29
SPECIFICATION OF DIGITAL SYSTEMS

G. A. Blaauw

Rapporteur : Dr. S. K. Shrivastava

Introduction

The design of a digital system starts with the
specification of the architecture of the system and continues with

its implementation and its subsequent realisation. The |-tallk
concentrates wupon the first two design areas, as is shown in figure
1 For reference the subjects taught in our department are given

in figure 2.

Design areas

A few definitions are in order,. so as to avoid any

confusion (see figure 3). By architecture I mean ‘'appearance to
the wuser' - it is the functional specification of the system (its
behavioural appearance). By implementation I mean 'internal

logical organisation which performs the functions specified by the
architecture' and by realisation I mean 'the physical components in
which the logical organisation is embodied’'. The main
characteristics of these areas in terms of product, language
requirements, purpose, and quality are shown in figure 4. For
example, from the figure we see that the purpose of architecture is
to provide a function. Once that function is established, the
purpose of implementation is to give a proper cost-performance and
the purpose of realisation is to build and maintain the appropriate
logical organisation.

As an example, when we design a multiprocessing system, we
must ask the question 'Do we mean the implementation, the
architecture or both?' In case we talk about the architecture we
want a system with the outer appearnace of multiple processes going
on simultaneously. The system need not be implemented that way -
qulite often there is only one processor available. When looking at
multiprocessing from an implementation point of view, our purpose is
reliability or performance. If may be necessary to adhere to the
outer appearance of a single process (see figure 5).

Design languages

The many types of design descriptions that are employed
are summarised in figure 6. The written description can not be
missed - an informal description is essential. It is ambiguous,
however- what is more, any attempts to make it unambiguous may make
the description wunreadable - 1like an insurance policy! Timing
diagrams, flow diagrams etc. are useful as an illustration. They
supplement the written description, but since they are not complete
they do not remove +the ambiguities. What 1is necessary 1is to
supplement the written description with a rigorous description in an
irredundant formal language. It is preferable to use both methods
side by side so that possible misconceptions in the written text and
the illustrations can be resolved by the formal language

30
specifications, whereas the latter in turn can be explained by text.

Many formal languages are available for the description of
hardware design; a few are shown in figure 7. Two of these
languages have been used to some extent in actual machine design.
Bell and Newel's PMS/ISP has been used for the PDP11 series of
computers and Iverson's APL has been used for the description of the
IBM system/360.

Desiderata

A hardware design language should be (i) sufficiently high
level, (ii) conversational, (iii) general purpose, and (iv)
structured (see figure 8).

(i) High Level : The language should be able to express easily, and
directly the desired function. Also, it should avoid suggesting an
implementation (for example, by introducing unnecessary concepts).
It should avoid involved or clever language constructs and it should
be wunderstandable to the users (that is, readable, pronouncable and
not cryptie).

(ii) Conversational : A language that is available conversationally
aids the description by the elimination of errors through syntax

checks. Also, the description is executable and thus demonstrates
the architecture. It is of course not possible to verify the
architecture - there is nothing to compare it with. What 1is

possible 1s to check the implementation against the architecture.
By selectively substituting implementation for architecture one can
perform efficient simulation experiments.

(iii) General purpose : When the language is general purpose the
same language can be used for all levels of design (architecture,
implementation, realisation). Similarly, design tools necessary
for testing, collecting performance statistics, editors, tracers
ete. can also be built using the same language. Thus a general
purpose language represents a desirable economy of thought for the
designer.

(iv) Structured : A language that exhibits good structure permits
the designer to show the structure of his design. It allows the
designer to develop his specifications in a top-down way so that
design details can be developed and expressed gradually.

The Digital Technique sub-department of the Twente
University of Technology uses APL for the design of architecture and
implementation (properly supplemented by a written description and
illustrations). I have found that it adequately meets the above
criteria.

