW 

7 o 7 o 

BYTE ADDRESSING: 
IN MEMORY 

HIGH LOW 

65 4 64 

IN REGISTERS 

I HIGH LOW 

4 ---. 5 

Figure 12 : Intel 8080 Addressing Direction 
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USER PRIMITIVES 

1 
PROCEDURES 
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PROCEDURES 

INITIAL IMPLEMENTATION 

.. 

Figure 13 : Des i gn Process 
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