127

F

Lecture 1
GRAPH THEORETIC MODELS OF PARALLEL COMPUTATION !
R.E. Miller | §

Rapporteurs: Dr. P.E. Lauer i
Dr. M.W. Shields N

In the early 1960's under the direction of Professor G. Estrin a group

at UCLA developed a "fixed plus variable" computer structure [41]. To study

T

the scheduling and allocation problems of this parallel and flexible machine
structure they developed some acyclic graph structures of the parallel
computations [92]. At MIT various models of parallel computation were developed,
some as Ph.D. theses under Professor Demnis. One of the early such models was
that of Rodriguez [123]. One of the best known, and widely studied graphical
models is one developed by Petri [116], now known as Petri nets. This structure
still commands considerable research interest. In the early 1960's Karp and
Miller started studying possible ways to speed up computers by adding special
purpose units to machines, and through these studies developed a simple model

known as a computation graph [69].

Rather than try to review all of these models in detail here I will
briefly describe computation graphs and Petri nets (I presume most of you are
already familiar with Petri nets). I will then discuss some relationships
between computation graphs and Petri nets. Finally, I will introduce some

synchronisation problems using semaphores, and show how these problems tie into

our two models of parallel computation.

A: Petri Nets

Although I assume that most of you are familiar with Petri nets, a ff

brief description — to introduce the terminology I use ~ will be given.
Definition 1: A Petri net P = (I,I,R, M) consists of:

(i) a finite set II called places, k
(ii) a finite set T called transitionms, I
(iii) a relation RS(mxz)u(Exm), and il
(iv) a mapping M : =N, called the initial marking, where N represent

the set of nonnegative integers. [
r

128

Usually a Petri net is represented by a graph in which places and transitions

are represented by nodes, R is represented by directed edges, and M, is
represented by dots in the place nodes., To distinguish the place and transition
nodes, circles o are usually used for places and bars | are used for transitions.
If mEN and o€Z where (T@ER, then (T o)is represented by an edge directed from the
node for ™ to the node for o. Similarly for a (&, T)ER by an edge from ¢ to .,
Places are used to hold markers called tokens and M, assigns an initial number

of tokens to each place.

For a given place T those transitions o, for which (Oi,ﬂ)ER are called
the input transitions of m and those o, for which (ﬂ,oi)ER are called the output
transitions for m. Similarly, for a given c€X, those T, for which (ﬂlc)ER are
called the input places of ¢ and those m, for which (c,ﬂi)ER are called the
output places of o. The Petri net is thus a fixed graphical structure which is
gsupposed to represent the allowed sequencing of parallel processes, Usually
the transitions are viewed as processes and the tokens on the input places of a
transition are used to control the initiation of the process. A transition o
is called active or fireable if and only if each of its input places contains
one or more tokens., An active transition o may fire, and this can be interpreted
as the execution of the process represented by o. When o fires it reduces by 1
the number of tokens in each of its input places, and increases by 1 the number
of tokens in each of its output places. The firing of a transition thus changes
the distribution of tokens on places. Such a distribution of tokens is called
a marking. Through the marking change other transitions may become active.

It is the sequence of transition firings that is used to represent the computation
sequence in a Petri net. A sequence of transition firings is called a firing
sequence. It also defines, given an initial marking, a marking sequence. Since
a given place may be in the set of input places for more than one transition it

is possible that a single token in a place causes more than one transition to be
fireable. To prevent the number of tokens upon transition firing to become
negative it is assumed that a token is used in only a single transition firing.
This is assumed formally in yet another way, namely by defining firing sequences
to be a sequence of transition labels, implying that even though several transitions
are simultaneously fireable, no simultaneous firing is allowed in the formal study.
Thus the next element in a firing sequence is one of the transition labels as
picked arbitrarily from the current set of fireable transitions. This represent-—
ation of simultaneous action by different sequences of action will be commented

on further in my third lecture. It is not clear that this is always a good

idealisation.

i

e RS aTE AE S Sl

R iR Fral i il bt & aak Ea

129

Some simple examples of Petri nets are helpful in understanding their

operation.

Megure 1

In Figure 1, with the initial marking having a token only ir place T,
the only fireable transition is g, . When o fires it removes the token from ™
and places tokens in T, and T, . Then o, and o3 are fireable so parallel
computation is represented. The structure m, and Ty then both ¢ and oy are
fireable, but because of the rule on a token being useable only in one firing
not both g, and oy can fire. A choice must be made. We say in general that a
pair of transitions o; and o, are in conflict under a given marking M if both

o; and o; are active in M and there is some place m_ belonging to the input
places of both o and 9, with M(Trk) = Ts It is precisely under the conflict
situation that although both transitions are simultaneously active they cannot

simultaneously fire.

The Petri net of Figure 2 is an example that shows that the number of
tokens may grow unboundedly in a place. Here a single firing of both o, and o,
causes Ts to have two tokens. A single firing of o places tokens back in Ty
and T, leaving one token in T, . Repeating this cycle of transition firings

causes the number of tokens in T; to grow to as large a number as desired.

130

Figure 2

Figure 3 gives an example of a very special kind of Petri net. A
Petri net P is called a marked graph if and only if each place m of P has exactly
one output transition. When this restriction is made on Petri nets the graph
can be simplified by absorbing each place into an edge and then letting the place

marking be represented by a marking on the edge.

Figure 3

T, i

= 4

Similarly, restricting a Petri net so that each transition has exactly
one input place and one output place gives a special class of Petri nets called
state machines. This is readily seen by simplifying the graph as done by
letting each transition now be represented by a directed edge from its input
place to its output place. This then assumes the structure of a transition
diagram of a finite state machine, but here the edges are not labelled. If one
assumes an initial marking now as a single token in a single place (representing
the start state) then state to state transitions correspond to transition
firings. The analogy is too obvious to belayor. Both the marked graphs and
state machines are subclasses of Petri nets that are considerably easier to
analyse than general Petri nets. Other subclasses of Petri nets have also been
defined and extensively studied. A number of properties of Petri nets are of
interest and worth defining. First we note that any marking M of a Petri net
P with n places can be viewed as an n—dimensional vector in which the wvalue of

the ith coordinate of the vector is the number of tokens in the ith place of P.

—— =

131

Definition 2: The reachable set of markings R(P,M_) of a Petri net
P= (H,E,R,MO) = {Ml a marking sequence starting with MO and
ending with M}.

Definition 3: A Petri net P is called safe if MGR(P,MO) implies that each

coordinate of M is either zero or one.

Thus a safe net is a net in which the number of tokens in any place
never exceeds one. This property is of interest when for some practical
considerations one is interpreting the Petri net to represent a set of inter—
related events and conditions, where conditions are represented as places. A
condition is interpreted as holding if the place contains a token, and as not
holding if the place does not contain a token. For such situations it is
senseless to have more than one token in a place, so one wants to know that the

net representing events and conditions is a safe net.
A natural extension of safeness is k=bounded or k—-safe.

Definition 4: A Petri net P is called k-safe if MER(P,M,) implies that each

coordinate of M takes on values from the set {0,1,2,ses,k}s

A second property of Petri nets is related to the current or eventual

fireability of transitions.

Definition 5: A transition o of a Petri net P = {n,Z,R,Mo] is called live if
and only if for every M€R(P,M,) there is some firing sequence
continuing from M which fires o The transition o is called
dead with respect to M if there is no firing sequence continuing

from M which fires oe

Definition 6: A Petri net P is called live if every transition of P is live.

The relevance of the property of liveness is evident when one interprets

the transitions of the Petri net as representing processes. Liveness of a
transition means that there is no way in which a sequence of process executions
can cause the system to get into a state from which the given process can never
again be executed. Thus both the liveness and deadness properties of Petri

nets are related to the concept of deadlocks in operating systems.

132

Given any Petri net P we would like to know how to determine if P is
safe, k-safe, live, or what transitions are dead, and with respect to what

markings. We will approach these problems via vector addition systems in the

next lecture.

One of the very intriguing aspects of Petri nets is the simple and
illustrious way in which they represent parallel sequencinge. Some researchers
have enriched the model by various techniques. For example, by providing
tokens of different colours, by inhibitor edges, and by timings. It appears
that any such addition, although quite helpful for representing certain behaviours,
turns the model into one that can simulate a Turing machine, and in that sense

makes it hopeless to completely analyse.
B: Computation Graphs

We now switch to discussing a different graphical model of parallel
computation called the computation graph. This was introduced in [69] and

studied and extended in a number of further studies; e.g., [1, 96, 120].

Basic Definitions

Definition 7: A computation graph G is a finite directed graph consisting of:
(i) nodes N yNgyeseyNye
(ii) edges dyydyyees,d,, where any given edge d, is directed from
a specified node n; to a specified node ny.

(iii) four nonnegative integers A,, U, W,,T, associated with each

p?
edge d,, where T, 2 W,.

In a computation graph each node n; is used to represent an operation
0; and each edge is used to represent a first-in-first—out queue of data. Thus
an edge d, directed from n; to ny; represents a queue of data flowing from n; to
Ny Results of operation O; represented by n; are placed in the queue and may
later be used as operands for operation O; represented by ny. The four

parameters on edge d, are interpreted as follows:

(1) A, is the number of items initially in the queue from n; to ny.

(2) U, is the number of items added to the queue each time operations 0,
terminates.

(3) Wp is the number of items removed from the queue each time operation 0,
initiates.

(4) T, is a threshold giving the minimum number of items required in the queue

133

before operation Oy can initiate.

Computations are represented in a computation graph as sequences of

operation performances., An operation Oy, associated with node n, is said to

3
be eligible for initiation if and only if each branch 4, directed into n,
contains at least T, items in its queue. It is assumed that no two perform—
ances of a given operation Oy can be initiated simultaneously. When O; is
initiated W, items are removed from the queue of edge d, for each such edge
directed into n,. When OJ terminates each edge d, directed out of ny has

U, items added t6 its queue,

These definitions of operation initiation and termination describe how
computations of the computation graph are sequenced. Note that the actual times
required for operation performance are not specified. They are, in essence,
asynchronous. The possible sequences of initiations for computation graphs
are called executions, An execution is represented as a sequence of sets
E=5,5,e00y5 e0. such that each 5 1is a subset of (1,2,...,9}, the set of
nodes indices. If j€S, then this means that O; is initiated at step n in
execution E. To be more precise we define x(j,n) for ¥{1,2,...,4} and

n= 0,1,2ysss ags

0

x(3,0)
x(j,n) = the number of sets S,, 1Smsn, for which j is an element.

That is, x(j,n) is the number of initiations of operation j in the prefix
845, ,e00,% of execution E, With this notation we can define executions more

precisely.

Definition 8: The sequence E = § ,5;,...,5,,... is an execution of the comput-
ation-graph G if and only if, for all n, the following conditions
hold:

(1) 5f JS,42 and G has an edge from n, to n,, then
&, + U x(i,n) - Wx(jn) =2 T,
(ii) if E is finite and of length r, then for each n, there
exists an n; such that d, is an edge from n; to n, and

A, + Ux(i,r) - Wx(j,r) < T,

134

Definition 9: An execution E is called proper if the following implication
holds:
(iii) if, for all n and every edge d, directed from n; to n,

A, + pr(i,n) - W,x(j,n) = 1,,

then j€S. for some r > n.

In an execution the occurrence of a set § in the sequence denotes the
simultaneous initiation of O, for all €S, . This model is one of the few that
formally (rather than just informally) allows for simultaneous initiation of

operations.

Thus, an execution E is viewed as a sequence of sets of events, not
necessarily equally spaced in time, where an event is the initiation of an
operation of G, As performances of operations in G proceed they generate an
execution prefix., Each time an event, or set of simultaneous events, occurs

a new element of the execution is generated.
The linear forms
A, + Uyx(i,n) - W x(j,n)

associated with each edge d; of G and each S of an execution gives the number of
items in the queue associated with d, at this point in the execution if we assume
that all of the operations up to this point in E have actually terminated.

Thus, part (i) of the definition for executions insures that sufficient items

are in the queues for O to initiate. Condition (ii) insures that an execution
will terminate only when no further operations are eligible for initiation.

Part (iii), for proper executions, insures that if an operation becomes eligible
for initiation at a certain step, then it will actually be initiated after some
finite number of steps. This property, often called the "finite delay
property," occurs in various forms in different models of parallel asynchronous
computation and was apparently first introduced via asynchronous logic circuits

by D.E. Muller,

L EE S S S

BRI r Lk e T

T

e S

B TN T sl

e ——

135

In an execution E terminations are not explicitly mentioned. This
does not mean, however, that an execution physically is a set S of operations
that all initiate simultaneously and thenall terminate before any further
initiations. For example, if the inequality (stronger than that of (i) in
Definition 8)

A, + T, (x(i,n)-1) - W,x(j,n) = T,,

holds then it is possible that the x(j,n.-}-‘l)SJG initiation of 0y may actually
occur before the x(i,n)th termination of O . No violation of the execution

definitions would result.

Any computation graph G may have a large set of executions, and this
corresponds to the parallel and asynchronous nature of the model. This set of
executions is, thus, the object to study since in some way it represents the

behaviour of G.

We now consider some simple examples of computation graphs, shown in

Figure 4 to illustrate our definitions.

In Figure 4 we have indicated within the graphs, and by equations, a
particular interpretation of the computation graph of interest. Of course,
the computation graph model does not include any particular interpretation of

operations, it models only the sequencing of the operations.

Figure 4(a) shows a single node edge computation graph with initially
two data items in the queue. Each performance of the operation removes one
item and places one item on the queue, and two items are required as the
threshold for operation initiation. Here we get only a single execution
E=1{13,{13,...,{1},... . If we assume O, to be an add, and the two initial
items each to be the integer 1, then E computes the Fibonacci sequence. In
part (b) of the figure we can view the operation as adding two lists together
(see equation) in which the A list has 200 items, the B list has 100 items and
the C list, which is formed on the edge entering the end node, has 100 items.

Note that many different sequences of execution exist for this graph.

