
29

SPECIFICATION OF DIGITAL SYSTEMS

G. A. Blaauw

Rapport e ur: Dr. S . K. Shr i vastava

Introduction

The design of a digital system starts with the
specification of the architecture of the system and continues with
its implementation and its subsequent realisation. The talk
concentrates upon the first two design areas, as is shown in figure
1. For reference the subjects taught in our department are given
in figure 2.

Design areas

A few definitions are in order, . so as to avoid any
confusion (see figure 3). By architecture I mean ' appearance to
the user' . it is the functional s pecification of the system (its
behavioura l appearance). By implementation I mean 'internal
logical organisation which performs the functions specified by the
architecture ' and by realisation I mean 'the physical components in
which the logical organisation is embodied'. The main
characteristics of these areas in terms of product, language
requirements, purpose, and quality are shown in figure 4. For
example, from the figure we see that the purpose of architecture is
to provide a function. Once that function is established, the
purpose of implementation is to give a proper cost-performance and
the purpose of realisation is to build and maintain the appropriate
logical organisation.

As an example, when we design a multiprocessing system, we
must ask the question ' Do we mean the implementation, the
architecture or both?' In case we talk about the architecture we
want a system with the outer appearnace of multiple processes going
on simultaneously . The system need not be implemented that way -
quite often there is on l y one processor available. When looking at
multiprocessing from an implementation point of view, our purpose is
reliability or performance . If may be necessary to adhere to the
outer appearance of a single process (see figure 5).

Design languages

The many types of design descriptions that are employed
are summarised in figure 6. The written description can not be
mi s sed an info rmal de sc ription i s essential. It is ambiguous,
however- what is more, any attempts to make it unambiguous ma y make
the description unreadable like an insurance policy! Timing
diagrams, fl o w diagrams etc. are useful as an illus t ration. They
supplement the written descriptio n, but sin c e they are not complete
they do not remove the ambiguities . What is necessary is to
supplement the written description with a rigorous description in an
irredundant formal language. It is preferable to use both methods
side by side so that possible misconceptions in the written text and
the illustrations can be resolved by the formal language

30

specifications, wherea s the latter in turn can b e e xplained by text.

Ma ny formal languages are available for t he desc ription of
hardware design; a few are shown in figure 7. Two o f these
languages have been used to some exte nt in actual machine design .
Bell and Newel's PMS/ISP has been used for the PDP11 ser ies of
computers and Iverson's APL has been used for the description of the
IBM system/360 .

Desiderata

A hardwa re design language
lev el, (ii) conversational, (iii)
structured (see figure 8).

should be (i) sufficiently high
general purpose, and (iv)

(i) High Level: The language should be able to express easily , and
directly the desired fu nction . Also, it should avoid suggesting an
implementation (fo r example, by introducing unnecessary concepts).
It sho uld avoid involved or clever language constructs and it should
be understandable to the users (that is, readable, pronouncable and
not cryptic) .

(ii) Conversational: A language that is available conversationally
aids the description by the elimination of errors through syntax
checks . Also, the description is executable and thus demon st rates
the architecture. It is of course not possible to verify the
architecture - there is nothing to compare it with. What is
possible is to check the implementation against the architecture .
By selectively substituting im plementation for arc hit ecture one can
perform efficient simulation experiments.

(iii) General purpose When the language is ge neral purpose the
same language can be used for all levels of design (architecture,
implementation, realisation) . Similarly, design tools necessary
for testing, collecting performance statistics, editors, tracers
etc . can also be built using the same language . Thus a general
purpose l anguage represents a desirable economy of thought for the
designer.

(iv) Structured A language that exhibits good structure permits
the designer to show the structure of hi s design . It allows the
designer to develop his specifications in a top-down way so that
design details can be developed and expressed gradually.

The Digital Technique sub -department of the Twente
University o f Technol og y uses APL for the design of architecture and
implementati on (properly supplemented by a written description and
illustrations). I have found that it adequately meets the above
criteria .

Specification of the Implementation

The implementation is derived from the formal
specification of the architecture. A first step may be to restate
the architecture. For example, the architecture of a
multiplication is g iven in figure 9(a) and is restated in figure
9(b). In figure 9(a), the two ' s compleme n t interpretations of a
signed in teger , multiplier and multiplicand are multiplied to get a

• •

31

product. The arch i tecture spe c ifies that the product is
represented by the numb e r o f digits which is the sum of the lengths
of multipli er and th e multiplicand. Figure 9(b) on the other hand
shows an e quiv alent multiplier architecture with extended operands .
By extending the ope r a nd s the representations can be treated as
unsigned binary numbers, which simplifies the implementation.

