
3

ENGINEERING IMPLICATIONS OF PROGRAMMABLE ELECTRONIC COMPONENTS

D. Aspinall*

Rapporteur: Dr. P.A. Lee

1. Introduction

When the microprocessor was introduced into the electronic
engineer's component repertoire in 1972, it heralded a new era of
electronic equipment implementation possibilities [1]. Equipment
for communications, instrumentation, and process control f or the
enhancement of performance and to improve the ergonomics of domestic
appliances (white goods) had previously been based upon electrical
circuits in which components were interconnected by simpl e
conductors, usually copper wire. They could now be implem ente d by
a combination of interconnected programmable compon ents plus the
programs and data structures within these components . In
designing, commlsloning , and maintaining such equipment, the
engineer finds himself requiring to adopt the attitude of a c omputer
engineer and to learn from the experiences of twenty-five ye a rs of
computer system development and use.

Consider, for example, the products of a manufacturer o f
electronic instruments. These range from basic me a suring
instruments such as the voltmeter, through multi-rang e meters t o
signal generators and signal processors for spectral analysis .

The manufacturer should develop a strategy for
specification, design, production, and maintenance which is common
to all products in the range. It has been recognised that th e key
to any such strategy is a structured representation of the equipmen t
requirements which can be used as the basis for the documentation
necessary for the subsequent stages in the product production and
use [2]. For a typical measuring instrument, the requiremen t
definition may appear as in Figure 1. On the front panel of th e
instrument will be the controls to enable the user to s e t the
desired range of operation and select the facility requi ced .
Activity 1 must interpret these commands and arrange f o r t heir
display back to the user, and also .for them to control th e other
activities in the instrument. The quantity to be measured will
usually be in an analogue or continuous form, and activity 2 is
required to convert into digital form. The range and performance
of the conversion is controlled from activity 1. The digital data
then passes to activity 3, where the measurement process is carried
out. The processed data passes to activity 4, where it is furt he r
processed to be presented in a suitable form of visual di s play ,
acceptable to the user. One important activity which is not shown

* This contribution is based upon a lecture
lTG Advanced Course " The Microprocessor and
1977 at the University College of Swansea.
University Press, summer 1978.

delivered at the CREST-
its Application " Sept.

Published by Cambrid ge

4

" -,

MANUAL I CONTROLS --'::MMANm, r .
I
* MEASURED; . '

QUANTITY -'i !

I - --- I :..r DISPLAY

;- '.j 4

Figure 1 Activities in a Measuring

SICNAL PROCESSORS
-- ,/ ,

VISUAL
OUTPUT

H
8 ..:
C>
H

SIGN AL GENERATORS ,
/

• F'i gure 2

Instrument Range
MULTIRANCE METERS

!ill
@3 I SIMPLE METERS (J)! ,

! .---'
COST

MICROPROGRAM
& BIT SLICES ,

-I 16 BIT ,-
8 MICROPROCESSOR , I

8 BIT -:
r; MICROPROCESSOR /

4 BIT - -/
:or:: MICROCOMPUTER /
@5 _ /
(J)

COST

Fi gure 3 Implementation by
Single Processing
El ement

EIGHT PEs

F'OUR PEs

TWO PEr;

--/
ONE PE / .----'

COST

Figure 4 Implementat ion by
14any Process i ng
Elements

•

5

in the diagram is that of self-test. The low capital cost of the
instrument cannot justify the expense of a team of on-site
maintenance enginee rs. Facilities for rapid fault diagnosis by the
user must be included within the instrument to provide high
availability . Such facilities, together with further elaboration
of the various activities in Figure 1, should be represented within
the structured requirement definition description.

On scanning the range of instruments, it is evident that
the sophistication of the equipment increases from the simple meter
through to the complex signal processor, and it is not surprising
that the cost of a piece of equipment rises with its sophistication,
as shown in Figure 2. A graph of this type is not unfamiliar to
the manufacturer of computing equipment in attempting to meet the
varying requirements of different users. The computer industry
realised that a range of computer mainframes, each based upon a
single sequential processor, could meet such a demand curve . At
the bottom of the curve, the processor is based upon low-cost logic
circuits . On moving up the curve, higher performance logic
circuits are used, and there is an increase in the parallelism of
each processing step. At all points in the range there is a single
processor which obeys a sequential program.

