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ENGINEERING IMPLICATIONS OF PROGRAMMABLE ELECTRONIC COMPONENTS 

D. Aspinall* 

Rapporteur: Dr. P.A. Lee 

1. Introduction 

When the microprocessor was introduced into the electronic 
engineer's component repertoire in 1972, it heralded a new era of 
electronic equipment implementation possibilities [1]. Equipment 
for communications, instrumentation, and process control f or the 
enhancement of performance and to improve the ergonomics of domestic 
appliances (white goods) had previously been based upon electrical 
circuits in which components were interconnected by simpl e 
conductors, usually copper wire. They could now be implem ente d by 
a combination of interconnected programmable compon ents plus the 
programs and data structures within these components . In 
designing, commlsloning , and maintaining such equipment, the 
engineer finds himself requiring to adopt the attitude of a c omputer 
engineer and to learn from the experiences of twenty-five ye a rs of 
computer system development and use. 

Consider, for example, the products of a manufacturer o f 
electronic instruments. These range from basic me a suring 
instruments such as the voltmeter, through multi-rang e meters t o 
signal generators and signal processors for spectral analysis . 

The manufacturer should develop a strategy for 
specification, design, production, and maintenance which is common 
to all products in the range. It has been recognised that th e key 
to any such strategy is a structured representation of the equipmen t 
requirements which can be used as the basis for the documentation 
necessary for the subsequent stages in the product production and 
use [2]. For a typical measuring instrument, the requiremen t 
definition may appear as in Figure 1. On the front panel of th e 
instrument will be the controls to enable the user to s e t the 
desired range of operation and select the facility requi ced . 
Activity 1 must interpret these commands and arrange f o r t heir 
display back to the user, and also .for them to control th e other 
activities in the instrument. The quantity to be measured will 
usually be in an analogue or continuous form, and activity 2 is 
required to convert into digital form. The range and performance 
of the conversion is controlled from activity 1. The digital data 
then passes to activity 3, where the measurement process is carried 
out. The processed data passes to activity 4, where it is furt he r 
processed to be presented in a suitable form of visual di s play , 
acceptable to the user. One important activity which is not shown 
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in the diagram is that of self-test. The low capital cost of the 
instrument cannot justify the expense of a team of on-site 
maintenance enginee rs. Facilities for rapid fault diagnosis by the 
user must be included within the instrument to provide high 
availability . Such facilities, together with further elaboration 
of the various activities in Figure 1, should be represented within 
the structured requirement definition description. 

On scanning the range of instruments, it is evident that 
the sophistication of the equipment increases from the simple meter 
through to the complex signal processor, and it is not surprising 
that the cost of a piece of equipment rises with its sophistication, 
as shown in Figure 2. A graph of this type is not unfamiliar to 
the manufacturer of computing equipment in attempting to meet the 
varying requirements of different users. The computer industry 
realised that a range of computer mainframes, each based upon a 
single sequential processor, could meet such a demand curve . At 
the bottom of the curve, the processor is based upon low-cost logic 
circuits . On moving up the curve, higher performance logic 
circuits are used, and there is an increase in the parallelism of 
each processing step. At all points in the range there is a single 
processor which obeys a sequential program. 

An instrument manufacturer could adopt a similar strategy . 
The activities of Figure 1 could be implemented as one program to be 
processed in a single processing element. At the bottom of the 
range, the processing element could be a single micro-computer 
component comprising a 4-bit word processor plus ROM and RAM (Figure 
3) . Moving up the range, the processor could become more powerful, 
as demonstrated by its 8-bit or 16-bit word processing ability . 
For the highest members of the rang e , specialised processors could 
be manufactured from the high performance bi-polar semiconductor 
' bit slice' components, supported by microprogram controllers 
possibly exploiting the Uncommitted Logic Array (UCLA) , or 
Programmable Logic Array (PLA). At all points in the range the 
activities are implemented as one sequential program in a single 
sequential processor. The high performance processor may be time-
shared amongst several programs, but at anyone instant of time one, 
and only one, program step is being obeyed. 