136

n
1
d1 AyUaW,T
(a) Add ‘] (2,1,1,2) a =2 _4 +a_,
(200,0,1;1) (100,0,1,1)

21

B list

+ b,
i

(1'1f1!1)

(b)
(0,1,0,100) _ e
XL
1= 142 , 100
cremen
(0’1,1’1 X (1!1?1'1) " o
(¢)
(05,1, T41)
(141,151)
P
I (0,1,1,1)
C
y-0

c __C h h .G c
o +5 ffl (xn'yfl) # > fn--1 (xn—'] i n—‘l)
Figure 4

T

S

n—

13T

Part (c) of Figure 4 depicts a parallel predictor—corrector scheme
of computation for an ordinary differential equation devised by Miranker [101].
The computation graph can be analysed to determine the amount of parallelism

possible in this computation.

Previously we defined a marked graph to be a special type of Petri net
in which each place TE[l has exactly one input transition and one output transition.
Thus, the places in a marked graph can be absorbed into edges from transition to
transition where tokens are then thought of lying on the edges. Our example

marked graph

then becomes:

.

rd] Lr

T A

& % %

This graph can now be considered to be a computation graph, of the same node

and edge structure. The number of tokens on an edge become the number of items
in the queue associated with the edge, and the transition firing rules directly
transform into the restriction that for any edge d, of the computation graph

U =W, =T, = 1. The A, values correspond to the initial marking 1, . A
formal correspondence, which should be obvious from this informal discussion,
thus could be given, Thereby each firing sequence of the marked graph would
correspond to an execution of the computation graph. Executions of the

computation graphs having sets 5 with |S1| > 1 would not, however, correspond

138

directly to a single firing sequence but rather a subset of firing segquences
where each such §, would result in an arbitrary ordering of firings. Our

example marked graph then becomes the following computation graph,

(0,1 ;151) (0,1,1,1)

PR 2 (1415351) 3

where n; corresponds to o ,i = 1,2,3.

Through this correspondence results of computation graphs can be
directly applied to marked graphs. See [96] for an example; we will not amplify
this here. S.C. Meyer has generalised the definition of computation graphs and
investigated, in a much more comprehensive manner, the correspondences between

computation graphs and marked graphs.

Since computation graphs are a particularly simple model, much can be
proved about them, For example, if each operation is assumed to perform a
specific function (from input variables to output variables) then it can be
shown that the sequences of data on the queues is independent of the particular
execution chosen. That is, computation graphs are determinate., Also, using
appropriate algebraic manipulation of the inequalities associated with a
computation graph algorithms exist for determining which operations of a comput—
ation graph terminate, and with how many performances; which operations have an
unbounded number of performances, and what the bounds on queue lengths of' data

are during executions.

139

C: Relation of Synchronisation Problems to Computation Graphs and Petri Nets.

To introduce some simple synchronisation problems it is convenient

to discuss semaphores,

The concept of semaphores was introduced by Dijkstra to provide a
means of coordinating cooperative sequential processes. Several mutual
exclusion problems and producer—consumer problems were also discussed there as

prime examples for the use of semaphores.

Definition 10: A semaphore is a nonnegative integer valued variable which can
be accessed by program processes only by the two types of

instructions P(s) and V(s) defined below.

This definition is not made completely precise here; e.g., we leave
undefined some of the concepts, such as "processes" used in the definition, It

is hoped, however, that the notions will be clear from the examples we discusse.

Definition 11: P(s) is an indivisible operation on a semaphore s. P(s) at

location L is defined as:

L: if s< 1 go to L else s — 1.

Definition 12: V(s) is an indivisible operation on a semaphore s defined by:

g ¢ 8+ 1.

The indivisibility of the P and V operations means that once started
the operation must be completed with interaction or interference by any other
P or V operation. Thus if Vi(s) and Va(s) were acting on a single semaphore
"simultaneously" the semaphore value would be increased by 2 after completion
of both V&(s) and Va(s). If a semaphore value was 1 and two P operations were
attempting to operate on it, only one of the P operations (arbitrarily determined)
would be allowed to proceed, decreasing the value to O. The other P operation
would have to wait until the semaphore was again increased and then it would
have to compete with any other P operations on that semaphore that were
attempting to operate. If the original value had been 3, then both P operations

could proceed simultaneously with the semaphore value ending up at value 1.

140

As an example of semaphore usage consider the two process example depicted in

Figure 5
Process A Process B

A1 31
Figure 5
Mutual 4 z
Bxolnalon Critical
Example A2 €——— Sections 3 32

[y

B
Ay 3

In this example we consider the two processes A and B, each having three sub-
processes which are performed cyclically. The two processes can be performed

in parallel with the constraint that the two critical sections A; and B, are
constrained so as not to run simultaneously. That is, if A, is being performed,
then B, or B, could also be in some stage of performance, but B, is prohibited
from starting before A, finishes., The constraint is symmetrically imposed for

B, being performed. Other than that, no constraints beyond the individual

cyclic action are desired. This mutual exclusion problem is a common one in
practice. Assume, for example, that A; and B, are performing different functions
on a common file, then concurrent operation of these two functions could cause

a malfunction,

The desired sequencing constraint is readily implemented with a single
semaphore s, initially set to value 1. Then each subprocess A, and B, can be
started with a P(s) instruction and ended with a V(s) instruction, Of course,
the arbitrary choice of which P operation is performed when two are attempting
to be performed allows cases in which just one of the processes, either A or B,

dominates the gituation so that the other process is eternally waiting at the

141

start of its critical section without ever actually getting a chance to be

performed. Some more complicated solutions prohibit such "eternal"™ waits.

This simple mutual exclusion problem is readily modelled by a Petri

net — as shown in Figure 6.

1 1 2 2 3 3
OO0
|
.
TT4 IU'4 \m TT5 6'5 TT6 |0'6
:) F—O—
Figure 6

Here transitions &, oy, and g, are used to represent the subprocesses
A, A,, and Ay, respectively, of process A; and q,, 05, and & represent B, B,
and B, respectively. Also, place T, represents semaphore s, and it is tokens

in this place that control the mutually exclusive firings of o and og.

We now turn to another class of synchronisation problems called

producer—consumer problems.

Producer—consumer problems are an important class of synchronisation
problems that arise when one considers the interconnection of a set of processes.
Essentially, the idea of a producer—consumer system is that a given process of
the system produces results that are used (consumed) by some other process.

Such problems should be common in distributed systems. We first define a

restricted system we call unshared.

142

Definition 13: An unshared producer—consumer system 5 consists of':

(i) a finite set B

Loy o Diswe .,pl} of processes,
(ii) a finite set S = {sm,s,,...,85,} of semaphores,
(iii) a function oz S - BXB which associates an ordered
pair of processes with each semaphore,
(iv) three functions p: S N
m: S+ N
vi S+ N
where for a semaphore s with a(s) = (pi,pa), m(s) is
the number of P(s) operations in the beginning of py,
v(s) is the number of V(s) operations at the ending of

p;, and p(s) is the initial value assigned to s.

In an unshared producer—consumer system each semaphore is associated

with a pair of processes as shown below:

process semaphore 2 process

> P.
s J

Here the process p; is thought of as the "producer" of results for "consumer"
py, where P and V operations are used to indicate to the consumer when sufficient

items have been produced for the consumer to start.

This unshared producer—consumer is a very restricted usage of
semaphores, The semaphore is "private" to the producer—consumer pair rather
than being shared by several producers or several consumers. However a process
may be considered to be a producer (or consumer) for several processes, Jjust as

long as one semaphore is used for each producer-consumer pair.

A fairly direct representation of unshared producer—consumer systems
by computation graphs should be evident. For an unshared producer—consumer
system S of f processes and t semaphores we can construct a computation graph
GS with ? nodes and t edges.

=

143

Bach process py of S is represented by a node n; of GS, and each
semaphore s, is represented by an edge d, of GS directed from n; to ny if

ofs,) = (p,py). The parameters A, U, W, and T, are defined as:

b (s)
U, = \)(Sk)
Wk = Tk = ﬂ(Sk)-

lWp:.
I

With this representation, the performance of an operation O; associated with ny
of GS corresponds to the performance of process p; of S. An execution of

GS corresponds to an allowed sequence of process performances in S, where
termination properties of the two systems correspond, and where queue length of

d; corresponds to attained semaphore value of s .

This correspondence also shows why the generalised P and V operations

often called PV Chunk, are natural extensions of P's and V's to consider.

An example of the computation graph GS for an unshared producer—

consumer system is shown in Figure 7.

This system S, by Definition 13 is:

B={p,p,m)} S={s,%,s,]}

ofe) = (ym] () = 2 v(s) = 2
als;) = (mym,y) m(sy) = 1 v(s,) = 1
ofs;) = (p1y2) m(s,) = 1 v(s) = 1
0&'(5&,)= (p.].!p.'j) ”(34)= 2 V(S4)=2

We see that in this example initially only process p, can start.
When p, terminates and updates s, then p, can start. When p finishes and
updates s, and s, then both p, and p, can start. Process p, can initiate

again only when both p, and p, have finished.

The "unshared" aspect of the systems we have just defined is guite

restrictive. We generalise.

(2)

144

P(S‘I)
° P(s,) P(s4)
P1 P2 P3
V(S3) V(S,]) V(Sz)
V(s4) V(S‘I)
V(s4)
w(sq) = uls,) = 2
P‘(SZ) - U‘(s3) =0
) dy
GS

(2’2’2f2)

Figure T

Unshared Prooucer — Consumer System S and Corresponding Computation Graph (}S

145

Definition 14: A producer—consumer system 5, consiste of:
(i) a finite set B

(ii) a finite set S

[P1ppzy---P1} of processes,

I

{51’32""'St} of semaphores,
(iii) +three functions p: S+ N

m: SXB-+ N

vi: SXB+ N

where for any seS and peB, u(s) is the initial value of s, m'(s,p) is
the number of P(s) operations at the beginning of p, and v'(s,p) is

the number of V(s) operations at the end of p.

Here the m' and V' functions let a semaphore be used by any process. As before,
however, we assume all P operations to occur at the start of a process and all

V operations to occur at the end of a process.

There is a correspondence between producer-consumer systems and a

generalized form of Petri net, which we now define.

Definition 15: A generalized Petri net P = (I, Z,R, MO,AI,QO) congists of:

(i) a finite set I1 called places,

(ii) a finite set I called transitions,

(iii) a relation R(mxz) U (=xm),

(iv) a mapping M : 11+ N, called the initial marking, and

(v). two functions e (mxz) + N and Ay* (Zxm) + N, where for mell and
oeZ, A,I('rr, o) = 0 if and only if (m, o)#R and ao(a,n) = 0 if and only if

(o, H)AR'

A generalized Petri net is like a Petri net (condition (i) through (iv))
with added functions AI and QJ' These functions define the amount by
which the number of tokens on a place 1 change by the firing of a transition o.
A transition is called active or fireable in a generalized Petri net if each
input place 1 to @, contains at least AI(n,c) tokens. The firing of an active
trangition ¢ changes the number of tokens on a place 1 by the amount
f_b(’c, m) - AI(TT, o)e We use the same terminology and concepts developed for
Petri nets to discuss generalized Petri nets. The only extension being general-—
izing the removal and addition of tokens by transition firing to be other than

single token changes. See [54,74,99] for further discussion of generalized

Petri nets.

146

The next two definitions describe structural restrictions on general-—

ized Petri nets.

Definition 16: Two transitions 0'% o' of a generalized Petri net P are call
equivalent transitions if and only if, for all
Tell, AI("Tv o) = AI(TT’G') and AO(C’"TT) = 60(0"7“)'

Definition 17: A generalized Petri net P is called irreflexive if and only if
there does not exist any mell and oell such that AI(n,c) >0 and
qo(c}ﬂ) > 0.

A formal correspondence between producer—consumer systems and

generalized Petri nets is depicted below:

Producer—Consumer Generalized Petri
System S with net P with
B = {p_l,pz,ooo,pl} % = {0‘1,02,0-.,01}
S = {81,82,...,St} n = {ﬂ1,ﬂ2,00-,ﬁt]
Pj ~ %
S. ~ 1.
T i
m (s, ,pJ) £0 ~ (ﬂi,oj)eR
W(s3093) £ 0 ~ (57)R
u(s;) ~ M ()
n‘(si!pj) e AI(ﬂi’cj)
T ~
AY] (Si,pj) Lb(o:'j’ﬂi)

Although this correspondence between producer—consumer systems and
generalized Petri nets give an isomorphism between the two models, we will show
that it does not automatically provide an isomorphism between behaviours. This
is shown by the next sample. Consider the three process producer-consumer system
with u(s1) = u(sz)= 0 and p(s3) =1z

P(s1) P(s2)
P(SB) P(sz) P(s1)

Pis P23 P33
V(s1) v(s3) V(s3)

V(sz)

147

This corresponds %o the Petri net:

This producer—consumer system has a deadlock. Note that after process
p1 is performed both 8, and 8, change to a value of 1. Then p2 can execute
P(s1) and p, can execute P(S2) which deadlocks the system. No deadlock occurs
in the corresponding Petri net, however. Rather, after o fires then both a,
and 03 become active. There is a conflict between o, and o,, but the global

rules for firing transitions do not allow both 9% and o3 to fire. Thus, the
conflict situation in the Petri net is related to the deadlock in the producer—
consumer system. More complex examples, like the Cigarette Smokers Problem of
Patil show that even a rearrangement of P(s) operations in the processes cannot
always circumvent the deadlocking problem. The simultaneous taking of tokens
from several places by a transition firing, which prevents the firing of con-
flicting transitions, is what gives rise to the desire to generalize P oper—
ations to operate simultaneously (or in an indivisible manner) on arbitrary

subsets of semaphores.

This example should amply demonstrate that one needs to carefully
analyze correspondence between models to be sure that the desired properties
carry over in the correspondence from one model to the other. Here we see
they did not. A weak relationship between conflicts and deadlocks was noted

but this has not been precisely described.

In our next lecture we will introduce another formalization called
vector addition systems (VAS) which originally arose in the study of parallel
program schemata. VAS have been shown equivalent (in some sense) to Petri nets

and correspondences with other models also have been developed.

s Pl
/ / 'f:‘.'l'.u ;

\ %
"f»’g

“ l(’] r
- L [J_ryu L\
Lecture 2 T,f///

Schemata Models for Parallel Computation

In this lecture I beiefly describe some of the schemata models and
their results. Since vector addition systems, which first arose in parallel
program schemata, have been shown to play a role in so many of the different
studies of parallelism I will spend considerable time on these, and a related

system called vector replacement systems.
A: Schemata Models.