The transition fr om such a (restated) architecture to an
implementation is usually not self evident. For example the use of
positional r epresentatio n of most arithmetic processes originally
required considerable imagination and many centuries of development,
although by now it is familiar. The basic implementation
algorithm, such as a rippl e adder, which bridges the gap between
architecture and implementation is called the initial implementation
algorithm.

The architec ture , the initial implementation, as we ll as
all subsequent d es i gn algorithms can formally be stated in APL .
Therefore the algorithms can be simulated and verified against each
other, giving a controlled design process.

The initial algorithm uses operators that represent
available components, such as AND and OR circuits, or system
components, such as adders, counters, and registers of which the
implementation is known . The initial algorithm can be modified to
obtain a first rough opt imum of cost and performance (for example a
' restoring division' can be modified to 'non-restoring division ').

Once an opt imal initial algorithm is obtained it can be
separated in two parts: datapath and its control (see figure 10) .
The datapath contains gates which direct the flow of information
through the path . The control specifies the setting of these
gates.

Specification of the architecture

Quality .

A fir st subject concerned with the specification of an
architecture is its evaluation. A good architecture should be
consistent. that is with a parti a l knowledge of the system the
remainder of the system can be predicted . The use of a consistent
architectural specification leads us not to link what is
independent, not to introduce wh a t is immaterial, and not to
restrict what is inherent, which are the concepts of orthogonality.
propriety, and generality.

The stack description of the Burroughs B5500 illustrates
how superfl uou s imp l ementation details can enter the architectural
specification . The B5 500 stack is described as a 48-bit A
register, a 48-bit B register, and a portion of core. Validity of
information in the A and B register s is indicated by the control
flip-flops AROF and BROF respectively. A 15-bit S register (stack
pOinter) addres ses the top word in the core portion of the stack .
Figure 11 shows that four configurations are possible, which
functionally are all equivalent.

Every time some word of information is pushed on or popped

•

32

from th e stack , on e o f th ese f o ur possible configurations must be
specified. The B5 500 do c umentation manual, ho wev e r, does not
specify explicitly the resulting stack confi guratio n. Presumably
in the interest of brevity all changes of the stac k are specified by
the phra se : ' the d escr ip t i o n of the ope r ations assumes the necessa ry
stack adj ustments '. This already suggests that it is unimportant
to know whi ch co n figuration at a particular moment is actual .
Indeed, at a functional level it is of no interest to know of the
existence o f A or B registers: all we need to know is that there is
a conceptual STACK, from which information can be popped or on which
information can be pushed , irres pec tive whether part of this STACK
resid es in registers, and other parts in core.

As another e xamp le , figure 12 shows an
th e addressing of I NT EL 8080 . The 8080 addresses
right to l eft. The byte addressing is al s o fr om
memory . I n registers, however, it i s from left to

Steps

inconsistency in
its bits from

right to left in
right.

Th e a r chitectural des ign process may be vi ewe d as a top
down pro cess , as de pi cted in fi gure 13. We start with a list of
user primitives - elementary fun ctions , which the user needs to
express him self directly and completely. At a lower level sets of
architectural alte rn a tiv es are propose d . Th e y are evaluated by
exp r essing the primitives in terms of these alternatives . Also the
initial implementations fo r these alte rn at ives are developed. Thus
the ability t o use and to build the a r c hitecture is tested. As an
example consider the simple case of integer addition . The starting
point for th e architecture is so me statement like: " we hav e two
o pe rands on which an operatio n is performed to give a result " . The
first step at th e architectural level is to realise that we do not
work with numb e r s but their representation (see figure 14) . One
starts with bit patterns which a re inte rpreted as numbers . To
store the r esult , o n e ' goes down ' to its r e presentation. Th ere are
exceptions however - as shown by the dotted line - when the result
is n o l onger in the representable domain. What is ne e d ed is a
domain function to bring the result b ac k into the representabl e
domain. The design of such a function i s a c rucial aspect of the
addition arc hit ecture.