Specification of the Implementation

The implementation is derived from the formal
specification of the architecture. A first step may be to restate
the architecture. For example, the architecture of a
multiplication is given in figure 9(a) and 1is restated in figure
9(b). In figure 9(a), the two's complement interpretations of a
signed integer, multiplier and multiplicand are multiplied to get a

31

product. The architecture specifies that the product is
represented by the number of digits which is the sum of the lengths
of multiplier and the multiplicand. Figure 9(b) on the other hand

shows an equivalent multiplier architecture with extended operands.
By extending the operands the representations can be treated as
unsigned binary numbers, which simplifies the implementation.

The transition from such a (restated) architecture to an
implementation is usually not self evident. For example the use of
positional representation of most arithmetic processes originally
required considerable imagination and many centuries of development,
although by now it 1is familiar. The basic implementation
algorithm, such as a ripple adder, which bridges the gap between
architecture and implementation is called the initial implementation
algorithm.

The architecture, the initial implementation, as well as
all subsequent design algorithms can formally be stated in APL.
Therefore the algorithms can be simulated and verified against each
other, giving a controlled design process.

The initial algorithm wuses operators that represent
available components, such as AND and OR <circuits, or system
components, such as adders, counters, and registers of which the
implementation is known. The initial algorithm can be modified to
obtain a first rough optimum of cost and performance (for example a
'restoring division' can be modified to 'non-restoring division').

Once an optimal initial algorithm is obtained it can be
separated in two parts: datapath and its control (see figure 10).
The datapath contains gates which direct the flow of information
through the path. The control specifies the setting of these
gates.

Specification of the architecture

Quality.

A first subject concerned with the specification of an
architecture 1is its evaluation. A good architecture should be
consistent, that is with a partial knowledge of the system the
remainder of the system can be predicted. The use of a consistent

architectural specification 1leads wus not to link what is
independent, not to introduce what is immaterial, and not to
restrict what is inherent, which are the concepts of orthogonality,

propriety, and generality.

The stack description of the Burroughs B5500 illustrates
how superfluous implementation details can enter the architectural
specification. The B5500 stack is described as a 48-bit A
register, a U48-bit B register, and a portion of core. Validity of
information in the A and B registers is indicated by the control
flip-flops AROF and BROF respectively. A 15-bit S register (stack
pointer) addresses the top word in the core portion of the stack.
Figure 11 shows that four configurations are possible, which
functionally are all equivalent.

Every time some word of information is pushed on or popped

32

from the stack, one of these four possible configurations must be
specified. The B5500 documentation manual, however, does not
specify explicitly the resulting stack configuration. Presumably
in the interest of brevity all changes of the stack are specified by
the phrase: 'the description of the operations assumes the necessary
stack adjustments'. This already suggests that it is wunimportant
to know which configuration at a particular moment is actual.
Indeed, at a functional level it is of no interest to know of the
existence of A or B registers: all we need to know is that there is
a conceptual STACK, from which information can be popped or on which
information can be pushed, irrespective whether part of this STACK
resides in registers, and other parts in core.

As another example, figure 12 shows an inconsistency in
the addressing of INTEL 8080. The 8080 addresses its bits from
right to 1left. The byte addressing is also from right to left in
memory. In registers, however, it is from left to right.

Steps

The architectural design process may be viewed as a top
down process, as depicted in figure 13. We start with a list of
user primitives - elementary functions, which the wuser needs to
express himself directly and completely. At a lower level sets of
architectural alternatives are proposed. They are evaluated by
expressing the primitives in terms of these alternatives. Also the
initial implementations for these alternatives are developed. Thus
the ability to use and to build the architecture is tested. As an
example consider the simple case of integer addition. The starting
point for the architecture is some statement 1like: "we have two
operands on which an operation is performed to give a result". The
first step at the architectural level is to realise that we do not
work with numbers but their representation (see figure 14). One
starts with bit patterns which are interpreted as numbers. To
store the result, one 'goes down' to its representation. There are
exceptions however - as shown by the dotted line - when the result
is no longer in the representable domain. What is needed is a
domain function to bring the result back into the representable
domain. The design of such a function is a crucial aspect of the
addition architecture.