Two basic types of schemata models exist. One is based on having a
finite set of operations operating on a common memory, and whose control of the
operations is done by some of automata theoretic construct [72,75,90,1367.

Thus we have a schema S = (MyA.T) where M is the memory, A is the set of
operations and T is the control. The models are usually uninterpreted models
or partially uninterpreted models meaning that the particular functions and

decisions associated with the operations are not specified.

A second type of schemata model is based upon elementary operation
schemas (usually a finite set of them) which are interconnected to form a data—
flow schema [37,80,1297 In these, rules of interconnection are often specified
in order to insure determinacy of the interconnected schema. That is, we have
sufficient conditions for determinacy. In contrast, in the (M,A,T) schemata
one develops constraints on the schemata (usually global in nature) from which

necessary and sufficiency of determinacy followe

The more purely automata type models vary anywhere from finite automata
forms [17,187] to parallel random access programmed machine in nature. A special
iterative form has been studied [87,887] in which some complexity types of results

have been obtained.
B: Basic Properties and Proof Techniques.

As we have remarked earlier, determinacy is one of the better under—
stood properties of parallel computation. It takes several different forms in
.the different models, but in essence it means that the outcome of the computation
is unique and does not depend upon the particular relative times that operations

are allowed to be performed. The computation graph is by its structure always

149

determinate, as are some of the data~flow schemata. In terms of schemata one
can envision different types of determinacye. It means that for any memory
location the complete sequence of values that appear in the location during
computation under a given interpretation is independent of how the individual
operations were sequenced. Necessary and sufficient conditions are developed
for such determinacy and they are shown to be essentially the Bernstein cond=
itiions [15] on overlap on domain and range locations of operations. Also, for
a broad class of schemata, namely repetition-free, lossless, persistent, commut-—
ative, counter schema it is shown that determinacy is decidable. The technique
for showing this is a more—or-less standard sliding argument which is used in
Church—Rosser type theorems which allows one to slide symbols of one sequence

of operations to match another sequence without changing memory values. Another
aspect of the proof involves vector addition systems of which we say more later.
A rather surprising aspect of the decidability of determinacy (as well as other
properties) is its lack of "stability." It has been shown [94] that if the
single property of repetition=free is removed from the hypothesis then deter—
minacy becomes undecidable. This boundary between the decidability and undecid=—
ability can be viewed as the most rudimentary measure of complexity, although
some of the properties are known to be quite complex [857] even though they are
decidable.

Normally, this strong form of determinacy is more than really desired.
Often one would only require the final values (assuming termination) of two
computation sequences to match on either all, or a specified subset, of memory.
The strong determinacy of course implies this weaker "output determinacy" but
little is known how to obtain output determinacy without requiring determinacy

throughout the sequence.

The determinacy property does not arise directly in terms of Petri nets.
This is because the Petri net does not have interpreted functional operations nor
does it have a formal way, like interpretations for schemata, of adding them.
Thus any such questions must be dealt with outside the Petri net model. The
conflict sitﬁation in Petri nets does, however, give rise to an obvious situation
that looks like it would lead to indeterminacy. Also, it has been shown to be

intimately connected with deadlocks — as was shown in the first lecture.

Other properties of interest include: termination, ie.e. how many times
the operations of the model are performed; boundedness, i.e., the number of

operation performances that can be done concurrently; and the number of control

150

states that are reachable in computations. For schemata all of these properties
are decidable in a manner similar to determinacy, and become undecidable without
repetition—~freeness assumed. For computation graphs rather straightforward
algorithms for boundedness and termination can be derived. In Petri nets bound—
edness is defined in terms of the maximum number of tokens that can reside in any
place at any moment. A net is called "safe'" if this bound is one. Termination
is expressed by the term "liveness" in a Petri net. A transition in a Petri net
is called "live" if from any reachable token distribution it is possible to reach
a situation in which the transition is fireable. Boundedness and safeness follow
directly from the decidability of a problem in vector addition systems whereas

liveness is equivalent to the "reachability problem" in vector addition systems.

Since vector addition systems are a simple mathematical construct, and
since they underlie many problems concerning parallel computation, I have decided

to discuss vector addition systems at some length here.

C: Vector Addition Systems and Vector Replacement Systems

Vector addition systems were originally formulated and studied to prove
that certain properties of parallel program schemata were decidable [71,72].
Subsequently they were seen to be an appropriate formalation of previously studied
problems [53,55,70,997), and have been widely applied to various problems since
then [51,63,113]. Keller [74] generalized VAS to vector replacement systems to

extend their modelling capability to other classes of asynchronous systems.

In this section we introduce VAS and VRS as purely mathematical objects,
and state some of the known results about these systems. Later we will see how

these are applied to problems in parallelism and asynchronism.
We first discuss vector addition systems as found in [T727].

Definition 1: An r—dimensional vector addition system is a pair W = (d,W) where d
is an r—dimensional vector of nonnegative integers, and W is a finite set of

r—dimensional integer vectors.

The reachability set R(W) is the set of all vectors of the form dtw,+w,+ese+u, 20

2
for i = 1,2,¢4s,8. That is, R(W) is the set of points that can be reached from d
by successively adding elements of W such that the path of points so formed always

remains in the first orthant.

151

A simple example : r =2, d = (1,1), W = {(-2,1),(0,1),(3,-1)}. Note
that (4,1)eR(W) since (4,1) = (1,1) + (3,-1) + (0,1) and the successive points
(1,1), (4,0) and (4,1) are all in the first orthant.

We use the following terminology:
(1) For r-dimensional vectors x and y,xsy if and only if x,Sy; for i =1,2,...,r.
(2) We sometimes use O to denote the r—dimensional vector of zeroes.

(3) wis a symbol such that if n is an integer then n<w and n+w = w. In some

sense ® intutively means "as large as desired."

(4) A rooted tree is a directed graph with some designated node, 6§, called the
root, which has no edges directed into it, each other node has one edge
directed into it, and each vertex can be reached through a directed path
from the root. If ¢ and T are distinct nodes of the rooted tree having a
directed path from to 7 then we say (<N If there is a directed edge from
C to T then 7 is called a successor of {e« If T is a node with no edge

directed out of it, then T is called an end.

For W we construct a rooted tree T(W) with labelled nodes 1((¢) for each

node ¢, where 1(() is an r—dimensional vector label having components from N U {w].
Definition 2: T(W) consists of:

(1) a root & with label 1(8) = d.
(2) 1let T be a node of T(W)
(a) if for some vertex { < M 1(¢) = 1(7) then 7 is an end.
(b) otherwise successors of T are formed (one for each weW for which
1(m) + w=0). Let T, denote the successor of 1 associated with wei.
then l(Th) is determined as follows:

(1) if there is a (< T such that
1(¢) =1(m) + w and
(1(e));<a(m) + w),
then (1(TL))1 w

(ii) if no such ¢ exists, then (l(ﬂw))i = (1(m) + w)i'

+

This is a complicated definition which needs some explaining. The
recursive form of the definition for T(W) provides a means for recursively
constructing T(W) starting with the root with label d. Given any node (of
T(W) that has not yet been shown to be an end we first construct trial successors

to ¢, one for each w, eW with temporary label 1(g) + w,. If 1(g) + w&*o then it

52

is not a node of T(W), otherwise parts 2b(i) and (ii) of the definition are used
to obtain the permanent label for this node, component by component. Having the
permanent label one can check to see if the node is an end. The initial portion

of the tree T(W) for our example vector addition system is shown in Figure 1.

(wyw)

(3'“1)
(1703)
- (0:1)
d=(1,1) (11“)) : (w!u’)
5 ('211) z (UJ,(.U)
(3v'1) (4,w) (011)
(0,1) -1
(3,-1) (0.0)
Figure 1 (4,0) -2,1) (w,w)

T(W) for example We

("'2p1) (w!w)
(w,1-) (011) *
(3!"'1) (w,o)

The crucial fact about T(W) that makes it useful is stated in the following

theorem.
Theorem 1: For any vector addition system W,T(W) is finite.
This is proved in [72, Theorem 4.1]

Before continuing we note that T(W) provides some information about
the reachability set R(W). If T(W) contains a node ¢ and 1(() is finite in all
components then the path from & to { shows how the vector 1({) can be reached
from d by successively adding elements from W such that the path always remains
in the first orthant. If some co—ordinates of a node { are w, this in some
gsense means that by successive application of some subsequence of vectors this
co-ordinate value can be made "as large as desired", or can be "pumped". Since
several w's in { can interact with each other, care must be taken in such pumping.

With careful analysis (see proof in [72, Theorem 4.2]) we obtain the following
theorem.

EETFTEIIES

153

Theorem 2: Let x be an r~dimensional vector of nonnegative integers. Then the

following statements are equivlant:

(1) there is a yeR(W) such that xsy;
(2) there is a node TeT(W) such that x=1(T).

Now, since T(W) is finite, and can be recursively constructed, we

obtain a number of decidable properties for vector addition systems, again from
[72 3.
Corollary 1: It is decidable of a vector addition system W and a point x

whether R(W) contains a point y=2x.

Corollary 2: It is decidable of an r—dimensional vector system and a set

0511,2,...,r} whether the coordinates in O are simultaneously unbounded.

Corollary 3: It is decidable of a vector addition system W whether R(W) is

finite or infinite.

Even though the construction of T(W) appears to be rather straight—
forward, from a complexity point of view it has been shown in general to
require exponential space [21,85]. Also some problems concerning vector

addition systems have been shown to be undecidable.

Theorem 3: There is no algorithm to decide, for two vector additon systems W and
V, whether
R(W) < R(V).
This is an unpublished result of M.0O. Rabin. This result and the
following by Hack are given in [517

Theorem 4: There is no algorithm to decide, for two vector addition systems W
and V, whether
R(W) = R(V)

A final problem for vector addition systems that has obtained consider—

able attention is called the reachability problem. This is the question:

Is there an algorithm to decide, given a vector addition system W

and a nonnegative integer vector x, whether xeR(W).

Sacerdote and Tenny claim to have such an algorithm. Also see [55,107,142].

154

We now turn to Keller's VRS's [741.
Definition 3: A vector replacement system V = (d,V) consists of:
(i) d, an r~dimensional vector of nonnegative integers, and
(ii) V, a finite set of ordered pairs of r—dimensional integer vectors

V = [(u1,v1),(uz,vz),...,(up,vp)} where u, <0 and w, =v.,i = 1,2,000,P.

The u, are called the test wvectors and the v, are called the replacement
vectors, and for notational convenience we let p(vi) e In [74] the
components of u, are allowed to be strictly positive as well as O or negative.
However, since as Keller notes, only the nonpositive components matter

mathematically, we restrict ourselves to uy entries which are O or less.

The reachability set R(v) of a vector replacement system V = (d,V) is

the set of all vectors of the form

d + V(T) + v(z) + eoe + V(S) such that v(j) eV for all j € 1,2,44+,8 and
a+ v(1) + v(z) + ees + v(1_1) + p(v(l)) =0 P all d oa 152,008

Clearly, vector addition systems are simply a special type of vector
replacement system for which (ui)j . min[O,(vi)j] for all i and j. The concepts
of reachability sets for VAS and VRS are also obviously very similar. What
Keller could show, in fact, was the notion of the T(W) tree immediately
generalized to VRS's where the test 1(T) + w = O was replaced with a 1(T) + u, 20
test, but where new node labels were formed by using the replacement vectors as
(1(m) + vi)j' Then he showed Theorems 1, 2, and Corollaries 1, 2, and 3 could
be generalized to VRS with no essential changes in their proofs. Thus, the
finiteness of the tree T(V) and its resulting meaning for R(V) carried over
immediately to VRS. Of course, the undecidability results (Theorems 3 and 4)
also trivially hold for VRS. Whether the decidability of the reachability
problem carries over to VRS is not immediately clear (the algorithm and it's

proof are complex) but I suspect that it does.
D: Encoding Parallelism and Asynchronism Problems.

In this section we discuss some of the encodings of parallel and
asynchronous problems into vector addition and vector replacement systems. To
do so we will find it necessary to briefly describe some of the structures being
encoded. This will be done in the briefest way possible. Readers unfamiliar with
these structures will undoubtedly find it necessary to obtain necessary details in

the cited literature.

155

The first use of vector addition systems, and indeed their original
introduction, was for showing that certain problems about counter schemata (a
special form of parallel program schemata) were decidable [72)e A counter schema
consists of a set M of memory locations, a finite set A of operations, and a
control Te The control contains a finite set of states 3, plus a finite number
k of counters. Thus, a state of the control is an element of S X Nk. Any given

counter schema S is encoded into a vector addition system Ws as follows. Ws has

Is| + k + 4]
coordinates, where the |S| coardinates represent the S state behaviours The k
coordinates represent counter values and the |A| coordinates represent the u
list lengths of operations in A during computations for the schemae. Fach of
these three encodings into the |Sl, k, and [A| coordinates are quite typical of
VAS encodings. Since W, = (d4,W) to define the VAS we have to say both how d and

W are formeds The vector d is formed as follows:

d(so) =1 yliees the coordinate corresponding to the initial state sOeS is

set equal to 1.

a(s)

for sesl, sﬁso
th

a(i) = M i=1,2yeee,ke Here d(i) represents the coordinate of the i
counter and ﬂi is the initial value of this counter.
d(a) = 0 a ¢ Ae Here d(a) represents the coordinate of operation a, and

initially it has no performances in progress so it is set to Q.