Starting with the mathematical c oncepts of ad d ition , we
can decompos e the a r c hitecture in (i) interpretation, (ii)
representation, (iii) o pera ti on, (iv) domain function , and (v)
signalling (for indicating whether the result is + , - , 0 , has an
overfl o w, or a carry).

Since our representation r a nge i s limited, we must be able
to extend it - hence we must satis f y the extended addition user
primitive . We take the repr e senta tion of multiple fields,
in te rpret the m as numbers , add t h e m and r epresen t them ag ain. The
procedure f o r this primitive mu st use the no rmal inst ructions like
add. Thu s the add instr uction should s ignal a carry o ut and the
carry must be added in a subsequent ' add with carry ' operation. If
we hav e signalling in single precision we should have the same
signalling in extended precision. As far as I know , n o machine
does this properly (that is, tells wh e ther the extended result is +,
- o r 0). The solution is to add t h e carry and set the signals such

• •

33

that their previous value is taken into account.

Questions

Professor McKeeman questioned the suitability of APL as a
specification language on the grounds that is not very readable.
Professor Blaauw conceded that there is the initial temptation to
'writ e everything in a line '. Every description technique however
has to be learned so that its tools are used properly. Professor
Pyle asked whether there is any significant difference between a
design/specification language and a programming language. The
speaker replied that in essence there is little difference between
the two; his remarks, however, apply specifically to the design of
digital systems .

With reference to figure 9(a) and (b), Professor Diikstra
asked the speaker whether he has proved the equivalence between the
two specifications of the same design . The speaker replied that
while he has not proved the equivalence, as a designer, he has
sufficient confidence in their equivalence. (The speaker was in
error here; he has proved it on pages 74 and 75 of the book
mentioned below.) Lastly, Professor Randell asked whether the
speaker ' s recent book (Digital System Implementation, Prentice Hall,
1976) matches the courses given at his institution. Professor
Blaauw replied that his book is used as a text book for his course
on the implementation of digital systems on the system component
level.

.,

34

SPECIFICATION OF DIGITAL SYSTEMS

INTRODUCTION
WORK AT TWENTE TECHNICAL UNIVERSITY

DESIGN AREAS

ARCHITECTURE, IMPLEMENTATION,

REALIZATION

DESIGN LANGUAGES

DESIDERATA

SPECIFICATION OF THE IMPLEMENTATION

STEPS

VERIFICATION

SPECIFICATION OF THE ARCHITECTURE

QUALITY

STEPS

., .,

SUB-DEPARTMENT OF DIGITAL TECHNIQUE 35

TWENTE UNIVERSITY OF TECHNOLOGY

.ARCHITECTURE
5 COMPUTERS

5 INTERFACES
(5) NETWORKS

IMPLEMENTATION

3 COMBINATORIAL AND
SEQUENTIAL CI RCUITS

4 SYSTEM COMPONENTS

REALISATION
PLACEMENT AND
ROUTING

5 REALISATION WITH
MICROPROCESSORS

BLAAUW
RAATGERINK
GEERDINK
VISSERS
V.D. DOLDER

BONNEMA
V. D. KNAAP

BLAAUW
V. D. DOLDER

AL
V.D. KNAAP

WILMINK

Legend: The number i ndicat es the year i n the curriculum in which the l ecture is
given. The name of t he l ectur er i s under lined. Other names i ndi cate
staff engaged in r esear ch i n t his area. . .

() i n preparati on.

Figure 2

.,
" ..

SOME DEFINITIONS

ARCHITECTURE

POSITIVE: APPEARANCE TO USER
NEGATIVE : INNER STRUCTURE NOT KNOWN

IMPLEMENTATION

LOGICAL STRUCTURE

WHICH PERFORMS ARCHITECTURE

REALISATION

PHYSICAL STRUCTURE
WHICH EMBODIES IMPLEMENTATION

Figure 3

PRODUCT

_ANGUAGE

)URPOSE

UALITY

ARCHITECTURE

PRINCIPLES OF
OPERATION

WRITTEN ENGLISH

IMPLEMENTATION

LOGICAL DESIGN

BLOCK DIAGRAM

FORMAL DESCRIPTION I LOGICAL
EXPRESSIONS

"

REALISATION

RELEASE TO
MANUFACTURI NG

"

LISTS AND DIAGRAMS

FUNCTION COST/PERFORMANCE I BUILD AND MAINTAIN "