In adopting any strategy, the manufacturer should ensure 
that the tools, such as languag e and development systems to fashion 
the different instruments, should be common, to minimise the cost of 
retraining the engineers and to maximise the use of portable 
programs up and down the processing elements of the range. 

The cost of these programmable electronic components is 
directly dependent upon the production volume achieved by the 
semiconductor man ufacturer. The highest demand and, hence, 
production, will be for the less complicated micro-computers which 
find application in the consumer market. 

Thus, the component for the bottom of the rang e should be 
exceedingly low in cost . This economic factor suggests that the 
instrument manufacturer may have an alternative strategy. Instead 
of basing the implem entatio n upon a sing l e sequential processing 
element, the alternative i s to use a plurality of low-cost 
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Before such a strategy can be adopted, the manufacturer 
needs to be reassured of two significant points; first, that it is 
possible to identify those activities which can be efficiently 
assigned to separate processing elements, and secondly, that the 
physical method of interconnecting the elements is reliable and does 
not impose formidable overheads which cost too much when compared to 
the alternative use of single, more powerful, processing elements. 

2. Logical Design to Achieve Parallelism 

The designers of the logic circuits within leading-edge 
mainframe computers have realised the value of concurrent operation 
of processing elements to achieve a high processing rate, [3J. 
Circuit techniques were developed to provide the protocols at the 
interconnection of separate elements, to ensure correct synchronism 
and to guard against indeterminancy and deadlock. The analysis of 
these techniques can be based upon the contribution by Petri [4J, 
Holt [5J, and have been well summarised by Noe & Nutt [ 6J and Dennis 
[7J. The principle is that the forward flow of control, from 
element to element, must be associated with the backward flow of 
signals to acknowledge receipt of the forward command and completion 
of the required action. A typical example of this technique is the 
T-module of Dennis (Figure 5). The processing element A is idle, 
in a dormant state, until it receives a command BEGIN from the T-
module. On ,completing its task, the element sends an END signal to 
the T-module and returns to its dormant state. The T-module will 
only give the BEGIN command if it has received a backward 
ACKNOWLEDGE signal from the next T-module in the sequence and a 
forward READY signal from the T-module which precedes it in the 
sequence. On receiving the END signal from the element, the T-
module sends both a backward ACKNOwLEDGE signal to the preceding T-
module and a forward READY signal to the next T-module in the 
sequence. Such procedures ensure the reliable operation of 
concurrent actions. A series of T-modules with their associated 
processing elements is often termed a 'pipeline'. Within a 
pipeline , it is assumed that there will be more than one token, 
indicating more than one action occurring concurrently. Such a 
pipeline could be implemented by using a number of separate 
processing elements, each based upon a micro-computer. The T-
module procedure and associated action A could be programmed into 
the element and Ready/Acknowledge circuits provided through 
input/output ports . A mechanism for passing data from element to 
element could also be devised. 

Having found a technique for managing and implementing 
concurrency the next problem is to identify those situations which 
naturally spawn many tokens at once. The question is : How can a 
designer identify parallelism in a sequential program? 
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2.1 Evolu tion of Parallelism from Sequential Program s 

Th e l ogic c ircuit engineers within the instr ument 
manufacturers have developed so un d disciplines f o r the de s ign of 
circuits [ 8]. When they were required to implement their design in 
the programs a nd data struct ur es of a micro-computer, they acc epted 
principles of structured programming [ 9] , for they seemed a na t ural 
extension of familiar procedures and disciplines. When writing a 
program, it is natural to think sequentially and produce a solution 
as a sequence o f program steps. It is natural to turn to such 
programs a nd attempt to identify parallelism which can exploit more 
than one processing element to execute the act i o ns, [10]. The 
parallel construct , Q£L begin ... . . . Q£L end, can be used where 
appropriate. A single processing element will obey the main 
sequential thread of the program whilst an e xtr a processor is added, 
t o be invoked whenever the parallel const ruct is encountered 
the main sequence. The number of ext r a processors is not equal to 
the number of parallel constructs used within the sequential 
program, but equal to the greatest number of extra parallel 
procedures invoked within a parallel co nstruct. 