Now, since m 2 0 for each counter, the vector d =2 0 as requirede. We will look
now at how vectors in W are formed by describing separately how the |S|, k, and
|A| parts are encoded. We assume that the schema is undergoing a state trans—
ition from s.€S to sieS due to some event © which is an initiation or termination
of an operation aeA. The]S| part of each weW has +1 in one coordinate position

(the ith), -1 in one position (the jth), and O's elsewhere. That is, it is of

the form:
O.loo 1 0...0 "‘1 00..0
or Oeee0 =1 Oeea0 1 Oeeel

This indicates the possibility of a state change from state Sj to 8 Being in a
state 55 will be indicated in arriving at a point in R(WS) which has +1 in the
coordinate associated with s. and O's in all other coordinates associated with
other elements of Se Thus applying this part of the vector corresponds to
changing coordinate Sj from 1 to O and coordinate 8; from O to 1« The k part

of the vector contains in each coordinate the change in valug of the counter

which is expected to occur in the transition from Sj to 8y under even T Ior

156

the]A] part of the vector, if ¢ is an initiation of operation a then +1 is
entered into the coordinate for a, with O's elsewheres If o is a termination
of operation a then =1 is entered into the coordinate for a and O's placed

elsewheres

Now, since there are only a finite number of states in 5, and a finite
number of events o, we see that the construction forms a finite number of integer
valued vectors, so W is as required and W, = (d,W) is indeed a VAS. It is also
quite clear that starting at d and proceeding from reachable point to reachable
point in R(WS) corresponds to a computation for the schema Se Thereby through
this encoding we can study properties of computations via reachability questions,
in particular using the tree construction T(WS), in W In [727] this is dome
for such properties as repetition—freeness, commutativity, boundedness, determin-—
acy and others, where sometimes coordinates are added to WS to encode and test

the property in question.

We illustrate how a "mutual=—exclusion" guestion can be viewed via WS.
Suppose we have designed a counter schema in which operations a and b are used
to represent two critical regions which are never to be performed concurrentlye.
We will see that the question of whether the schema actually accomplishes this

aim can be decided using Ws without adding any extra coordinates.

We proceed as follows:

Given schema S we form Ws and from that construct the tree T(WS), which by Theorem
1 is finites Now, operations a and b can be performed concurrently if and only

if at some point in some computation their p lists are simultaneously greater

than 0. But this condition holds is and only if some node label of T(WS) has

both its a and b coordinates greater than zeroe This is immediately checkable

by inspecting each of the finitely many labels. Thus, this mutual exclusion
problem is decidable directly through our encoding and T(WS) constructione
Granted, the algorithm to decide may not be particularly elegant or efficient

by this approach, but at least the decidability was obtained through a very

direct and simple observation.

We next turn to a "maximum parallelism" question in terms of computation
graphse. Computation graphs were introduced in [69] and have been widely studied.
In [997] it was shown how to encode computation graphs into VRSe. Basically a
computation graph is a finite directed graph with nodes n1,n2,...n1 and edges

d1,do,...,d , where each node represents an operation, each edge represents a

t
first—in-first—out queue of data from the source to sink node of the edge, and

each edge dp has four control parameters Ap,Ub, Wp and Tp associated with it

=

e e

AT

Eas =SS I e — e

S =L YN SIS s =

157

with T = W_. Letting I(ni) denote the set of indices of edges directed into n,
and O(ni) the set of indices of edges directed out of n,, the vector replacement
system V(G) = (d,V) associated with a computation graph G is defined as follows.
d = (Aﬂ'Az"“At)’ the vector of initial number of items in each queue. V
consists of 1 pairs of vectors, one for each n, of G. Letting (ui,vi) denote

the pair for n, we have

-Tj if j e I(ni)

0 otherwise

and

(W 3 .
lef j e I(ni) n O(ni)

U, if i @ O(ni) n I(ni)

Uj =W, if j e I(ni) n O(ni)

(| O otherwise

A vector in R(V(G)) corresponds to a set of mutually attainable queue lengths on
the edges of G, and using the T(V(G)) construction one can readily determine for
each queue whether it is bounded or not. The problem we are interested in,

however, requires considerable addition to V(G) for solution.

In a computation graph a node can "fire'" if it has sufficient data on
all of its incoming queues (as defined by the T parameters). A computation then
corresponds to a sequence of subsets of nodes, where the nodes in each such set
are all envisaged as firing concurrently. Maximum parallelism for a computation
graph thus corresponds to the maximum size subset of nodes that can occur in any
computation for that graph. We wish to encode this maximum parallelism question
into VRS form. To do so the V(G) construction requires substantial additions.

In V(G) each (ui,vi) pair corresponded to a single node firing. Since we wish
to model simultaneous node firings we add to this a (u,v) pair for each subset

of nodes, and let the entries indicate the overall affect on the queue lengths

i)

of this simultaneous firing. (This is the vector sums of the single node (ui,vl

vectors for nodes in the subset). Now in addition we add coordinates to the
modified V(G). We add a single "control" coordinate, plus one coordinate for
each (u,v) pair. In the control coordinate both the u value and the v value are

set to =1. The value in the (u,v) coordinate is set to k, where k is the

=20

- ST=SSIETEMINIEL kS

158

cardinality of the subset of nodes represented by the (u,v) vector pair. All
other extra coordinate values are set to 0 to complete this part of the construct—
ion. To complete the construction we add a mate (u',v') vector pair to V for
each (u,v) already constructed. Both u' and v' have a =k placed in the (u,v)
coordinate; v' has a + 1 in the control coordinate, and both u' and v' are zero
elswhere. The initial vector is that of V(G) with a 1 added in the control
coordinate and O's elsewhere. This completes the construction. We now have a
VRS for G that we denote by V'(G). Applying any particular (u,v) pair (not the
(u',v') mates) corresponds to the simultaneous firing of the nodes in the subset
represented by (u,v). The control coordinate insures that after a (u,v) pair is
applied then a (u',v‘) pair must be applied before another (u,v) pair is applied.
The +k and =k entries insure that the (u',v') pair applied must be the mate of
the (u,v) pair just previously applied. A reachable path in V'(G) now
corresponds directly to a firing sequence in the computation graph. We next
construct the tree T(V'(G)). Inspection of the node labels in the (u,v)
coordinates with nonzero value determine exactly which subsets of nodes can

fire simultaneously, and maximizing over this value gives the attainable maximum

parallelism of G.

To solve this problem, then, we have introduced several more encoding
tricks. The (u,v) pairs provided the desired values to measure the size of the
sets, and the extra (u,v) pairs generalized single node firing to multiple node
firing. Again, however, we make no claims for the efficiency of this decision

procedure.

We now turn to the relationship between generalized Petri nets and

vector addition systems.

Suppose P is an irreflexive generalized Petri net without equivalent
transitions, where I = {ﬂ1’né""’ﬂh] and T = [oi,%z,...,Q£}. A system

Ww(p) = (d,W) corresponding to P is defined as follows

(1) d is an n-coordinate nonnegative integer vector:
d = (Mo(ﬂ1)1MO(TT2)!"'!MO(TTH))°
We also use M0 to represent this marking vector.
(2) W is a set of t vectors, one for each transition of P. Let LE denote

the vector for transition oj and (wj)k the kth coordinate value of wj,

“then define

(wy) = Ao(cj,ﬂk) = (Mg 0)e

159

It should be clear that W(P) is a vector addition system in which any
reachable path of W(P) corresponds to a firing sequence of P. Without going into
detail (see [99]) it should be clear that for any vector addition system one can
also construct a corresponding irreflexivegeneralized Petri net without equivalent
transitions. Thus, there is an isomorphism between these two structures, giving

the result:

Theorem 5: There is an isomorphism between irreflexive generalized Petri nets
without equivalent transitions and vector addition systems which provide an

isomorphism between firing sequences and reachable paths.

The reader may wish to provide the details for these constructions and
results which have been omitted here. Note that the irreflexive and equivalent
transition restrictions are important to have the simple isomorphism results.

If a Petri net had equivalent transitions o and GB then the construction of
W(P) would give the same vector for w, and W Since W is a set the information
about equivalent transitions is lost in the mapping from the generalized Petri
net P to W(P). Thus there would not longer be an isomorphism between firing
sequences and reachable paths. The irreflexive property of P means that in
transforming a vector addition system to a generalized Petri net that a nonzero
entry (wj)k in Wjew immediately indicates the interconnection of place T _with
transitions a e If (wj)k = O there is no direct connection. If (Wj)k = a0
then U is in the output set of places for oj and has AO(Gj'nk) = Qe If

(wj)k = a<0 then e is in the input set of 05 and has AI(nk,ca) = a. Irreflex—

itivity insures that no confusion can exist from the general relation
bylosim) = a(m,0,).

From Theorem 5 relating reachable points in W(P) and reachable markings

in P we immediately obtain:

Corollary 4: For any irreflexive generalized Petri net without equivalent
transitions R(W(P)) = R(P,Mb).

Thus many properties about generalized Petri nets can be studied via
the corresponding vector addition system. For example, the coordinate values of

reachable points in R(W(P)) determine safeness and k-safeness.

For the remainder of this lecture when we use P forg Petri net we will
mean an irreflexive generalized Petri net without equivalent transitions. A

simple restatement of safeness now is:

160

Corollary 5: P is safe if and only if each reachable point in R(W(P)) has
coordinate values that lie in the set {0,1}, and P is k—safe if and only if

the coordinate values lie in the set {0,1,e¢e¢s,k]}.
Corollary 6: The properties safe and k—safe for P are decidable.

Proof: Inspect nodes of T(W(P)). For safeness labels on the tree must have

coordinate values only from {0,1}, and for k—safeness from {0,1,+..,k}. Naturally

all of T(W(P)) may not have to be constructed to prove that a given P is not safe

or not k—safe.

A much less immediate corollary, which was shown by Hack [557] through

a complex series of constructions using Petri nets, is:

Corollary T7: The questions of liveness of a Petri net P and of whether xeR(W(P))

in a vector addition system are recursively equivalent.

The corollaries stated for vector addition systems — using the T(W)
tree — are also directly translated into results for Petri nets. Namely, for
any marking M it is decidable whether there is an M' = M in R(P,Mo). It is
decidable, for any subset of places, whether markings can be reached where the
number of tokens in these places are simultaneously unbounded. It is decidable

whether R(P,Mo) is finite or infinite.

Consider now the property of whether a given transition o is dead with
respect to a particular marking M. A simple modification of W(P) allows one to
decide this. Construct W'(P) = (M',W') exactly like W(P) but add one extra
coordinate to represent the firing of o Let M' be the initial marking which is
equal to M, and with O the extra coordinate value. Now the weW' representing o
let the extra coordinate wvalue equal one, and for all other weW' that coordinate
value is set equal to zero. Now o is dead with respect to M if and only if there
is no peW'(P)) with a value in the extra coordinate greater than zero. This can
be tested by inspection of T(W'(P)). This technique of adding coordinates to

count or test certain properties is useful for testing other properties as well.

The generalization of vector addition systems made by Keller [74] to
vector replacement systems allows one to develop a correspondence between vector
replacement systems and generalized Petri nets without equivalent transitions
giving analogous results to those we have just discussed, see Keller [74] and

Miller [997] for details.

IS -

FTITT

161

E: Conclusions

From all of the different uses for vector addition systems we have
discussed, as well as from the inherently simple combinatorial structure of VAS
it should be clear that vector addition systems form a basic mathematical ideal=-
ization that is both useful and elegant for considering problems of parallelism

and synchronization. I suspect that numerous other applications of VAS will

continue to be discovered.

SRS EERC TSN

===

162

Lecture 3

On Formulations Relating to Loosely Connected Processes

In attempting to understand and design complex systems programs an
extensive literature has arisen concerning such systems. A part of this work
deals with resource sharing among loosely connected processes, where the system
is thought of being composed of a number of semi-independent processes that run,
more-or-less simultaneously, but that have to interact in a cooperative manner
when using resources that are available to the various processes. This liter—

ature on system synchronisation includes three principal types of work, namely:

1) Synchronisation primitives
2) Programming solutions to particular problems
3) Mathematical formulations, e.g., using Petri nets, path expressions,

graph models, systems of processes models, etc.

In this talk T will discuss, primarily, some relatively new results on the

system of processes approach of these mathematical formulations. This work is

in recent papers by Miller and Yap, but also has close ties to the work of Lipton
and also Gilbert and Chandler. Some of the Petri net and other parallelism
model applications have already been alluded to in the previous talks. The path
expression approach as described in works of Campbell, Habermann and Lauer, I will
not discuss here. Much of this work was done right here at Newcastle and people

from here would be much more capable of discussing this than I.

After some informal descriptions of synchronisation problems I will
describe two mathematical formulations for such problems: a system of process
model and a synchronisation graph model. Using these formulations I will then
show how various properties of synchronisation can be formalised, and also discuss

a few theorems:

163

A, Typical Synchronisation Problems

There have been quite a few different synchronisation problems
discussed in the literature. They have been given names such as: the mutual
exclusion problem, the producer—consumer problem, the readers—writers problem,
the dining philosophers problem, the cigarette smokers problem, etc. Each of
these problems depicts a certain type of interaction between a number of
concurrent processes and the utilisation of common resources. We will use
mutual exclusion and the dining philosophers problems as examples in our

formulations.

Mutual exclusion can be described as having n processes that access a
common resource (say a file). To insure integrity of the file we restrict
utilisation in such a way that at most one process can have access to the file
at any time. Beyond that one wants the system to be designed so that all
processes are treated "fairly" in being able to get access. No process should
be locked out, nor should the system deadlock. In our formal treatment these

requirements will be formally stated.

The dining philosophers problem considers n processes arranged in a
circle with a resource between each process around the circle. For a process
to enter a certain critical region it must gain access to two resources - one to
its left and one to its right. Again, only one process can access a given
resource at a time, and the problem is to design a system that allows such
access, and again gives "fair" treatment to each process. Figures 1 and 2

depict mutual exclusion and dining philosophers, respectively.

Process 1 Process 2

— —
—— - — — - —
— o — e — -

File

Resource

Process n

Figure 1 : Mutual Exclusion

164

Process 1

Rn .,
/1

Process n Process 2

k\\\\ Figure 2: Dining Philosophers
& “{//,///W
R2

-~
B: Systems of Processes =

We now define our system of processes model. In our formulations, we
will see that resources are not directly formalised. This is an omission and
not an oversight. We want to model the fact that synchronisation in processes
is a function of the common data variables. It is these variables, rather than
the resources themselves, that are visible to the processes. Even though these
data variables are not the resources themselves, they are intended to reflect the
state of the resources as seen by the processes (e.g. whether a resource is

available).

A "process", as formulated here, consists of a finite set of instructions
(i.e. the program) which begins its computation at a given initial instruction,
with some initial data wvalues. The process sequentially executes instructions,
where each instruction determines two things: it computes new data values and it
specifies the next instruction to be executed. We also include the concept of
a process failing. This is done by specifying a failure function which determines

how the data values are changed in the event of failure.