An instrument manufacturer could adopt a similar strategy .
The activities of Figure 1 could be implemented as one program to be
processed in a single processing element. At the bottom of the
range, the processing element could be a single micro-computer
component comprising a 4-bit word processor plus ROM and RAM (Figure
3) . Moving up the range, the processor could become more powerful,
as demonstrated by its 8-bit or 16-bit word processing ability .
For the highest members of the rang e , specialised processors could
be manufactured from the high performance bi-polar semiconductor
' bit slice' components, supported by microprogram controllers
possibly exploiting the Uncommitted Logic Array (UCLA) , or
Programmable Logic Array (PLA). At all points in the range the
activities are implemented as one sequential program in a single
sequential processor. The high performance processor may be time-
shared amongst several programs, but at anyone instant of time one,
and only one, program step is being obeyed.

In adopting any strategy, the manufacturer should ensure
that the tools, such as languag e and development systems to fashion
the different instruments, should be common, to minimise the cost of
retraining the engineers and to maximise the use of portable
programs up and down the processing elements of the range.

The cost of these programmable electronic components is
directly dependent upon the production volume achieved by the
semiconductor man ufacturer. The highest demand and, hence,
production, will be for the less complicated micro-computers which
find application in the consumer market.

Thus, the component for the bottom of the rang e should be
exceedingly low in cost . This economic factor suggests that the
instrument manufacturer may have an alternative strategy. Instead
of basing the implem entatio n upon a sing l e sequential processing
element, the alternative i s to use a plurality of low-cost

•

6

processing
instrument.
the level of

•

elements interconnected to achieve
The number of such components employed

sophistication, as shown in Figure 4.

the required
depends upon

Before such a strategy can be adopted, the manufacturer
needs to be reassured of two significant points; first, that it is
possible to identify those activities which can be efficiently
assigned to separate processing elements, and secondly, that the
physical method of interconnecting the elements is reliable and does
not impose formidable overheads which cost too much when compared to
the alternative use of single, more powerful, processing elements.

2. Logical Design to Achieve Parallelism

The designers of the logic circuits within leading-edge
mainframe computers have realised the value of concurrent operation
of processing elements to achieve a high processing rate, [3J.
Circuit techniques were developed to provide the protocols at the
interconnection of separate elements, to ensure correct synchronism
and to guard against indeterminancy and deadlock. The analysis of
these techniques can be based upon the contribution by Petri [4J,
Holt [5J, and have been well summarised by Noe & Nutt [6J and Dennis
[7J. The principle is that the forward flow of control, from
element to element, must be associated with the backward flow of
signals to acknowledge receipt of the forward command and completion
of the required action. A typical example of this technique is the
T-module of Dennis (Figure 5). The processing element A is idle,
in a dormant state, until it receives a command BEGIN from the T-
module. On ,completing its task, the element sends an END signal to
the T-module and returns to its dormant state. The T-module will
only give the BEGIN command if it has received a backward
ACKNOWLEDGE signal from the next T-module in the sequence and a
forward READY signal from the T-module which precedes it in the
sequence. On receiving the END signal from the element, the T-
module sends both a backward ACKNOwLEDGE signal to the preceding T-
module and a forward READY signal to the next T-module in the
sequence. Such procedures ensure the reliable operation of
concurrent actions. A series of T-modules with their associated
processing elements is often termed a 'pipeline'. Within a
pipeline , it is assumed that there will be more than one token,
indicating more than one action occurring concurrently. Such a
pipeline could be implemented by using a number of separate
processing elements, each based upon a micro-computer. The T-
module procedure and associated action A could be programmed into
the element and Ready/Acknowledge circuits provided through
input/output ports . A mechanism for passing data from element to
element could also be devised.

Having found a technique for managing and implementing
concurrency the next problem is to identify those situations which
naturally spawn many tokens at once. The question is : How can a
designer identify parallelism in a sequential program?