Techniques to provide concurrency , such as the pipeline o r 
overlap, do not naturally follow f r om the analysis of a sequential 
program . Th e reason is that the single locus of control, or token , 
in a sequential program cannot be readily repli ca ted to pr ovide the 
many tokens wit hin such concurrent systems . The parts of a program 
which may provide an opportunity to replicate the locus of control 
are the repetitive clauses such as While . . . po or Repeat 
Until. By examining the flow of control through a r epetitive 
clause, s uch as that shown in Fig ur e 6 , it i s possible to imagine 
that, since the locus passes round the loop many times before 
passing to the next clause , the actions within the loop may be 
executed in separate processing elements , arranged in a pipeline. 
Consider what happens if each action Z • Z1' Z2, Z3 ' z." , is assigned to 
a separate processing e l ement. locus o f con trol e nt e r s the 
qu a lifier action within the main processing e lem ent . If the 
qualifier is true, the n a token passes to proce ssi ng element Zo o 
On compl etion of the action Zo , the token passes to processing 
element Zl while Zo pretends that it has received a seco nd token and 
repeats its action concurrently with the actio n in Z1' and so on . 
Many tokens will exist within the pipe until the token whi ch leaves 
z." and, on passing back to the qualifier action finds the qualifier 
false, causes the clause to be exited. The tokens behind it in the 
pipeline are invalid. At best, they have to be destroyed, by some 

whils t there is a good that actions took place 
which should not have been allowed, and which may have corrupted 
data . 

It seems that the only cha nc e o f finding concurrency 
a repetitive clause is if the sequence o f actions within the 

loop can be arranged so that the first one , Zo' is the only one 
which modifie s the qualifier [10]. It i s then necessary to pr ov id e 
a new construct Con ... . Con e nd and invoke the use of the 
Dennis T-m od ul es to construct the loop, as shown in Figure 7. The 
operati on is as follows : the locus of control of the main sequential 
program enters the qualifier action Q. I f true, the l oc us passes 
to Zo. On completion of ZO' the locus passes to the CONBEGIN 
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The locus is immediately returned to the qualifier 
action Q and two tokens are generated; the first passes directly t o 
the CONEND construct, to be co unted. This count will equal the 
number of tokens entering the pipe. The first token will 
eventually pass through all the remaining actions and finally emerge 
from the lastT-module to enter the CONEND construct. These tokens 
are counted to determine the number leaving the pipe. Meanwhile, 
the locus of control will have passed th r oug h the action Zo several 
times, until the qualifier is false; when the l ocus passes to the 
CONEND construct, where it waits until the total number of tokens 
leav ing the pipe is equal to the number which entered. At this 
instant, the l oc us passes to the next act i on within the main program 
sequence. 

If the time to complete one traverse of the loop in Fi 3ure 
6 is equal to T, and the total number of traverse s is equal to n, 
then the time to execute the clause is nT. If the time to traverse 
Q and Zo is t, and t he time to pass through the pipe Zl' Z2 ,Z3 ,Z4 
and the const r ucts of Figure 7 is T', then the total time to execute 

clause is nt+l ' . 

since t « T 

the n nt + T' < nT 

Thus concurrency has enabled a reduction in the time to execute the 
actions of the repetiti ve clause . 

At present, this s eem s t o be th e only procedure f o r 
opti mi sing the repeti tive clauses within a sequential program . It 
is a laborious process, and is not guaranteed to produce a 
s i gni ficant increase in overall performance. This unsatisfactory 
situation suggests that the writing of t he initial program should 
hav e been undertaken with a parallel implementation in mind. 
Programmers s hould learn ways to think parallel , before they think 
seque n tial. 

2.2 Evolution of Parallelism Qy Functio nal Division 

One can attempt the search for parallelism at the 
r equirements definition s tage o f a product, before a ny 
implementation by programming is begun . Inspection of instrument 
de sc ripti o ns suc h as that shown in Fi g ure 1 suggests that it is 
possi ble to visualise each of the activities be i ng implemented by 
pr og ram in a separate processing element. Depend i ng upon the 
r equired performance, the elements may ex ist as se parate physical 
entit i es , ope ratin g concurrently, or they may exist within one 
physical entity, being active one at a time . when the concu r rent 
im plementation is required, the solution in vo lves t he physical 
interconnection of the separate eleme n ts . 