165

m
Definition 2.1. QD== <HO,D> is called the data set where D= X Di' each Di is
i=1

asety i=12¢s.y,m, and d. is an arbitrary element of D called the initial

6]
data.

We take @D to be fixed for this discussion. A typical member of D is
denoted .by d2<a1,.o.,dm> WheI‘e di 6 D‘i 9 i. = 1,2,...,“‘1.

Definition 2.2. A process onSD is a J-tuple, P = <C, A, u, ¢> where:

(i) ¢ is a finite set called the (instruction) counter values with two
distinguished elements % and Cpe o is called the initial
counter value and c,. the failure counter value. Elements of

, i
C - [cf] is called the (normal) next instruction function, where
X(cf;a) = ¢, for all d € D.
(ii) a:C x D—>C - {cp} is called the (normal) next instruction function,
0 for all d € D.

(iii) p:C x D—D is called the failure transformation function.

where k(cf;a) = c

Each instruction of the program is represented by a counter value of C.
We will often refer to members of C as instructions, even though this is not,
strict}y accurate. Beginning at the initial instructiom, c,, and with initial
data, do,

next instruction to be executed, and the p function to specify the new data

the process progresses by using the A function to specify the (normal)

values. Note that the range of A excludes c. so that, normally, the failure

T
counter value is not entered. Later we will show how a transition into the

failure value is accomplished.

We are now ready to define how a collection of semi-independent

procesges act cooperatively through a common data set 8D .

Definition 2.3. A system of n processes on & is a set T = [P1]2;1 where each

PJ_‘ = <('fl,)\1, ul, 4>]>, i=1,2,eee,n, is a process on& , and
¢t ncd=g for i # j.

166

We call P:'L the ith process., We will use superscripts to denote the
process being referred to. For example, cg and cé are the initial and failure
counter values of the ith process., We often suppress reference t0 D and n
when understood. Hence "process" and "system of processes" (or just "system")
are usually used. Note that the definitions of process and system of processes
imply that the only communication between processes occur throughgb . Also,
although &% could include all the variables of interest in the computationa,
control, and interaction aspects of the processes, it is of‘ten convenient to
consider ‘0 to be only that part of the data used for process control and
interaction. No process may modify or read another process's counter value.
In particular, the use or intent to use a common resource by one process can

only be indicated to other processes by some conventions on & values.
We next consider how system actions may be defined:

Definition 2.4. An instantaneous description (i.d.) of £ is an (n+m)-tuple,

1= <c1,...,cn, d1,...,dﬁ> where o' € Cl, i=12,400yn, and <d1,...,dﬁ> € D.

T . : -3 - i e -
The initial i.d. of T is IO = CO'dO where Cy = <Cqs co,...,cg>, and do is the

initial data wvalue.

Definition 2.5. Let I = E;E, I' = E';E' be i.d.'s of £, i € [d]. The binary

relation “{?E " is said to hold between I and I', written
1

IT3 I iff (i) nj(E') = nj(E), for § = yseesty 37 45

and (i1) either m (3') = c% and @' = p*(d)

or T, (3') = A%(m; (3)3) and ' = w(n, (3)354).
We write I—> I' iff 31 € [n] such that I i I'.
?

Definition 2.5 specifies how transitions from one i.d. into another
may be effected. The either—or clause of (ii) indicates that a process may
either fail (via §) or take a normal transition (via A and p). We say that
I T-E* I' is a failure transition or normal transition according to which of

1y
the either—or clauses of (ii) is applicable. We also say that process i causes

the transition I ;75* I'. As usual, references to ¥ are omitted when convenient.

1
*, *
The relations 'Efand —> are the reflexive transitive closure of -E> and —,

%*
respectively. If IO'——* I1, where Io is the initial i.d., we say that I1 is

reachable,

==

BIEFARIMTIERSTE NN

167

Definition 2.6. A sequence of i.d.'s,i?:= (11, 12,...) is called a transition

sequence iff i 2 1, Ii-aI. A transition sequence has the finite delay

i+1°
property for J € [n] iff one of the following 2 conditions holds:

(1) is finite
(ii) Vj € J, either for infinitely many k's, Hj(Ik) - c:‘g. or for

infinitely many k's, Ik“gé I is a normal transition caused by

ket
process J.

Definition 2.7. A sequence of i.d.'s é7= (11, 12,...) is called a computation

sequence on EJ, where J c [n], iff

(1) IO—** I, i.e. I, is reachable.
(i1) Vi€ {1,1,00} LI, , is a transition caused by some process j
dyhere j€ Jd.
(iii) ﬁ has the finite delay property for J.

d is called a nonfailing computation sequence on EJ is in addition to

(i) = (iii), it satisfies
(iv) Vk € {1,2,000] L—> I, 4 is a normal transition.

Notation: If J = [n], we say "computation sequence on " or simply, "computation
" 1
sequence," instead of "computation sequence on Z[n] . If J = {j}, then “E{J}“

is replaced by nydn

A computation sequence is thus seen to be a sequence of consecutive
i.de's which occurs in some computation of the system £. The finite delay
property for J implies that unless a process in J is failed, it must execute
instructions at finite intervals in the computation sequence. That is, no
nonfailing process in J can be "infinitely slower" than the other processes of
the system. Note that the processes are independent in the sense that any
process i € th] may act at any time, that is, from any i.d. each process can

cause either a normal or a failing transition.

168

C: Properties of Processes.

We now turn to stating certain properties on systems of processes which
seem to be common properties in many of the synchronisation problems. Throughout
this section, we assume I to be the system of n processes on QD, as already

introduced.

Property Pl1: Ingtruction executability

Vi € [n], Vc € Ci, Jan i.d. I which is reachable and ni(I) = Ca

This property simply.states that we need only restrict our attention
to those instructions that may be executed. Notice that the i.d. I may be

reachable only via some process failing, for example, if c = c;.

Property P2: Critical Region

Vi € [n], cr, € ™ - {clf:, cg}

This says that each process in I has a critical region in which the
use of some resource is requirede We have not yet specified how the resource
is to be useds That will depend upon the nature of the particular synchroniz-—

ation problem.

Property P3: Trying Region

Vi €], ™ cct - fez, , o;] such that

(1) Ve € ¢, VT € D, 2 (c;T) or, > c €T

ot > ot €T U {cr.l.

and (ii) Ve € TV, V@ € D, A'(c;Q)

This condition states that there is a subset of instructions Ti which
precedes the critical region in the sense that before entering the critical
region, the process has to execute instructions from T+ (condition (i)). pt
also has the property that the only normal (i.e. nonfailing) exit from Ti is
through the critical region (condition (ii)). Combining P3 and P1 we see that
there is a c € T and & & € D such that A(e3d) = cr.. Thus the trying region
(as ™ is called) is seen as a protocol that processes have to go through in

order to be synchronised properly for entry into their critical region,

169 I

Property PA: Loose Connectedness é

Vi € [n] if 4 = (11,..., .) is a computation sequence of T for
which 13 (I Yg Uy {cr } for j =1 2,...,kh1 and I, (I) € T, and process i o
is nonfalllng in Zr then there exists a nonfalllng computatlon sequence of E J
Y o 1 t }
3" - (11,...,1 417 Ij) such that I} = I,, and ni(Ij) € T,

We view loose connectedness as the ability of a process, when outside
of its trying region or critical region, to proceed independently to its trying

region, Note that the existence of éi' is predicated upon the existence of J .

Property P5: Failure Indication

— —

Let and c';d' be two reachable i.d 's and i € [n].

°3
1f 1, (c) = op # m,(c'), then aFar,

This property says that when a process is failed, this fact is indicated

by the data values.

The next two properties specify the flow of instructions between the
various regions of a process. Notice that they are conditions on single i

processes rather than cooperating processes in a system. |

Property P6: Tryine Region Reachability

Vi€ [n], 4F I1 is any reachable i.d. of £ where II. (I) = cé, then
there exists a nonfailing computation sequence (11,12,...,I) of £ such that

]'[i(Ik) e 7t

Property P7: Cyclic Processes

Vi€ [n], Vi.de I,, where Vj % qs 1. (I) ¢ 7 uler } then there exists = i
a nonfailing computation sequence (I 2,..., k) of £* such that H (I) = CO ‘

Property P6 says that process i (acting alone in 21) can reach the
trying region from its initial counter value via a nonfailing computation,
independent of the data values. Property P7 says that process i (again acting

alone in El) may always return to its initial instruction provided the other

——

170

processes are not trying or in their critical region, hence cycllc. So we see
that the typical cycle of a cyclic process con51ats of going from co o T (by P6),
from T to or, (by P3) and from or, back to °O (by P7,) all in a nonfailing
manner. Also, by the definition of l ’ hl(of,_) = CO' so a failed process is

restarted at 00'

Property P8: Critical Region Reachability

Vi € [n], a nonfailing computation sequence (IO,...,Ik) such

that Hi(Ik) = CL,

This property simply states that from the initial i.d. we should
be able to reach each critical region in a nonfailing way. Of course, to
do so may require processes other than process i to execute their instruct-
ions, possibly going through their own critical regions before process i

reaches its critical region.

Property PO: Non-Trying Region
' . i - i
Vi € [n] and V3 2 (ggi, a) ¢ ™.

This property states that each process upon leaving its critical
region enters a region not in the trying region. This has often been termed
"the rest of the program." It is useful to include this property. It allows
one to test that the sequencing protocol is such that some process j which is
trying to enter its critical region is not indefinitely delayed by some process i
which is in a non=trying region.

D: Synchronisation Graphs.

The system of processes formulation seems rather straightforward (modulo
a number of definitional decisions). It is intended to capture the basic notions
of the synchronisation problem literature, and is somewhat related to a formu-
lation of Lipton. Now we introduce a formalism we call synchronisation graphs.
It provides a formal analysis technique which is close in spirit to that of
transition graphs of Moore and Mealy for finite state machines. Gilbert and
Chandler developed a similar graphical model for analysing synchronisation, but

our use of synchronisation graphs differs from the results in their paper.

171

We first need some graph theoretic terminology.

Definition 3.1. A directed graph with multiloops, G = <V,E,¥> is a triple such

that V and E are sets (of vertices and edges, resPectively) where y:E—=V X V such
that Ve,f € B, y(e) = y(f) = <y, and e #f = u = v.

If y(e) = <u, v, then the edge e is directed from u to v. If u # v,
then there is at most one e € E such that y(e) = <u,w>. But if u = v, then more
than one edge, say e and f, may exist such that y(e) = y(f) = <v,Vv>. Thus, a
directed graph with multiloops is a special case of directed multigraphs in which

the only multiple edges are self-loops.

Definition 3.2. The outdegree of v, v € V, is the cardinality of the set

{e€E| 3u such that y(e) = <v,u>}. The outdegree of G is the maximum over all
outdegrees of v € V.,

ge are now ready to define a synchronisation graph. Let 6= <co,
B i - " : - A s | 2
where C _ii(10 , each C” is a finite set with [co,cf] c C o % Cpr

C>,

Ci n Cj = @ for i # J, and EO = <cg, cg,...,c}.

Definition 3.3. A synchronisation graph on <G’,$> is a triple S = <G,o,B>
such that

(i) ¢ = <V,E,y> is a directed graph with multiloops and each
v € v has outdegree 2n.
(ii) B:E={0,1} x [n] such that Ve,f € B, y(e) = <u,v, y(f) = <u,w
and e 75 f= B(e) 7£ B(f).
(iii) o:V—C x D such that
(a) o is an injection.
(b) HVO € V, called the initial vertex and oz(vo) = I, where
Iy = Eo;do.
(c) Ve € E, B(e) = <b,i> and y(e) = <u,v> = I_(a(u)) = 1.(a(v))
for all j # i, j € [n]. Furthermore, bi 0= Hi(or(;]r)) = c

i

fl
We call o the vertex label function and B the edge label function of S.

The motivation for synchronisation graphs is that, given any system of processes

Z, we can define a synchronisation graph S such that each vertex of S (i.e. vertex

172

of G where S = <@,q,p>) represents an i.d. of T where a(v) is the i.d. represented
by vertex wv. A directed edge of 5, e € E such that v(e) = <u,v>, then represents
a transition of 3, a(u)——%a(v); If B(e) = <b,i>, then a(u)— o(v) is caused by
process i, where b = O indicates a failure transition and b = 1 indicates a
normal transition. Thus, the edge label function tells us which process caused
the transition and whether the transition is a normal transition or a failure

transgition.

Definition 3.4. Let J < [n]. A sequence of edges, D= (e1,92,...) is a

path of s iff (v(e,)) = n.(y(e,..)) and m,(B(e,)) € J for k = 1,2,40s o If
2 k g k+1 2 k [n]

J = [n], then we say "path of S" in place of "path of St"<", Similarly, if

J = {i}, "path of S will do.

We adopt various notations for paths. So ey Xy N denotes that there
is a path beginning at ey and ending at €. Note that we can uniquely determine
the sequence of vertices on a given path, but a sequence of vertices does not
uniquely determine a path (because of self-loops). When both the vertices and

edges of a path P = (e1,e) are of interest, we write

2,...

- e e e .
p=v,—31 v2._;2 P S VipT> = where (v1,v2,...) is the sequence of

1
vertices uniquely defined by D. Similarly we write P = v&-—>v2 ees When only

the vertices of p are of interest. We say a vertex Vi1 is reachable iff there

e e e
is a path s v, A R L starting from the initial vertex. Note

"
0

that this coincides with our definition of a reachable i.d. in Section 2.1 in the
sense that v, is reachable implies that a(v1) is reachable (as an i.d.). From

now on, we restrict our attention to only reachable vertices so that the
terminology "¥v € V" should be read "Wv € V and v is reachable". Hopefully this
will cause no confusion, and for emphasis we sometimes still say '"reachable'.

— e e e
Definition 3.5. Let J c[n]landp=v, —b v, =& ... v, Tett, .,

v : J
be a path of SJ with v, reachable. Then p is called a computation path of S

iff one of the following two conditions holds:

(i) D if finite.
(ii) Vi € J, either Hi(a(vk)) = c; for infinitely many k's or
B(ek) = <1,i> for infinitely many k's.

Again, we say "computation path of 8" or "computation path of s when J = [n]

or J = {i}, respectively.