-, ., ., -,

7

2.1 Evolu tion of Parallelism from Sequential Program s

Th e l ogic c ircuit engineers within the instr ument
manufacturers have developed so un d disciplines f o r the de s ign of
circuits [8]. When they were required to implement their design in
the programs a nd data struct ur es of a micro-computer, they acc epted
principles of structured programming [9] , for they seemed a na t ural
extension of familiar procedures and disciplines. When writing a
program, it is natural to think sequentially and produce a solution
as a sequence o f program steps. It is natural to turn to such
programs a nd attempt to identify parallelism which can exploit more
than one processing element to execute the act i o ns, [10]. The
parallel construct , Q£L begin Q£L end, can be used where
appropriate. A single processing element will obey the main
sequential thread of the program whilst an e xtr a processor is added,
t o be invoked whenever the parallel const ruct is encountered
the main sequence. The number of ext r a processors is not equal to
the number of parallel constructs used within the sequential
program, but equal to the greatest number of extra parallel
procedures invoked within a parallel co nstruct.

Techniques to provide concurrency , such as the pipeline o r
overlap, do not naturally follow f r om the analysis of a sequential
program . Th e reason is that the single locus of control, or token ,
in a sequential program cannot be readily repli ca ted to pr ovide the
many tokens wit hin such concurrent systems . The parts of a program
which may provide an opportunity to replicate the locus of control
are the repetitive clauses such as While . . . po or Repeat
Until. By examining the flow of control through a r epetitive
clause, s uch as that shown in Fig ur e 6 , it i s possible to imagine
that, since the locus passes round the loop many times before
passing to the next clause , the actions within the loop may be
executed in separate processing elements , arranged in a pipeline.
Consider what happens if each action Z • Z1' Z2, Z3 ' z." , is assigned to
a separate processing e l ement. locus o f con trol e nt e r s the
qu a lifier action within the main processing e lem ent . If the
qualifier is true, the n a token passes to proce ssi ng element Zo o
On compl etion of the action Zo , the token passes to processing
element Zl while Zo pretends that it has received a seco nd token and
repeats its action concurrently with the actio n in Z1' and so on .
Many tokens will exist within the pipe until the token whi ch leaves
z." and, on passing back to the qualifier action finds the qualifier
false, causes the clause to be exited. The tokens behind it in the
pipeline are invalid. At best, they have to be destroyed, by some

whils t there is a good that actions took place
which should not have been allowed, and which may have corrupted
data .

It seems that the only cha nc e o f finding concurrency
a repetitive clause is if the sequence o f actions within the

loop can be arranged so that the first one , Zo' is the only one
which modifie s the qualifier [10]. It i s then necessary to pr ov id e
a new construct Con Con e nd and invoke the use of the
Dennis T-m od ul es to construct the loop, as shown in Figure 7. The
operati on is as follows : the locus of control of the main sequential
program enters the qualifier action Q. I f true, the l oc us passes
to Zo. On completion of ZO' the locus passes to the CONBEGIN

8

The locus is immediately returned to the qualifier
action Q and two tokens are generated; the first passes directly t o
the CONEND construct, to be co unted. This count will equal the
number of tokens entering the pipe. The first token will
eventually pass through all the remaining actions and finally emerge
from the lastT-module to enter the CONEND construct. These tokens
are counted to determine the number leaving the pipe. Meanwhile,
the locus of control will have passed th r oug h the action Zo several
times, until the qualifier is false; when the l ocus passes to the
CONEND construct, where it waits until the total number of tokens
leav ing the pipe is equal to the number which entered. At this
instant, the l oc us passes to the next act i on within the main program
sequence.

If the time to complete one traverse of the loop in Fi 3ure
6 is equal to T, and the total number of traverse s is equal to n,
then the time to execute the clause is nT. If the time to traverse
Q and Zo is t, and t he time to pass through the pipe Zl' Z2 ,Z3 ,Z4
and the const r ucts of Figure 7 is T', then the total time to execute

clause is nt+l ' .

since t « T

the n nt + T' < nT

Thus concurrency has enabled a reduction in the time to execute the
actions of the repetiti ve clause .

At present, this s eem s t o be th e only procedure f o r
opti mi sing the repeti tive clauses within a sequential program . It
is a laborious process, and is not guaranteed to produce a
s i gni ficant increase in overall performance. This unsatisfactory
situation suggests that the writing of t he initial program should
hav e been undertaken with a parallel implementation in mind.
Programmers s hould learn ways to think parallel , before they think
seque n tial.

2.2 Evolution of Parallelism Qy Functio nal Division

One can attempt the search for parallelism at the
r equirements definition s tage o f a product, before a ny
implementation by programming is begun . Inspection of instrument
de sc ripti o ns suc h as that shown in Fi g ure 1 suggests that it is
possi ble to visualise each of the activities be i ng implemented by
pr og ram in a separate processing element. Depend i ng upon the
r equired performance, the elements may ex ist as se parate physical
entit i es , ope ratin g concurrently, or they may exist within one
physical entity, being active one at a time . when the concu r rent
im plementation is required, the solution in vo lves t he physical
interconnection of the separate eleme n ts .