3. of £ Ci r cuit of Processing Elements 

All circuits or netwo rks may be consi dered in the 
abstract , as node components inte rconnected by a rc component s . In 
el ec tronic c ircu its , t he node are phy s ical electronic 
devices, whilst th e ar c is usually a pi ece o f wire o r t r ac k on tile 
sur face 
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of a silicon chip or printed circuit board . In logic circuits, 
the node components are logic gates or flip-flops, and the arc is 
similar to that in electronic circuits . In circuits of processing 
elements, the node component is a processing element comprising 
processor and memory, real or virtual, and the arc component is a 
data path which may be as real as a few pieces of wire or the 
complex Post Office data network, or as abstract as a pointer to 
memory. 

The activities within a node component are shown in 
Figure 8 . The input data from the arcs are received and 
acknowledged by the activity 1, and assembled as input data for the 
activity 2, which carries out the necessary processing of these data 
to produce result data to be passed to activity 3, which sends the 
data over the output arcs and confirms that the transmission has 
been acknowledged . This total set of activities may be implemented 
in a processing element, as shown in Figure 9 (a). The element 
comprises the processor and memory for obeying the programs of the 
three activities . The input data arrives within a read only image 
memory, whilst the o utput data flows from registers in the sam e 
image memory (mem ory mapped input/output) [11]. The structure of 
the program within the element is shown in Figure 9 (b) . The 
single locus of control enters the Receive and Acknowledge action, 
which monitors the input ports and accepts input data, which it 
assembles as a message for the next action. Each transaction 
through the input port must follow an agreed protocol. Once the 
message has been assembled, the locus of control passes to the 
Process action, which carries out the necessary processing of the 
data and prepares a results message for transmission to the next 
action . On completion of the process, the locus of control passes 
to the final action, which sends the messages over the output arcs . 
Each transaction through the output port must follow a protocol to 
enable confirmation of correct transmission . When all arcs have 
been serviced, the l ocus of control is passed back to the first 
action, to repeat the cycle. 

This sequence is similar to that which used to occur 
within a large mainframe computer before time-sharing of 
input/output and processing was introduced. The main reason for 
introducing time sharing, by interrupt or polling, was to maximise 
the use of an expensive capital resource. The electronic 
programmable devices are low in cost, and it is less important to 
time-share their use. The inner process activity is independent of 
the interconnection structure of which it is a component. The 
Receive - Acknowledge and Send-Confirm actions are dependant upon the 
interconnection structure . The process component corresponds to a 
logic circuit component, whilst the other two processes correspond 
to the back wiring or printed circuit board layout of a logic 
circuit . Thus a standard process program may be used as a standard 
component within many instruments. The difference between 
instruments is reflected in the choice of such components and in the 
programming of the outer activities . Performance is governed by 
the time taken to execute the inner process and the time to execute 
the overheads of the outer processes. J ust as in a logic circuit, 
the performance depends upon the delay of the logic components and 
the delay due to the wiring between components . During the design 
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Table L A Taxonomy (after Anderson & Jensen, 1975) 
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4 . Implementation of £ Circuit of Processing Elements 

The design process produces an abstract circuit showing 
the desired inter connections between processing elements. The next 
step is to man this circuit into a physical interconnection 
structure. Many factors have to be considered before deciding upon 
an interconnection structure . These factors , and many structures, 
are covered in the paper by Anderson & Jensen [ 12,13] . A variation 
of their taxonomy of interconnection structures, which is applicable 
to the present discussion, is given in Table 1. It shows eleven 
named varieties o f interconnection structure . 

4 . 1 Summary of Se lec t ed Structures 

Certain 
selected for a 
attention. They 

of the structures listed in Table 
brief description, since they warrant 
ar e shown in Fig ure 10. 

4 . 1.1 Dire c t Dedicated Wire Complete - DDWC (Figure 10(a)) 

have been 
particular 

In this, each element is. connected to all others. 
Provided that the number of elements required is less than, or equal 
to, the number required, the implementation is straightforward. 
The addition of one extra element affects all of the others. 