173

¢ e
Definition 3.6. A computation path of SJ, P=v ——jiv -—EL)... is called

1 2
nonfailing iff Yk €{1,2,...,} (B(e)) = 1.

The following theorem shows how the system of processes and synchronisation

graphs are related formally:

no ..
Theorem 3.1. Let £ be a system of n processes on &0 such that ¢ = X C* where
¢* are the counter values for the ith process and et
G = <EO,C>. Then there eixsts an effectively constructed canonical synchronisation

graph, S = <G,o,p> on < ,9)> satisfying the following:

(1) There is a bijection between the reachable i.d.'s of T and the
vertices of S, as given by xV—C x D, Also, a(vb) = EO;EO

where Vo

(ii) Bach v € V has outdegree 2n.

is the initial vertex.

(iii) There is a bijection between computation sequences of I,
ET = (11,12,...), and computation paths of S, p = v1._3; v2-—f2; sy
such that Yk = 1,2, ..., a(vk) = I.
(iv) Ye € E, B(e) = <b,i> and Y(e) = <u,v> implies that the transition
a(u) —a(v) of £ is caused by process i and the transition is a
failure or a normal transition according to whether b = O or 1,

respectively.

Following Theorem 3.1 we associate with each system of processes £ its
canonical synchronisation graph S{£). We also write a(S) = {a(v)|veV}, and it
is easy to see that «(S(Z)) is the set of all reachable i.d.'s of Z.

The synchronisation graphs are built on the idea of the "global states"
of the systems of processes, and this notion is not new. Clearly, a synchroni-
sation graph for a particular synchronisation problem could have a very large
number, or even an infinity, of vertices, and this makes it impractical as a
detailed analysis tool for the problem. The novelty of the formulation, however,
seems to be its use to state problem requirements and to prove general theorems

like those for data requirements as stated later.

174

E: The Mutual Exclusion Problem.

We now begin to consider synchronisation problems and formulate
Requirements for their solution in terms of synchronisation graphs. We choose
the mutual exclusion problem to start our discussion, first, because it is one
of the earliest and best known synchronisation problems, and second, because it
has been studied extensively. It seems that all the analyses that have appeared
in the literature concentrate on particular programming solutions, Our emphasis
here, however, is the inherent properties of synchronisation problems, in the sense
that all solutions (relative to our model of processes) should satisfy these

properties.

Our strategy is as follows: We formalise the informal requirements
on solutions to a particular synchronisation problem by placing restrictions on

synchronisation graphs. Our definition of system of processes seems to include
almost all conventional systems, in particular all alleged solutions to synchron—
isation problems in the literature. But, for any system of processes there is

a synchronisation graph (Theorem 3.1). Thus, any alleged solution to a
synchronisation problem leads to an associated synchronisation graph, which can
then be analysed to see if it satisfies the Requirements we will give. For this
approach to hold, of course, we must assume that the properties we state actually
capture the informal problem requirements. This assumption cannot be formally
guaranteed, but we hope the stated Requirements capture the intuitive ideas.
Nevertheless, any argument with the stated properties can now be based on precise
statements. Also, anyone who disputes our Requirements or Properties should
consider providing alternative but precise formulations. The advantage of this
(compared with previous approaches of supplying a particular programming solution
along with an argument that the solution is correct) is that we now have a uniform
framework (synchronisation graphs) to discuss Requirements on solutions without

assuming specifics about a particular program solution.

The notation of Section D, associated with a synchronisation graph S(Z)

is assumed for our statement of Requirements.

Requirement R1: Mutpal Exclusion

VI € Q’(S)v viyJ € [n], & 75 3 =’Hi(I) 7£ er, or 1 J(I) 7£ E.Ej'

175

This simply states that no (reachable) i.d.'s allow two processes to be

in the critical region simultaneously.

Requirement R2: Trying Region Competition

e e €y
vl € Tnl, if D= v, s Y Vs 2 ses -lijbvk is a computation path
such that ni(a(vj)) €T, j=1,2,e00,k=2 and ni(u(vk)) = cr., then there exists
a nonfailing computation path of S°,
. iy

el
P = v% -—1>vé-—+... -—3+v3 such that v% = Vy Hi(a(va)) = CT..

This Requirement states that if a process in the trying region can
eventually enter its critical region from an i.d. I, then it should be able to
reach its critical region without competing with other processes not already in
the trying region. 1In particular, this formalises Dijkstra's requirement that
a process stopping way outside its critical region camnot block another process.
Note that this Requirement is predicated upon the existence of a computation path
that enters the critical region. Otherwise, it would presuppose no lockout, an

undesirable "logical defect."

Reguirement R3: No Deadlock

There does not exist an infinite computation path D = V,—»V,—>... such
that for some i € [n], and for all 4= 1,2,..., Hi(u(vc)) € T and

That is to say, no deadlock implies that it is impossible for a process
to be continually trying to enter its critical region but still have no process

ever enter its critical region,

Requirement R4: No Lockout

There does not exist an infinite computation path P = vj-—>v2——>...
such that for some i € [n], and for all 4£=1,2,..., Hi(a(ye)) € 7,

We note that R4 implies R3: Assuming R4, then using the properties of
trying regions (P3) it is easy to see that if process i tries "long enough"
without failing, then eventually oLy will be entered. However, R3 does not imply

R4.

176

Requirements R1, R2, and either R3 or R4 (along with suitable Properties)
appear as the "minimal"™ Requirements on any solution to the mutual exclusion
problems, However, it seems that Requirement R2, and some of the Properties are

formulated explicitly here for the first time.

Additional requirements for "refined" solutions were subsequently added
by informal statements in the mutual exclusion problem literature. We now

attempt to give precise statements of these requirements.

Requirement R5: No Global Variables

Vi € [m], 330 € [n] such that Ve € E Yu,v € S, u_e"v i
Ty () # 1, (a(0) = m(6(e) = 35

This condition states that each variable of D is changed by actions
from exactly one process, That process may be viewed as the owner of the

variable. Other processes may read but not modify the variable.

Requirement R6: Finite Range

Vi € [m], |Di| is finite,

Hence each variable may assume only finitely many values. Note that
this implies that the corresponding synchronisation graph is finite i.e. has

finitely many vertices.

Requirement R7: Linear Wait

€ e
Vi € [n] and Vcomputation paths D = v, _Lv.g 2, ... € “,

where II. (u(ve)) € Ti for £= 1,2,...+,k, there does not exist
j€ [n], j # i, such that na(a(v)) = 1. (a()) = STy m. (a(v)) # or; and for
some 1 € (3,4, ++0, k1) 1,(alvp)) ?4 oz

k24,

This condition states that if a process is in its trying region through-
out some computation sequence, then in that sequence, no other process may enter

its critical region more than once.

177

Requirement R8: FIFO

Vi, j € [n], computation paths p = Vi VoD ee e Y,
Hi(a(v1)) € 1, Hj(a(v1)) ¢y {ggj} and n.(a(vk)) = or; implies that

This Requirement imposes a FIFO discipline on processes entering the
critical region. The trying region acts as the FIFO queue (compare Peterson
and Fischer's notion of "gateway"). Any process may default its position in the
FIFO queue by failing. Naturally, this property implies R7 (Linear wait). We
note that R8 may be relaxed somewhat by assuming that one distinguished
instruction in Ti is the "door" and the priority of processes depend on which
process enters the door first. We do not consider this more complicated

Requirement.

Requirement R9: Branch or Write

(i) Vi€ [n], Yc € Ci, if for some d' € D, p.i(c;d') # d', then there exist
¢! € C' such that ¥a € D, A*(c;d) = o'
(ii) Vi € [n], Ve € C*, if for some d', d" € D, A'(cja') # A*(c;am),

then Vd € D, ui(c;a) - s

This condition forces all instructions to be of one of two types:
Condition (i) says that if the instruction "writes" into some variable, then it
may never cause a branch (i.e. hi(c;a) is independent of E). Condition (ii)
says that if the instruction "branches", then it may never write into a variable

(i.e. p.i(c;a) = d always).

One may see Requirement R9 as an attempt to restrict the power of
synchronisation primitives. - An example of a "trivial" solution that is
excluded by Requirement R9 is the following: FEach process has its critical

region preceded by a P(S) and followed by a V(S)

P(E:?);

CcI'.
!

v(s);

R e

IT IV mwe=s

==

178

Note that this solution satisfies what we had called the "minimum requirements"
of the mutual exclusion problem, i.e. R1, R2 and R3 (or R4, depending on the
different interpretations of the P(S) instruction). Also, the semantics of
P(8) is the "busy wait" interpretation, since our definition of processes cannot

model the "queue" interpretation.

Requirement R10: Monadic Instructions

Vi € [n], Vc € Ci, 3j0 € [m] such that if d' = pi(c;a), then d and

d' are identical except on jO.

This condition says that at most one variable may be modified by an
instruction. This is a feature satisfied by many programming languages where

there is only single variable (as contrasted with array) assignment statements.

Like R9, this condition seeks to restrict the power of instructions. Notice
that this condition does not exclude an instruction depending upon more than

one variable,

F. The Requirements for Dining Philosophers

It is interesting to note that almost no change is required in stating
the requirements for the dining philosophers problem from what we have already
done for mutual exclusion. The only change is that Requirement R1 (Mutual

Exclusion) is replaced with a new neighbour exclusion requirement as stated now:

Requirement R1':

VI€a(S), Vi€[n-1]
(n, (1) # ex; or My, (1) 7 ex,,,)
and (Hn(l) 7 cr, or H1(I) - 221).

G. Some Theorems on Synchronisation

We now discuss three theorems concerning synchronisation. The first
two theorems are lower bounds on the size of D, and the third has to do with

the question of representing simultaneity in terms of sequences.

Theorem 4,1. Let Z be a system of processes that satisfies Properties P2
(Critical Regions) and P8 (Critical Region Reachability). If S(Z) satisfies
Requirement R1 (Mutual Exclusion) then m=1. That is, D has at least one variable.

179

This theorem is tight, since the P, V solution uses only one variable

and satisfies the stated requirements.

Theorem 4.2. Let I be a system of processes that satisfies Properties P2 and P8.
If S(£) satisfies Requirement R1 (Mutual Exclusion) and Requirement RS (No
Global Variables) then mzn., In particular, D has at least one local variable

per process.

This theorem is also tight. A solution exists with only one local

variable per process where each such variable takes on only three values.

Theorem 4.3. Under the conditions that (i) instructions are dichotomised, and
(ii) for all instructions c, at most one variable in 8(c)Up(c) is public, then

"simultaneity = commutativity".

Without going into the details necessary to describe all the terms
used here, this theorem means that under some fairly siringent conditions on the
complexity of instructions the behaviour of the system as seen by sequences of
actions is identical to the behaviour (i.e., includes all possible behaviours)
when simultaneous actions actually can occur, Also, by examples, it is known
that deleting either of these conditions causes simultaneous behaviour which

does not occur when viewed as instruction sequences.

This result will appear in a forthcoming paper, "On Formulating
Simultaneity for Studying Parallelism and Synchronisation" by Miller and Yap.
A preliminary version of this result appears in the 1978 ACM Theory of Computing

Proceedings.

180

Selected Bibliography

[1]

(2]

(3]

(4]

(5]

(6]

{71

(81]

{9]

[10]

(111

[12]

Adams, D.A., "A model for parallel computations," in
Parallel Processor Systems, Technologies, and
Applications, L.C. Hobbs, et al., Ed. Washington,

D.C. :Spartan, 1970, pp. 311-333.

Agerwala, T., "A complete model for representing the
coordination of asynchronous processes," Hopkins Computer
Research Report #32, Computer Science Program, the Johns
Hopkins University, (July 1974).

Agerwala, T., "An analysis of controlling agents for
asynchronous processes," Hopkins Computer Research Report
#35, Computer Science Program, The Johns Hopkins

University, (August 1974).

Agerwala, T. and Flynn, M., '"Comments on capabilities,
limitations, and 'correctness' of Petri nets," in
Proceedings of the 1Ist Annual Symposium on Computer
Architecture, Lipovski, G.J. and Szygenda, S.A. (Eds.)
University of Florida, (December 1973), pp. 81-86.

Anderson, D.W., F.J. Sparacio, and R.M. Tomasulo,
"Machine philosophy and instruction handling," IBM

J. Res. Develop., Vol. 11, Jan. 1967, pp. 8-24.

Aschenbrennner, R.A.: Flynn, M.J.; and Robinson, G.A.,
"Intrinsic multiprocessing," Proc. AFIPS, 1967 Spring
Jt. Computer Conf., 30, AFIPS Press, Motvale, N.J., 1967,

pp. 81-86.

Baer, J.L. and E.C. Russel, "Preparation and evaluation of
computer programs for parallel processing systems," in
Parallel Processor Systems, Technologies, and

Applications, L.C. Hobbs, et al., Ed. Washington, D.C.:

Spartan, 1970, pp. 375-415.

Baer, J.L., D.P. Bovet, and G. Estring, "Legality and
other properties of graph models of computations,"
J.Assoc.Comput. Mach., 17, July 1970, pp. 543-552.

Baer, J.L., "A survey of some theoretical aspects of
multiprocessing," ACM Computing Surveys, Vol. 5, ©No. 1,

March 1973, pp. 31-80.

Bahrs, A.A., "Operation patterns (an extensible model of
an extensible 1language) ," Tty 1 Symp. Theoretical
Programming, Novosibirsk, USSR, Aug. 7-11, 1972, Lecture
Notes in Computer Science, Vol. 5, Springer-Verlag, 1974,

pp. 217-246.

Baker, H.G., "Petri nets and languages," Computation
Structures Group Memo 68, Project MAC, M.I.T. (May 1972).

Baker, H.G., "Equivalence problems of Petri nets," S.M.
Thesis, Department of Electrical Engineering, M.I.T.,
(June 1973).

(401

(411

(u42]

[43]

[44]

[u45]

[46]

[u7]

(48]

[49]

(50]

(511

[52]

183

programming control," Comm, Assoc. Comput. Mach., 8,
pp. 569-570, September 1965.

Dill, F.H., "Alternative computer archiectures using LSI."
IBM Research Report RC 5555, June 1976.

Estrin, G., B. Bussell, R. Turn, and J. Bibb, "Parallel
processing in a restructurable computer system," IEEE
Trans. Electron., Comput., EC-12, pp. T47-755, December

1963.