3. of £ Ci r cuit of Processing Elements

All circuits or netwo rks may be consi dered in the
abstract , as node components inte rconnected by a rc component s . In
el ec tronic c ircu its , t he node are phy s ical electronic
devices, whilst th e ar c is usually a pi ece o f wire o r t r ac k on tile
sur face

•

9

of a silicon chip or printed circuit board . In logic circuits,
the node components are logic gates or flip-flops, and the arc is
similar to that in electronic circuits . In circuits of processing
elements, the node component is a processing element comprising
processor and memory, real or virtual, and the arc component is a
data path which may be as real as a few pieces of wire or the
complex Post Office data network, or as abstract as a pointer to
memory.

The activities within a node component are shown in
Figure 8 . The input data from the arcs are received and
acknowledged by the activity 1, and assembled as input data for the
activity 2, which carries out the necessary processing of these data
to produce result data to be passed to activity 3, which sends the
data over the output arcs and confirms that the transmission has
been acknowledged . This total set of activities may be implemented
in a processing element, as shown in Figure 9 (a). The element
comprises the processor and memory for obeying the programs of the
three activities . The input data arrives within a read only image
memory, whilst the o utput data flows from registers in the sam e
image memory (mem ory mapped input/output) [11]. The structure of
the program within the element is shown in Figure 9 (b) . The
single locus of control enters the Receive and Acknowledge action,
which monitors the input ports and accepts input data, which it
assembles as a message for the next action. Each transaction
through the input port must follow an agreed protocol. Once the
message has been assembled, the locus of control passes to the
Process action, which carries out the necessary processing of the
data and prepares a results message for transmission to the next
action . On completion of the process, the locus of control passes
to the final action, which sends the messages over the output arcs .
Each transaction through the output port must follow a protocol to
enable confirmation of correct transmission . When all arcs have
been serviced, the l ocus of control is passed back to the first
action, to repeat the cycle.

This sequence is similar to that which used to occur
within a large mainframe computer before time-sharing of
input/output and processing was introduced. The main reason for
introducing time sharing, by interrupt or polling, was to maximise
the use of an expensive capital resource. The electronic
programmable devices are low in cost, and it is less important to
time-share their use. The inner process activity is independent of
the interconnection structure of which it is a component. The
Receive - Acknowledge and Send-Confirm actions are dependant upon the
interconnection structure . The process component corresponds to a
logic circuit component, whilst the other two processes correspond
to the back wiring or printed circuit board layout of a logic
circuit . Thus a standard process program may be used as a standard
component within many instruments. The difference between
instruments is reflected in the choice of such components and in the
programming of the outer activities . Performance is governed by
the time taken to execute the inner process and the time to execute
the overheads of the outer processes. J ust as in a logic circuit,
the performance depends upon the delay of the logic components and
the delay due to the wiring between components . During the design

'.

10

TJ1ANSFER
STRATEGY:

DIJ1EC T
PATH: DEDICATED

TOPOLOGY: LOOP (DDL)
WIRED COMPLETE (DDWC)
WIRED PARTIAL (DDW P)

PATH : SHARED

TOPOLOGY: MEMORY (DSM)
BUS (DSB)

TJ1ANSFER
STRATEGY : INDIRECT

ROUTING: CENTRALISED

PATH: DEDICATED

TOPOLOGY: STAR (ICDS)
LOOP (ICDL)

PATH: SHARED

TOPOLOGY: BUS (ICSB)

ROUTING: DECENTRALISED

PATH: DEDICATED

TOPOLOGY: REGULAR (IDDR)
IRREGULAR (IDDI)

PATH: SHARED

TOPOLOGY : BUS (IDSB)

Table L A Taxonomy (after Anderson & Jensen, 1975)

.,

I

., .,

1 1

stage, the pe rform ance
processing elements must
solution .

o f
be

d iffe r e n t
asse ssed

a rrangem ents and numbers of
to arrive at an optimum

4 . Implementation of £ Circuit of Processing Elements

The design process produces an abstract circuit showing
the desired inter connections between processing elements. The next
step is to man this circuit into a physical interconnection
structure. Many factors have to be considered before deciding upon
an interconnection structure . These factors , and many structures,
are covered in the paper by Anderson & Jensen [12,13] . A variation
of their taxonomy of interconnection structures, which is applicable
to the present discussion, is given in Table 1. It shows eleven
named varieties o f interconnection structure .