4.1.2 Direct Dedicated Wired Partial - DDWP (Figure 10(b)) 

The interc onnections are custom-built to suit the 
particular requirement. Random wiring of this type was used in the 
patching of the elements in an analogue computer. The wires to 
interconn ect the digital processing elements are expensive to 
install and a potential source of unreliability. 

4.1.3 Direct Shared Memory - DSM (Figure 10(c)) 

The registers in the image memory of each processing 
element are contained within the shared memory. The Send and 
Confirm action in the source element sets the output data in a 
register, whilst the Rec e ive and Acknowledge action in the 
destination element reads the register. The low cost of memory 
suggests that this is an appropriate structure for use in closely-
coupled systems. Furthermore, the shared memory may be used to 
hold common data, or to extend the local memory by adding to that 
provided within a processing element . 

4.1.4 Direct Shared Bus - DSB (Figure 10(d)) 

Information transfer takes place by a processor in the 
source element writing, via the bus, into the memory of the 
destination element . Thus, the memory access mechanism within the 
element must allow two routes of entry ; one from the local 
processor, and one from the bus. This interconnection structure is 
the one most favoured by the semiconductor component manufacturers 
since it offers a high degre e of flexibility. 
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4.1 . 5 The Remainder 

All 
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as the on-chip structure when 
in production . 

5 . A Research Vehicle 

1 3 

worthy of some 
structure may come 
very large-scale 

The engineering implications of programmable electronic 
devices has been a subject for investigation in the Department of 
Electrical and Electronic Engineering at the University College of 
Swansea, since 1972 . More recently, in collaboration with the 
Department of Computer Science, and with support from the Science 
Research Council, the investigation has turned to a study of the 
design and implementation of equipment, using many processing 
elements. As part of the investigation, a vehicle is under 
construction to undertake the complete production of equipment to 
evaluate the design procedures and to establish design and 
development support facilities . The research vehicle, *CYBA-M [14] 
is based upon the DSM interconnection structure, as shown in Figure 
1 1 • 

There are sixteen processing elements, each based upon the 
INTEL 8080-A microprocessor, plus 16 k bytes RAM of local memory . 
There are two shared memories. The Arc Image Memory, of 16 k bytes 
RAM provides the input/output buffer registers for inter-element 
communication. The Peripheral Image Memory is a 16 k byte area of 
memory mapped input/output registers for the communication of input 
and output data at the periphery of the equipment. Special 
semaphore facilities have also been included to permit interelement 
communication in a time-shared situation . The diagram of Figure 11 
is presented to the designer at the time when the design is being 
mapped into the interconnection structure. However, during the 
program development stage, when the actual implementation is being 
tested, the engineer has extra monitoring facilities available as 
shown in Figure 12 . The console processing element, CYBA-80, has 
access into each processing element to enable loading of the program 
and monitoring of the state of CYBA-80 and all the registers within 
the processors can be accessed to provide full information to the 
engineer . The monitoring facilities will also be available for 
maintenance of CYBA-M, and have already proved invaluable during the 
commissioning phase of the project . The total research vehicle 
includes software aids to design and development, and will be used 
in the implementation of several applications studies in the 
provision of communications equipment, sophisticated instruments, 
and in process control . The vehicle also provides an opportunity 
to investigate the interconnection structures listed in the Anderson 
& Jensen taxonomy . 

*CYBA-M is the abbreviation for 1 Abertarwe-tlYNYCH . 
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6. Conclusion 

The use of many processing elements to provide the circuit 
of a piece of equipment is a subject for further research . This 
approach will draw heavily on the accumulated experience of the 
computer industry in its endeavours to provide multi-programming and 
multi-computer solutions to the problems posed by its customers . 
It shares many concepts with the area of distributed processing in 
which the processing elements are scattered over a wide physical 
area. 

Before the advent of low-cost programmab l e electronic 
devices, the designer, or programmer, could only design for a single 
processing element; just as the early composers wrote for a solo 
instrument . Now that it is possible to contemplate a plurality of 
elements operating in concert on a common task, the designer can 
th i nk of composing symphonies. 
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