Flynn, M.d., A. Podvin, @and K. Shimizu, ™A multiple
instruction stream processor with shared resources," in
Parallel Processor Systems, Technologies, and

Applications, L.C. Hobbs, et al., Ed. Washington, D.C.:

Spartan, 1970, pp. 251-286.

Gill, S., "Parallel programming," Comput. J., pp- 2-10,
April 1958.

Goldstine, H.H., L.P. Horwitz, R.M. Karp, and R.E. Miller,
"On the parallel execution of macroinstructions," IBM
Research Report RC-1262, August 17, 1964,

Gonzales, M.J. and C.V. Ramamoorthy, "Recognition and
representation of parallel processable streams in computer
programs," in Parallel Processor Systems, Technologies,

and Applications, L.C. Hobbs et al., Ed. Washington,

D.C.,: Spartan 1970, pp. 335-371.

Gonzales, M.J. and C.V. Ramamoorthy, "Program suitability
for parallel processing," IEEE Trans. Comput., C-20,
pp. 647-654, June 1971.

Gosden, J.A., "Explicit parallel processing description
and control in programs for multi- and uni-processor
computers," in 1966 Fall Joint Comput. Conf., AFIPS

Conf. Proc.,, 29,. Washington, D.C.: Spartan, 1966,
pp. 651-660.
Graham, W.R., "The parallel and the pipeline computers,”

Datamation, pp. 68=71, April 1970.

Graham, W.R., "The impact of future developments 1in
computer technology," presented at the Joint Air Force and
Lockheed Aircraft Conf. Comput. Oriented Analysis of Shell
Structures, August 13, 1970.

Gregory, J. and R. McReynolds, "The SOLOMON computer,"
IEEE Trans. Electron. Comput., EC-12, pp. T74-781,

December 1963.

Hack, M., "The equality problem for vector addition
systems is undecidable," Computation Structures Group Memo
121, Project MAC, M.I.T., 1975, pp. 1-32.

Hack, M., "Analysis of production schemata by Petri nets,"
S.M. Thesis, Department of El. Eng., MIT; also MAC tr-94,

184

[53]

[54]

[55]

[56]

(571

(58]

[59]

(601

[61]

[62]

[63]

(64]

Project MAC, MIT, (February 1972), Errata Hack, M.,
"Corrections to 'Analysis of production schemata by Petri
nets'," Computation Structures Note 17, Project MAC, MIT,
(June 1974).

Hack, M., "A Petri net version of Rabin's wundecidability
proof for vector addition systems," Computation Structures
Group Memo 94, Project MAC, MIT, (December 1973).

Hack, M., "Decision problems for Petri nets and vector
addition systems," Computation Structures Group Memo 95-1,
Project MAC, MIT, (August 1974).

Hack, M., "The recursive equivalence of the reachability
problem and the liveness problem for Petri nets and vector
addition systems," Computation Structures Group Memo 107,
Project MAC, MIT, (August 1974), 9 pp; also in 15th

Symposium on Switching and Automata Theory, IEEE, New

York.

Hack, M., "Petri net languages," Computation Structures
Group Memo 124, Project MAC, MIT, (June 1975).

Hansal, A. and G.M. Schwab, "On marked graphs III," Report
LN 25.6.038, IBM Vienna Labs, Vienna, Austrai, (September
1972) .

Henhapl, W., "Firing sequences of marked graphs," Report
LN 25.6.023, 1IBM Vienna Labs, Vienna, Austria, (February
1972) .

Henhapl, W., "Firing sequences of marked graphs II,"
Report LN 25.6.036, IBM Vienna Labs, Vienna, Austria,
(June 1972).

Harper, S+ Dy "Automatic parallel processing,"
Proc. Computing and Data Processing Society of Canada,

Second Conference, (June 1960, 321-331.

Holt, AW, , et al., "Applied Data Res. Inc.,
Rep. AD6T76972, Inform. Syst. Theory Project Final
Rep.,Rome Air Devel. Cen., Contract AF30(602)-4211,
September 1968.

Holt, A.W. and F. Commoner, "Events and conditions," in
Rec., Project MAC Conf. Concurrent Syst. and Parallel
Computation. New York: Assoc. Comput. Mach., 1970,
pp. 3-52.

HolE: R.Cas "On deadlocks in computer systems,"

Ph.D. dissertation, Cornell University, Ithaca, January
1971; also Department Comput. Sci. Tech. Rep. 71-91.

Horwitz, L.P., R.M. Karp, R.E. Miller and S. Winograd,
"Index Register Allocation," IBM Research Report RC-1264,
August 20, 1964. ACM Journal, Vol. 13, No. 1, pp. 43-61,
January 1966.

=< ==

===

[65]

[66]

(671

[68]

[69]

(701

[71]

(721

(731

[74]

L5

[76]

[771]

[78]

185

Irani, K.B. and C.R. Sonnenburg, "Exploitation of Implicit
Parallelism in Arithemetic Expressions for an Asynchronous
Environment," Department of Elec. and Computer
Engineering, University of Michigan Report, Ann Arbor
Michigan, 1975.

Izbicki, H., "On marked graphs," IBM Lab., Vienna,
Austria, Rep. LR 25.6.023, September 1971.

Izbiecki, H., "On marked graphs II," Report LN 25.6.029,
IBM Vienna Labs, Vienna, Austria, January 1972.

Jones, N.D., L.H. Landweber, and Y.E. Lien, "Complexity of
some problems in Petri nets," 1976.

Karp, R.M. and R.E. Miller, "Properties of a . model for
parallel computations; determinacy, termination,
queueing," IBM Research Report RC-1285, September 1964.
Also, SIAM J, Vol. 14, No. 6, pp. 1390-1411, November
1966.

Karp, R., R. Miller, and S. Winograd, "The organisation of
computations for wuniform recurrence equations,” IBM
Research Report RC-1667, 1966, Also JACM, Vol. 14,
No. 3, July 1967, pp. 563-590.

Karp, R. and R. Miller, "Parallel program schemata: A
mathematical model for parallel computation," IEEE
Conf. Record 8th Annual Symposium on Switching and
Automata Theory, pp. 55-61, October, 1967.

Karp, R.M. and R.E. Milier, "Parallel program schemata,"
IBM Research Report RC 2053, 1968. JCSS 3, pp. 147-195,
May, 1969.

Keller, R.M., "Look-ahead processors,” ACM Computing
Surveys, 7, No. 4, December 1975, pp. 177-195.

Keller, R.M., "Vector replacement systems: A formalism for
modelling asynchronous systems," Princetone University,
E.E. Technical Report No. 117, December, 1972. Revised
January 1974,

Keller, R.M., "Parallel program schemata and maximal
parallelism," J.ACM 20, 3 (July 1973) 514-537; and J.ACM
20, 4 (October 1973), 696-=710.

Keller, R.M., "On maximally parallel schemata," in
Conf. Reec., 1970 IEEE 11th Annu. Symp. Switching and
Automata Theory, pp. 32-50.

Keller, R.M., "On the decomposition of asynchronous
systems," in Conf. Rec., 1972 IEEE 13th

Annu. Symp. Switching and Automata Theory pp. 78-89.

Knuth, D., "Additional comments on a problem in concurrent
programming control," Comm. Assoc. Comput. Mach., Vol. 9,
pp. 321-322, May 1966.

186

(791

[80]

(811

[82]

(831

[84]

(851

[86]

(871

(881

[89]

[90]

Kosaraju, S.R., "Limitations of Dijkstra's semaphore
primitives and Petri nets," Technical Report 25, The Johns
Hopkins University, (May 1973), also in Operating Systems

Review, Vol. 7, No. 4, (October 1973), pp. 122-126.

Dosinski, P.R., "A data flow programming language," IBM
T.J. Watson Research Centre Report RC-4264, Yorktown
Heights, N.Y., March 1973.

Kotov, V.E., and A.S. Maringani, "On transformation of
sequential programs into asynchronous parallel programs"
in Proc. IFIPS Congress, 1968, pp. J37-J45,

Kotov, V.E., "Towards automatic construction of parallel
programs," gD, Symp. on Theoretical Programming,
Novosibirsk, USSR, August 7-11, 1972. In Lecture Notes
in Computer Science, Vol. &, Springer-Verlag 1974,

pp. 309-331.

Kuek, D.J.; Muraoka, Y.; and Chen, S.C., "On the number of
operations simultaneously executable in FORTRAN-like
programs and their resul ting speed-up." IEEE
Trans. Computers, C-21, 12 December 1972, 1293-1409.

Lehman, "A survey of problems and preliminary results
concerning parallel processing and parallel processors,"
Proc. IEEE, Vol. 54, December 1966, pp. 1889-1901.

Lipton, Rid s "The reachability problem requires
exponential space," Yale University, Computer Science
Department, Research Report #62, January 1976 (to appear
in Theoretical Computer Science J.).

Lipton, R.J., L. Snyder, and Y. Zalcstein, "A comparative
study of parallel computation," Proceedings, 15th Annual
IEEE Symposium on Switching and Automata Theory, October,
1974,

Lipton, R.J., R.E. Miller, and L. Snyder, "Introduction to
linear asynchronous structures," to appear in Proc. of
Sympesium on Petri Nets and Related Methods, M.I.T.,
Cambridge, Mass., July 1-3, 1975.

Lipton, R.J., R.E. Miller, and L. Snyder, "Synchronisation
and computing capabilities of linear synchronous
structures," in Proceedings of the Sixteenth Annual
Symposium on Foundations of Computer Science, Berkeley,
Cal., October 13-15, 1975, pp. 19-28. Also full version
to appear in JCSS.

Logrippo, Low 4 "Renamings in program schemas," in
Conf. Rec. 1972 TEEE 13th Ann, Symp. Switching and
Automata Theory, pp. 67-70.

Logrippo, L., "Renamings in parallel program schemas,"
Ph.D, dissertation, University of Waterloo, Waterloo,
Canada, February 1974.

=T

(911

(921

(93]

[ou]

(951

[96]

(971

(981

[99]

[100]

[101]

187

Luconi, Filis s "Output functional computational
structures," in Conf. Rec., 1968 IEEE gth
Ann. Symp. Switching and Automata Theory, pp. 76-84.

Martin, D.F., and G. Estrin, "Models of computations and
systems —- Evaluation of vertex probabilities in graph
models of computations," J. Assoc. Comput. Mach., Vol. 14,
pp. 281-299, April 1967.

Merlin, P.M., A Methodology for the Design and
Implementation of Communication Protocols," IEEE Trans. on
Communications, Vol. COM-24, No. 6, June 1976, pp. 614~
621+

Miller, R.E., "Some undecidability results for parallel
program schemata," IBM Research Report RC 3371, May, 1971.
Also, SIAM Computing Journal, Vol. 1, No, 1, pp. 119-129,
March, 1972.

Miller, R.E., and J. Cocke, "Configurable computers: A new
class of general purpose machines," IBM Research Report RC

3897. Invited paper presented at the Symposium on
Theoretical Programming, Novosibirsk, USSR, August, 1972.
In Lecture Notes in Computer Science, Vol. 5,

"International Symposidﬁ_ on Theoretical Programming,"
Springer-Verlag, New York, 1974, pp. 285-298.

Miller, R.E., "A comparison of some theoretical models of
parallel computation," IBM Research Report RC-4230. Also
IEEE Transactions on Computers, Vol. C-22, No. 8, pp. 710-
717, August, 1973.

Miller, R.E., and W.A. Brinsfield, "Insertion of parallel
program schemata," Proc. of the 7th Annual Princeton
Conference on Information Sciences and Systems, March,

1973.

Miller, R.E., "Eight Lectures on Parallelism: 1T,
Configurable Computers and the Data Flow Model

Transformation; II, Computation Graphs and Petri Nets;
III-VII, Parallel Program Schemata; VIII, Relationships

between Various Models of Parallelism and
Synchronisation." Presented at CIME International
Mathematical Summer Centre on "Theoretical Computer
Science," June 9-14, 1975, Bressanone, Italy. In

Proceedings. pp. 5-63.

Miller, R.E., "Relationships among models of parallelism
and synchronisation," (Revision of RC-5074) to appear in
Proceedings of Symposium on Petri Nets and Related

Methods, M.I.T., Cambridge, Mass, July 1-3, 1975.

Miller, R.E., and J.D. Rutledge, "Generating a data flow
model of a program," IBM Tech. Disclosure Bull., Vol. 8,
pp. 1550-1553, 1966.

Miranker, W.L., "A survey of parallelisn in numerical
analysis," SIAM Rev., Vol. 13, pp. 524-547, October 1971.

188

[102]

[103]

(104]

[105]

[106]

(1071

[108]

[109]

[110]

(111]

[112]

[113]

[114]

(1151

Misunas, D., "Petri nets and speed independent design,"
CACM, 16, No. 8, August 1973, pp. 4T4-L81.

Morris, D.; and Treleaven, P.C., "A stream processing
network," Sigplan Notices 10, 3, (March 1975), 107-112.

Munro, I. and M. Paterson, "Optimal algorithms for
parallel polynomial evaluation," in Conf. Rec., 1971 IEEE
12th Ann. Symp. Switching and Automata Theory, pp. 132-
139. Also JCSS, Vol. 7, No. 2, pp. 189-198.

Mrutha, J.C., "Highly parallel information processing
systems," Advances in Computers, pp. 1-116, 1966.

Narinyani, A.S., "Looking for an approach to a theory of
models for parallel computation,” Int'l Symp. on
Theoretical Programming, Novosibirsk, USSR, August 7-11,
1972. IN Lecture Notes in Computer Science, Vol. 5,
Springer-Verlag, pp. 247-284.

Nash, B.0., "Reachability problems in vector addition
systems," The American Mathematical Monthly, 80, 3, 292-
295, March, 1973.

Noe, J.D., "A Petri net model of the CDC 6400," Report 71-
04-03, Computer Science Department, University of
Washington, (1971); also in Proc. of the ACM SIGOPS
Workshop on System Performance Evaluation, ACM, New York,

(1971), pp. 362-368.

Noe, J.D. and G.J. Nutt, "Macro E-nets for representation
of parallel systems," in IEEE Trans. on Computers, Vol. C-
22, No. 8, (August 1973) pp. 718=727.