4 . 1 Summary of Se lec t ed Structures

Certain
selected for a
attention. They

of the structures listed in Table
brief description, since they warrant
ar e shown in Fig ure 10.

4 . 1.1 Dire c t Dedicated Wire Complete - DDWC (Figure 10(a))

have been
particular

In this, each element is. connected to all others.
Provided that the number of elements required is less than, or equal
to, the number required, the implementation is straightforward.
The addition of one extra element affects all of the others.

4.1.2 Direct Dedicated Wired Partial - DDWP (Figure 10(b))

The interc onnections are custom-built to suit the
particular requirement. Random wiring of this type was used in the
patching of the elements in an analogue computer. The wires to
interconn ect the digital processing elements are expensive to
install and a potential source of unreliability.

4.1.3 Direct Shared Memory - DSM (Figure 10(c))

The registers in the image memory of each processing
element are contained within the shared memory. The Send and
Confirm action in the source element sets the output data in a
register, whilst the Rec e ive and Acknowledge action in the
destination element reads the register. The low cost of memory
suggests that this is an appropriate structure for use in closely-
coupled systems. Furthermore, the shared memory may be used to
hold common data, or to extend the local memory by adding to that
provided within a processing element .

4.1.4 Direct Shared Bus - DSB (Figure 10(d))

Information transfer takes place by a processor in the
source element writing, via the bus, into the memory of the
destination element . Thus, the memory access mechanism within the
element must allow two routes of entry ; one from the local
processor, and one from the bus. This interconnection structure is
the one most favoured by the semiconductor component manufacturers
since it offers a high degre e of flexibility.

12

., .,

READY

BEGIN l AC KNOWLEDGE

•

A -- T ..
, t AC

END
KNOWLEDGE

• READY

Fi gure 5 T-Module and Controlled Action

, .
, Z} ;
1.- .1
_L
I Z4 ,

! 1---
Figur e 6 A Repet i t.ive Clause

j

Figur e 7 A Pi peli ne Struct" r -.

..

4.1 . 5 The Remainder

All
consideration
to the fore
integration is

members of the taxonomy are
[12] . In particular, the I D D R
as the on-chip structure when
in production .

5 . A Research Vehicle

1 3

worthy of some
structure may come
very large-scale

The engineering implications of programmable electronic
devices has been a subject for investigation in the Department of
Electrical and Electronic Engineering at the University College of
Swansea, since 1972 . More recently, in collaboration with the
Department of Computer Science, and with support from the Science
Research Council, the investigation has turned to a study of the
design and implementation of equipment, using many processing
elements. As part of the investigation, a vehicle is under
construction to undertake the complete production of equipment to
evaluate the design procedures and to establish design and
development support facilities . The research vehicle, *CYBA-M [14]
is based upon the DSM interconnection structure, as shown in Figure
1 1 •

There are sixteen processing elements, each based upon the
INTEL 8080-A microprocessor, plus 16 k bytes RAM of local memory .
There are two shared memories. The Arc Image Memory, of 16 k bytes
RAM provides the input/output buffer registers for inter-element
communication. The Peripheral Image Memory is a 16 k byte area of
memory mapped input/output registers for the communication of input
and output data at the periphery of the equipment. Special
semaphore facilities have also been included to permit interelement
communication in a time-shared situation . The diagram of Figure 11
is presented to the designer at the time when the design is being
mapped into the interconnection structure. However, during the
program development stage, when the actual implementation is being
tested, the engineer has extra monitoring facilities available as
shown in Figure 12 . The console processing element, CYBA-80, has
access into each processing element to enable loading of the program
and monitoring of the state of CYBA-80 and all the registers within
the processors can be accessed to provide full information to the
engineer . The monitoring facilities will also be available for
maintenance of CYBA-M, and have already proved invaluable during the
commissioning phase of the project . The total research vehicle
includes software aids to design and development, and will be used
in the implementation of several applications studies in the
provision of communications equipment, sophisticated instruments,
and in process control . The vehicle also provides an opportunity
to investigate the interconnection structures listed in the Anderson
& Jensen taxonomy .