Starting with the mathematical concepts of addition, we
can decompose the architecture in (i) interpretation, (ii)
representation, (iii) operation, (iv) domain function, and (v)
signalling (for indicating whether the result is +, -, 0, has an
overflow, or a carry).

Since our representation range is limited, we must be able
to extend it - hence we must satisfy the extended addition user
primitive. We take the representation of multiple fields,
interpret them as numbers, add them and represent them again. The
procedure for this primitive must use the normal instructions like
add. Thus the add instruction should signal a carry out and the
carry must be added in a subsequent 'add with carry' operation. If
we have signalling in single precision we should have the same
signalling in extended precision. As far as I know, no machine
does this properly (that is, tells whether the extended result is =+,
- or 0). The solution is to add the carry and set the signals such

33

that their previous value is taken into account.

Questions

Professor McKeeman questioned the suitability of APL as a
specification language on the grounds that 1is not very readable.
Professor Blaauw conceded that there is the initial temptation to
'write everything in a line'. Every description technique however
has to be learned so that its tools are used properly. Professor
Pyle asked whether there is any significant difference between a
design/specification language and a programming language. The
speaker replied that in essence there is little difference between
the two; his remarks, however, apply specifically to the design of
digital systems.

With reference to figure 9(a) and (b), Professor Dijkstra
asked the speaker whether he has proved the equivalence between the
two specifications of the same design. The speaker replied that
while he has not proved the equivalence, as a designer, he has
sufficient confidence in their equivalence. (The speaker was in
error here; he has proved it on pages T4 and 75 of the book
mentioned below.) Lastly, Professor Randell asked whether the
speaker's recent book (Digital System Implementation, Prentice Hall,
1976) matches the courses given at his institution. Professor
Blaauw replied that his book is used as a text book for his course
on the implementation of digital systems on the system component
level.

34

SPECIFICATION OF DIGITAL SYSTEMS

INTRODUCTION
WORK AT TWENTE TECHNICAL UNIVERSITY

DESIGN AREAS
ARCHITECTURE, IMPLEMENTATION,
REALIZATION

DESIGN LANGUAGES
DESIDERATA

SPECIFICATION OF THE IMPLEMENTATION
STEPS
VERIFICATION

SPECIFICATION OF THE ARCHITECTURE
QUALITY
STEPS

SUB-DEPARTMENT OF DIGITAL TECHNIQUE %
TWENTE UNIVERSITY OF TECHNOLOGY

ARCHITECTURE

5 COMPUTERS BLAAUW
RAATGERINK
GEERDINK
5 INTERFACES VISSERS
(5) NETWORKS V.D. DOLDER
IMPLEMENTATION
3 COMBINATORIAL AND BONNEMA
SEQUENTIAL CIRCUITS V.D. KNAAP
4 SYSTEM COMPONENTS BLAAUW
V.D. DOLDER
REALISATION
PLACEMENT AND AL
ROUTING V.D. KNAAP
5 REALISATION WITH WILMINK

MICROPROCESSORS

Legend: The number indicates the year in the curriculum in which the lecture is
given. The name of the lecturer is underlined. Other names indicate

staff engaged in research in this area.

() in preparation.

Figure 2

36

SOME DEFINITIONS

ARCHITECTURE
POSITIVE : APPEARANCE TO USER
NEGATIVE : INNER STRUCTURE NOT KNOWN

IMPLEMENTATION
LOGICAL STRUCTURE
WHICH PERFORMS ARCHITECTURE

REALISATION
PHYSICAL STRUCTURE
WHICH EMBODIES IMPLEMENTATION

Figure 3

ARCHITECTURE IMPLEMENTATION REALISATION
PRODUCT PRINCIPLES OF LOGICAL DESIGN RELEASE TO

OPERATION MANUFACTURING
_ANGUAGE WRITTEN ENGLISH BLOCK DIAGRAM LISTS AND DIAGRAMS

FORMAL DESCRIPTION | LOGICAL '
EXPRESSIONS

PURPOSE FUNCTION COST/PERFORMANCE | BUILD AND MAINTAIN
UALITY CONSISTENCY WIDE SCOPE RELIABILITY

Figure 4

LE

MULTIPROCESSING

PURPOSE APPEARANCE
IMPLEMENTATION RELIABILITY ONE PROCESS
PERFORMANCE
ARCHITECTURE ORTHOGONALITY SEVERAL
PROPRIETY PROCESSES