CONSISTENCY WIDE SCOPE

Figure 4

RELIABILITY

LV
-.J

"

y

y

y

t

en
'"

IMPLEMENTATION

ARCHI TECTURE

MULTIPROCESSING

PURPOSE

RELIABILITY
PERFORMANCE

ORTHOGONALITY
PROPRIETY

Figure 5

APPEARANCE

ONE PROCESS

SEVERAL
PROCESSES

.,

TYPES OF DESCRIPTION

WRITTEN

TIMING DIAGRAMS

STATE DIAGRAMS

BLOC K DIAGRAMS

FLOW DIAGRAMS

NASSI - SCHNEIDERMAN CHARTS

., .,

39

COMMENTS

NEEDED

ILLUSTRATION

HIPO'S TOOL

DECISION TABLES

FORMAL STATEMENTS

Figure 6 : Description of design

AUTHORATIVE

-, -, -,

40 A FEW HARDWARE DESIGN LANGUAGES

1952 RTL, REED

1962 APL, IVERSON

1964 RTL, SCHORR
LOTIS, SCHLAEPPI

1965 COL, CHU

1966 CASSANORE, MERMET

1967 DOL, DULEY & DIETHEYER

1968 AHPL, HILL & PETERSON

1969 ALERT, FRIEDMAN

1970 PMS, BELL & NEWELL
ISP

1973 AHPL, HILL & PETERSON

ALSO: HARGOL, APDL. HDL, CONLAN

Fi gure 7

I
I

;

\
\ ,

. ,
I
i
I ,
I

DESIDERATA FOR DESIGN LANGUAGES

HIGH LEVEL
CONVERSA nONAL
GENERAL
STRUCTURED

Figure 8

41

oj

-.

42

-,

~ ARCHMPY;PRODUCT
PRODUCT -+ (TWOC VL) + (TWOC MR) x TWOC MD
PD1'-«p MR,MD)p2)T PRODUCT

" N+-TWOC R
[1] N +-2 J.(-H R), R

[1]
[2J
[3]
[4J
[5]
[6J
[7J

PROGRAM 3 -1 MULTIPLIER ARCHITECTURE

Figur e 9(a)

.
'V ARCHMPYX; VLX;MRX;MDX; PRODUCT

'V

A OPERAND EXTENSION
VLX~(p MR) EXTEND VL
MRX+-(pMD) EXTEND MR
MDX~(pMR) EXTEND MD
A MULTI PLICATION
PRODUCT+-(21.. VLX)+(21..MRX)x 2..LMDX
PD~«p MRX)p 2)T PRODUCT

'V RX+-N EXTEND R

'V

RX+-R [NpO] ,R

PROGRAM 3 - 3 MULTI PLIER ARCHITECTURE
WITH EXTENDED OPERAND~

Fi gure 9(b)

"

43

CONTROL
~

test signa ls g ate setting

DATAPATH

Fi gure 10 : Relatior, between datapath and contro l

44

CONFIG. 1 2 3 4

AROF OJ 1

',BROF [JJ 1

, Sreg-

K 1 Areg

L IBreg

OJ I K 1 [QJ IL...------II [QJ IL...------I
[QJ "--I ----II IT] 1 K I [QJ ,---I ----I

M

N

core

L -- L
M M

N N

Figure 11 : Possible configurations of words
in a B5500 stack

- K

L

M

N

-. -. -.

45

DIGIT ADDRESSI NG :

HIGH LOW

7 o 7 o

BYTE ADDRESSING:
IN MEMORY

HIGH LOW

65 4 64

IN REGISTERS

I HIGH LOW

4 ---. 5

Figure 12 : Intel 8080 Addressing Direction

-, -, -,

USER PRIMITIVES

1
PROCEDURES

1
ARCHI TECTURAL
ALTERNATIVES

r
PROCEDURES

INITIAL IMPLEMENTATION

..

Figure 13 : Des i gn Process

RESULT

EXAMPLE: ARITHMETIC

'" • I

/'

.-- -.-

'~
DOMAIN '--....
FUNCTION

- -.. - -..

,

OPERATION - -.. , -c.)~
C) OPERANDS

\
INTERPRETATION

REPRESENTATIoN ,
J..

"

BIT PATTERNS

Figur'e 14 :!:;

I

.,