*CYBA-M is the abbreviation for 1 Abertarwe-tlYNYCH .

-,

14

6. Conclusion

The use of many processing elements to provide the circuit
of a piece of equipment is a subject for further research . This
approach will draw heavily on the accumulated experience of the
computer industry in its endeavours to provide multi-programming and
multi-computer solutions to the problems posed by its customers .
It shares many concepts with the area of distributed processing in
which the processing elements are scattered over a wide physical
area.

Before the advent of low-cost programmab l e electronic
devices, the designer, or programmer, could only design for a single
processing element; just as the early composers wrote for a solo
instrument . Now that it is possible to contemplate a plurality of
elements operating in concert on a common task, the designer can
th i nk of composing symphonies.

References

[1]

[2]

[3]

ASPINALL, D. Microprocessors: New
Electronics Engineer. Electronics
22. 6, p . 437 .

Components for the
and Power, July 1976,

ROSS, D.T. Structured Analysis
Communicating Ideas. IEEE Trans.
SE-3 No . 1, Jan . 1977. pp . 16-34 .

(SA) A Language for
on Software Engineering,

THORNTON, J . E. Design of a Computer
6600 . Scott Fonesman & Co., Glenview,

The
1970 .

Con tro-l Data

[4] PETRI, C.A. Kommunication mit Automaten, Translated into
Eng lish in Proj ec t MAC-M-212 Repor t, 1962.

[5]

[6]

HOLT, A. W. Information System
Report. Applied Data Research Inc.,

Theory
1969.

Project

NOE, J . D. and NUTT
Parallel Systems.
pp.7 1B-727.

G . J .
IEEE

Macro E-Nets for Representation of
Trans. on Computers, C-22, 1973,

[7] DENNIS, J . B. Modular Asynchronous Control Structures for a
High Performance Processor. Record of Project MAC Conference
on Concurrent Systems and Parallel Computation, 1970,
pp . 55 - BO .

[B] CLARE, C.R.
McGraw-Hill,

Designing Logic Systems using State Machines.
1973 .

[9] DIJKSTRA, E. W. Notes on Structured Programming, in
Dahl, O. J . , Dijkstra , E. W. and Hoare, C.A . R. Structured
Programming Academic Press, 1972, pp. 1-B2.

•

.• ·,

15

[10] ASPINALL, D., DAGLESS, E.L. and DOWSING, R.D.
Design Methods for Digital Systems including
Parallelism. Electronic Circuits and Systems, Jan. 1972,
pp. 49-56.

[11] ASPINALL, D. and DAGLESS, E.L. (Editors) Introduction to
Microprocessors. Pitman/Academic Press, 1977.

[12]

[13]

L 14]

ANDERSON, G. A. and JENSEN, E.D. Computer
Taxonomy, Characteristics and Exampl es.
Surveys, Vo1.7, No.4, Dec . , 1975.

Interconnection:
AC M Computing

JENSEN, E.D. et al. A Review of Systematic Methods in
Conf. on Distributed Processo r Interconnect i on. Proc.IEEE

Communications, Philadelphia, June, 1976.

DAGLESS , E. L.
Processing, 77.
Co., Amsterdam,

CYBA-M : A Multimicroprocesso r . Information
B.Gilchrist (Ed .) . North Holland Publishing
1977, pp.843-848 .

-, ., .,

16

• RECEIVE &
ARCS ACKNOWLEDGE1 -

1

.... PROCESS 2 r-
1

SEND & f--
CONFIRM3

ARCS

Figure 8 Activiti es wi t hin Node

/ " PROCESSOR MEMORY

: '
IMAGE MEMORY
INPUT : OUTPUT
PORTS ' PORTS

'-
(a) Process i ng Element -,

W
RECEI VE &
ACKNOWLEDGE ,

PROCESS

• SEND &
CONFIRM

I .
(b) Programme wi thi n El ement

Fi gure 9 : I mplementat ion of a Node

"

(a) DIMC

ARC I MAGE
MEMORY

(c) roM

(b) DDWP

__ __________ ________ __________ __ BUS

(d) roB

Figure 10 Sel ected Interconnec ti oti struct ures

"'

17

18

ARC IMAGE
MEMORY

Figure 11

-.

CYBA- M

Fi gure 12 Development System

-.

CYBA-80