Figure 5

38

39

TYPES OF DESCRIPTION COMMENTS

WRITTEN NEEDED
TIMING DIAGRAMS
STATE DIAGRAMS
ILLUSTRATION
BLOCK DIAGRAMS

FLOW DIAGRAMS

NASSI - SCHNEIDERMAN CHARTS

HIPO'S TOOL

DECISION TABLES

FORMAL STATEMENTS AUTHORATIVE

Figure 6 : Description of design

“ A FEW HARDWARE DESIGN LANGUAGES

1952 RTL, REED

1962 APL, IVERSON

1964 RTL, SCHORR
LOTIS, SCHLAEPPI

1965 CDL, CHU

1966 CASSANORE, MERMET |
1967 DDL, DULEY & DIETHEYER
1968 AHPL, HILL & PETERSON
1969 ALERT, FRIEDMAN
1970 PMS, BELL & NEWELL

ISP
18573 AHPL, HILL & PETERSON

ALSO : HARGOL, APDL, HDL, CONLAN

Figure 7

DESIDERATA FOR DESIGN LANGUAGES

HIGH LEVEL
CONVERSATIONAL

GENERAL
STRUCTURED

Figure 8

41

42 v ARCHMPY : PRODUCT -
[1] PRODUCT= (TWOC VL)+(TWOC MR)x TWOC MD

[2] PD «((p MR,MD)p2)+ PRODUCT
- |

v N«TWOC R
[1] N+2L("14R),R
v

PROGRAM 3-1 MULTIPLIER ARCHITECTURE
Figure 9(a)

v ARCHMPYX;: VLX:MRX:MDX: PRODUCT

1] ® OPERAND EXTENSION

2] VLX<(pMR) EXTEND VL

3] MRX«<(pMD) EXTEND MR

4] MDX¢(pMR) EXTEND MD

5] @ MULTIPLICATION

[6] PRODUCT« (2 L VLX) + (2L MRX) x 2 L MDX
7] PD<«((p MRX)p 2)T PRODUCT

v

v RX¢<N EXTEND R
[1] RX<-R [NpO] ,R
v

PROGRAM 3-3 MULTIPLIER ARCHITECTURE
WITH EXTENDED OPERAND:

Figure 9(b)

test signals

Figure 10

CONTROL
r

gate setting

v

DATAPATH

¢ Relatior between datapath and control

43

a4

Figure 11 : Possible configurations of words
in a B5500 stack

CONFIG. 1 2 3 4
AROF |1 K |Areg |1 K 0
BROF |1 L |Breg |O 1 K
K
— | L i | [L
Sreg——+ M M M M
N N N N
core

45

DIGIT ADDRESSING:

HIGH LOW

BYTE ADDRESSING :
IN MEMORY

HIGH LOW
BY " N B4

IN REGISTERS

HIGH LOW

Ly ey 0§

Figure 12 : Intel 8080 Addressing Direction

46

USER PRIMITIVES
&b

PROCEDURES

v
ARCHITECTURAL
ALTERNATIVES

PROCEDURES

v

INITIAL IMPLEMENTATION

Figure 13 : Design Process

EXAMPLE : ARITHMETIC

—_ — - NUMBERS
— - -~ .- —~
—
- * ~ OPERATION
RESULT &
L
~ S i

DOMAIN
FUNCTION OPERANDS

RESULT

N

INTERPRETATION

REPRESENTATTION /

BIT PATTERNS

Figure 14

Ly