Patil, S.S. and Dennis, J.B., "The description and
realisation of digital systems," Computation Structures
Group Memo 71, Project MAC, M.I.T. (October 1972); also
in Sixth Annual IEEE Computer Society Int'l Conference
Digest of Papers, IEEE, (1972).

Patil, SeBay "Coordination of asynchronous' events,"
Ph.D. dissertation, M.I.T., Cambridge. (Project MAC
Rep. TR-72, September 1967).

Patil, S.S., "Closure properties of interconnections of
determinate systems," in Rec., Project MAC Conf. Concurrent
Syst. and Parallel Comput. , New York:
Assoc. Comput. Mach., 1970, pp. 10-116.

Peterson, J.L., "Petri Nets," U. of Texas msc., July 1976.

Peterson, Jadiny "Modelling of Parallel Systems,"
Ph.D. Thesis, Elec. Eng. Department, Stanford University,
January, 1974,

Peterson, J.L., and T.H. Bredt, "A comparison of models of
parallel computation," Inform. Processing 74, Proceedings
IFIP Congress 1974, U66-470, August, 1974,

=2

[116]

(1171

[118]

(1191

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

189

Petri, C.A., "Communication with automata," Suppl. 1 to
Tech. Rep. RAD C-TR-65-337, Vol. 1, Griffiss Air Force
Base, New York, 1966. (Translated from Kommunikation mit
Automaten, University of Bonn, Bonn, Germany, 1962.)

Ramamoorthy, C.V. and M.J. Gonzalez, "A survey of
techniques for recognisable parallel processable streams
in computer programs," in 1969 Fall Joint Comput. Conf.,
AFIPS Con. Proc., Vol. 35, Montvale, N.J.: AFIPS Press,
1969, pp. 1-15.

Reddi, S.S. and E.A. Feustel, "A restructurable computer

system," Report, Laboratory for Computer Science and
Engineering, Rice University, Houston, Texas, March 1975.

Reigel, E.W., "Parallelism exposure and exploitation," in
Parallel Processor Systems, Technologies, and
Applications, L.C. Hobbs et al., Ed. Washington, D.C.:
Spartan, 1970, pp. 417-438.

Reiter, R s "Schedul ing parallel computations,"
J. Assoc. Comput. Mach., Vol. 15, pp. 590-599, 1968.

Riddle, W.E., "The modelling and analysis of supervisory
systems," Ph.D. Thesis, Computer Science Department,
Stanford University, (March 1972).

Riddle, W.E., "The equivalence of Petri nets and message
transmission models," SEM 97, The University of Newcastle
upon Tyne, (August 1974).

Rodriguez, J.E., "A graph model for parallel computation,”
Ph.D., dissertation, M.I.T., Cambridge, September 1967.
(Also M.I.T., ESL, and Project MAC Rep. ESL-R-398, MAC-TR-
64, September 1969.)

Rohrbacher, D.L., "Advanced computer organisation study,"
Rome Air Devel. Corp. Tech. Report RADC-TR-66, 7 (2 vols.)
AD 631 870, and 631 871 (April 1966).

Rose, C.W., "A system of representation for general
purpose digital computer systems," Ph.D, dissertation,
Case Western Reserve. University, Cleveland, Ohio,

September 1970.

Rose, C.W., "LOGOS and the software engineer," in 1972
Fall Joint Comput. Con., IFIPS Conf. Proc, A41. Montvale,
N.J.: AFIPS Press, 1972, pp. 311-323.

Rose, C.W., and F.T. Bradshaw, "The LOGOS representation
system," Case Western Reserve University, Cleveland, Chio,
Rep., October 1971.

Russell, E.C., "Automatic program analysis,"
Ph.D. dissertation, University of California, Los Angeles,
1969.

Rutledge, J.D., "Parallel processes, schemata and

190

(130]

[131]

[132]

(133]

[134]

[135]

[136]

L1373

(1381

[139]

[140]

[141]

[142]

transformations," IBM Res. Rep. RC 2912, June 1970.

Rutledge, J.D., "Program schemata as automata, part I," in
Conf. Rec. 1970 IEEE 11th Annu. Symp. Switching and

Automata Theory, pp. 7-24.

Schwartz, s "Large parallel computer,”

J. Assoc. Comput. Machine., pp. 25-32, January 1966.

Senzig, D.N. and R.V. Smith, "Computer organisation for
array processing," in 1965 Fall Joint Comput. Conf., AFIPS
Conf. Proc,, Vol. 27. Montvale, N.J.: AFIPS Press, 1965,

pp. 117-128.

Shapiro, R.M. and H. Saint, "The representation of
algorithms,' Applied Data Res., Inc., Rome Air
Develop. Cen., Tech., Rep. TR-69-313. Vol. 2, September
1969.

Shapiro, R.M. and H. Saint, "The representation of

algorithms as cyclic partial orderings," Meta Information
Applications, 1Inc., NASA Final Rep., Contract NASW-2097,
July 1971.

Slutz, D.R., "Flow graph schemata," in Rec, Project MAC
Conf. Concurrent Syst. and Parallel Computation. New

York: Assoc., Comput. Mach., 1970, pp. 129-141.

Slutz, D.R. "The flowgraph schemata model of parallel
computation," Ph.D. dissertation, M.I.T., Cambridge,
September 1968.

Sonnenburg, C.R., "A configurable parallel computing
system," Ph.D. Dissertation, University of Michigan, Ann
Arbor, October 1974,

Stone, H.S., "A pipeline push-down stack computer," in

Parallel Processor Systems, Technologies, and

Applications. Spartan Books, Washington, D.C., 1970,

pp. 235-249.

Syre, J.C., "From the single assignment software concept
to a new class of multiprocessor architectures," Report,
1975 Department d'Informatique, C.E. R T BPL4025, 31055
Toulouse Cedex, France.

Tjaden, G.S. and M.J. Flynn, "Detection and parallel
execution of independent instruction," 1EEE

Trans. Comput., Vol. C-19, pp. 889-895, October 1970.

Thurber, K.J., "Associative and Parallel Processors,"
Computing Surveys, Vol. 7, No. 4, December 1975.

van Leeuwen, J., "A partial solution to the reachability-
problem for vector-addition systems," Proceedings, 6th
Annual ACM Symposium on Theory of Computing, 303-309, May,

1974.

S

[143]

[144]

[145]

191

Vantilborgh, H. and A. van Lansweerde, "On an extension of
Dijkstra's semaphore primitives," Information Processing

 Letters, 1, 181-186, October 1972.

Winograd, Ses "Parallel interactive methods," in
Complexity of Computer Computations, R.E. Miller and

J.W. Thatcher, Ed. New York: Plenum, 1972.

Yoeli, M., "Petri nets and asynchronous control networks,"
Applied Analysis and Computer Science Research Report CS-
T73--07, University of Waterloo, Waterloo, Ontario, Canada,

April, 1973.

192

ADDITIONAL REFERENCES

(1]

(2]

[31]

[4]

[5]

(6]

(71

(81

(9]

[10]

£114

[12]

[13]

[14]

Anshel, M., "Decision problems for HNN groups and vector
addition systems," Mathematics of Computation 30 No. 133

(January 1976), pp. 154-156.

Brinch Hansen, P., "A Comparison of Two Synchronisation
Concepts," ACTA Informatica 1 (1972), pp. 190-199.

Brinch Hansen, P., "The Programming Language Concurrent
Pascal," IEEE Transactions on Software Engineering SE-1
(2), June 1975, pp. 199-207.

Campbell, A.H.,and A.N. Habermann, "The Specification of
Process Synchronisation by Path Expressions," Lecture
Notes in Computer Science 16, Springer Verlag, Heidelberg

(1974), pp. 89-102.

Courtois, P.J., F. Heymans, D.L. Parnas. Concurrent
control with "readers" and "writers". CACM 14(10):667-
668.

Cremers, Armin and T.N. Hibbard, "An Algebraic Approach to
Concurrent Programming Control and Related Complexity
Problems," Report, USC Computer Science Program, November,

1975.

Crespi-Reghizzi, 8. and D. Mandrioli, "A decidability
theorem for a class of vector-addition systems,"

Information Processing Letters 3 No. 3 (January 1975)

pp. 78-80.

Ellis, C.A., "The Validation of Parallel Co-operating
Processes," University of Colorado, Computer Science
Report CU-CS-065-75, April, 1975.

Feldman, J.A., "Synchronising Distant Cooperating
Processes," Department of Computer Science, University of
Rochester, Report TR26, October 1977.

Gilbert, Philip and W.J. Chandler, "Interference Between
Communicating Parallel Processes," CACM 15, No. 6 (June,
1972) U427-437.

Habermann, A.N. Synchronisation of Communicating
Processes. CACM 15(3): (March 1972) 171-176.

Hoare, C.A.R., "Towards a Theory of Parallel Programming,"
in Operating Systems Techniques, ed. R.H. Perrot, Academic
Press, London (1971), pp. 61-71.

Hoare, C.A.R., "Monitors: An Operating System Structuring
Concept," Comm. of the ACM 17 (10), October 1974, pp. 549~
557.

Horning, J.J. and B. Randell, "Process Structuring" ACM
Computing Surveys 5 (March 1973), pp. 5-30.

SGESeEE

[15]

[16]

(171

[18]

£19]

[20])

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

193

Howard, J.H., "Signalling in Monitors," Proc. of the
Second International Conference on Software Engineering,
San Francisco, October 1976.

Karp, R.A. and D.C. Luckham, "Verification of Fairness in
an Implementation of Monitors," ibid.

Keller, R.M., "Formal Verification of Parallel Programs,"
CACM 19, 7 (July 1976), pp. 371-384.

Lamport, L., "On Concurrent Reading and Writing," Report

CA-7409-0511, Massachusetts Computer Associates, Inc.,
September 1974, revised March 1976.

Lamport, L., "Time, Clocks and the Ordering of Events in a
Distributed System," Report CA-7603-2911, Massachusetts
Computer Associates, 1Inc., March 1976, Also CACM, 21,
(July 1978) pp. 558-565.

Landweber, L.J. and E.L. Robertson, "Properties of
conflict free and persistent Petri nets", JACM 25, (July
1978) 352-364.

Lauver, P.E. and R.H. Campbell, "Formal Semantics of High-
level Primitives for Co-ordinating Concurrent Processes,"
ACTA Informatica 5 (1975), pp. 247-332.

Lipton, R.J., "Schedulars as enforcers in Synchronisation
Processes," Operating Systems Proceedings of an Int'l
Symposium held at Rocquencourt, Lecture Notes in Computer
Science Vol. 16, Springer-Verlag, Heidelberg 1974, 237~
249,

Lipton, Richard Jaa "On Synchronisation Primitive
Systems," Ph.D. Thesis, Carnegie-Mellon University, 19733
and Research Report #22, Yale University, Department of
Computer Science, October 1973.

Logrippo, L., "Renamings and Economy of Memory in Program
Schemata," JACM 25 (January 1978) pp. 10-22.

Meyer, S.C., "An analysis of two models for parallel
computations,” Ph.D. Thesis, Department of Electrical
Engineering, Rice University, Houston, Texas (1974).

Miller, R.E., "Theoretical Studies of Synchronous and
Parallel Processing," Proceedings of the 1977 Conference
on Information Sciences and Systems, John Hopkins
University, March 1977, pp. 333-339.

Miller, R.E., "Mathematical studies of parallel
computation," Proceedings 1Ist 1IBM Symp. on Mathematical
Foundations of Computer Science, October 20-22, 1976, IBM

Amagi Homesﬁggd, Japan, 23 pp.

Miller, R.E. and C.K. Yap, "On Formulating Simultaneity
for Studying Parallelism and Synchronisation," Proceedings
of the Tenth Annual ACM Symposium on Theory of Computing,

194

[29]

[30]

[31]

[31]

£33]

[34]

[35]

[36]

(371

[38]

(39]

(401

[41]

May, 1978, pp. 105-113.

Miller, R.E. and C.K. Yap, "Formal Specification and
Analysis of Loosely Connected Processes," IBM Research
Report RC-6716, September, 1977.

Osterweil, J.P. and G.J. Nutt, "Modelling Process-Resource
Activity," University of Colorado Computer Science Report
CU-CS-084-T75, November 1975.

Parent, Michel, "Presentation of the Control Graph
Models, " Operating Systems Proceedings of an Int'l
Symposiun held at Rocquencourt, Lecture Notes in Computer

Science Vol. 16, Springer-Verlag, Heidelberg 1974,

pPp. 279-292.

Peterson, J.L., "Petri nets,"” ACM Computing Surveys
9(September 1977) 223-252.

Peterson, G.L. and M.J. Fischer, "Economical Solutions for
the Critical Section Problem in a Distributed System,
extended abstract." Proceedings of the Ninth Annual ACM
Symposium on Theory of Computing, May 1977, 91-97.

Rackoff, C., "The covering and boundedness problems of
vector addition systems," to appear in Theoretical
Computer Science J., 1977.

Rivest, R.L. and V.R. Pratt, "The Mutual Exclusion Problem
for Unreliable Processes: Preliminary Report."
Proceedings of the 17th Annual IEEE Symposiun on
Foundations of Computer Sceince, October, 1976, 1-8.

Sacerdote, G.S. and R.L. Tenney, "The decidability of the
reachability problem for vector addition systems," to
appear Proceedings ACM Theory of Computing Symposium, May
1977.

Sayward, F.G., "Research Issues in Synchronisation
Primitives for Operating Systems Languages," in Research
Divisions in Software Technology P. Wagner (ed) MIT Press,

1977. i

Schmid, H.A., "On the Efficient Implementation of
Conditional Critical Regions and the Construction of
Monitors," ACTA Informatica 6 (1976), pp. 227-249,

Schneider, E.A., "Synchronisation of Finite State Shared
Resources," Department of Computer Science, Carnegie-

Mellon University, Ph.D. Thesis, March 1976.

Yap, C.K., "On Abstract Synchronisation Problems and
Synchronisation Systems." Unpublished manuscript, 1976.
Zave, Pamela, "On the Formal Definition of Processes."

Proceedings of 1International Conference on Parallel
Processing, 1976.

[42]

195

Zave, Pamela and D.R. Fitzwater, "Specification of
Asynchronous Interactions Using Primitive Functions."
Technical Report, Department of Computer Science,

University of Maryland, 1977.

=

