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In the early 1960's under the direction of Professor G. Estrin a group 

at UCLA developed a "fixed plus variable" computer structure [41]. To study 

the scheduling and allocation probl ems of this parallel and f l exible machine 

structure they deve l oped some acycl i c graph structures of the parallel 

computations [92]. At MIT various models of parallel computation were developed, 

some as Ph.D. theses under Professor Dennis. One of the early such models was 

widely studied graphical that of Rodriguez [123]. 

models i s one devel oped by 

One of the best known, 

Petri [11 6], now known 

still commands considerable research interest. 

and 

as Petri nets. Thi s structure 

In the early 1960's Karp and 

Mi ller started studying possible ways to speed up computers by adding special 

purpose unit s to machines, and through these studi es developed a simple model 

known as a computat i on graph [ 69]. 

Rather than try to review all of these models in detail here I will 

briefly describe computation graphs and Petri nets (I presume most of you are 

already familiar with Petri nets). I will then di scu ss some relationships 

between computation graphs and Petri nets. Finally, I will introduce some 

~nchronisation problems using semaphores , and show how these problems tie into 

our two models of parallel computation. 

A: Petri Nets 

Although I assume that most of you are fami liar with Petri nets, a 

brief description - to introduce the terminology I use - will be given. 

Defini tion 1: A Petri net P ; (n, l:, R; 1<\,) consists of: 

(i) a finite set n called places, 

(ii) a finite set l: called tranSitions, 

(iii) a relation Rs(nxl: )u(l:xn) , and 

( iv) a mapping 1<\,: n-tN, call ed the initial marking, where N represent 

the set of nonnegative integers. 
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Us~lly a Petri net is represented by a graph in which places anu transitions 

are represented by nodes, R is -represented by directed edges, and ~ is 

represented by dots in the place nodes. To distinguish the place and transition 

nOdes , ci rcles 0 are usually used for places and bars I are used for transitions. 

If nEn and c€~ where ('¥"):R, then -( T\ O')is represented by an edge directed from the 

node for TT to the node for 0'. Similarly for a (cr, TT)ER by an edge from 0' to TT. 

Places are used to hold markers called tokens and ~ assigns an initial number 

of tokens to each place. 

For a given place TT those transitions ~ for which (O'l,TT)ER are called 

the input transitions of TT and those 0'1 for which (TT,O'l )ER are called the output 

transitions for TT. Similarly, for a given C€~, those TTl for which (TT10')ER are 

called the input places of a and those TTl for which (a, TTl )ER are called the 

output places of 0'. The Petri net is thus a fixed graphi cal structure which is 

supposed to represent the allowed sequencing of parallel processes. Usually 

the transitions are viewed as processes and the tokens on the input places of a 

transition are used to control the initiation of the process. A transi tion a 

is called act ive or fireable if and only if each of its input places contains 

one or more tokens. An active transition 0' may fire, and this can be interpreted 

as the execution of the process represented by 0'. When 0' fires it reduces by 1 

the number of tokens in each of its input places, and increases by 1 the number 

of tokens in each of its output places. The firing of a transition thus changes 

the distribution of tokens on places. Such a distribution of tokens is called 

a marking. Through the marking change other transi t ions may become active. 

It is the sequence of transition firings that is used to represent the computation 

sequence in a Petri net. A sequence of transition firings is called a firing 

sequence. It also defines, given an initial marking, a marking sequence. Since 

a given place may be in the set of input places for more than one transition it 

is possible that a single token in a place causes more than one transition to be 

fireable. To prevent the number of tokens upon transition firing to become 

negative it i s assumed that a token is used in only a single transition firing. 

This is assumed formally in yet another way, namely by defining firing sequences 

to be a sequence of transition l abels , implying t hat even though several transitions 

are simultaneously f ireable, no simultaneous firing is allowed in the formal study. 

Thus the next element in a firing sequence is one of t he transition labels as 

picked arbitrari l y from the current set of fireable transitions. This represent-

ation of simultaneous action by different sequences of action will be commented 

on further in my third lecture. 

idealisation. 

It is not clear that this is always a good 



operation. 
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Some simple examples of Petri nets are helpful in understanding their 

"!1
2 

TI 
1 

Figure 1 

In Figure 1, with the initial marking ha'Jing a token only in plA-ce '\ , 

the only fireable transi tion is a,. When cr,. fires it removes the token from TI, 

and places tokens in TIa and TI3 • Then aa and Os are fireable so parallel 

computat i on is represented . The structure TI4 and TIs then both a4 and a5 are 

fireable, but because of the rule on a token being useable only in one firing 

not both a4 and a5 can fire. A choice must be made. We say in general that a 

pair of transit i ons al and a
J 

are in conflict under a given marking M if both 

~ and ~ are active in M and there i s some place TI. belonging to the input 

places of both al and a3 with M(TI.) = 1. It is precisely under the conflict 

situation that although both transitions are s imultaneously active they cannot 

simultaneously fire. 

The Petri net of Figure 2 i s an example that shows that the number of 

tokens may grow unboundedly i n a place. Here a single firing of both a, and aa 

causes TI3 to have two tokens. A single fir i ng of '<3 places tokens back in TI, 

and TIa leaving one token in TI3 • Repeating this cycle of transition f i rings 

causes the number of tokens in TI3 to grow to as large a number as desired. 
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Figure 2 

Figure 3 gives an example of a very special kind of Petri net . A 

Petri net P is called a marked graph if and only if each place IT of P has exactly 

one output transition. When this restriction is made on Petri nets the graph 

can be simplified by absorbing each place into an edge and then letting the place 

marking be repres ented by a marking on the edge . 

Figure 3 

Similarly , restricting a Petri net so that each transition has exactly 

one input place and one output place gives a special class of Petri net s called 

state machines. This is r eadily seen by s implifYing the graph as done by 

letting each trans ition now be represented by a directed edge from it s input 

place to i ts output place. This then assumes the structure of a transition 

diagram of a finite state machine, but here the edges are not labelled. If one 

assumes an initial marking now as a s ingle token in a s ingle place (represent ing 

the start state ) then state to state transitions correspond to transition 

firings. The analogy is too obvi ous to belayor. Both the marked graphs and 

state machines are subclasses of Petri nets Vhat are considerably easter to 

analyse than general Petri nets. Other subclasses of Petri nets have also been 

defined and extensively studied. A number of properties of Petri nets are of 

interest and worth defining. First we note that any marking M of a Petri net 

P with n places can be viewed as an n-dimensional vector in which the value of 

the ith coordinat e of the vector i s the number of tokens in the ith place of P. 



Definition 2: The reachable set of markings R(P,Mo ) of a Petri net 

P = (n,L,R,Mo ) = {M/ 

ending with M}. 

a marking sequence starting with M and 
o 

Definition 3: A Petri net P i s called safe if MER(P,Mo ) implies that each 

coordinate of M is ei ther zero or one. 
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Thus a safe net is a net in which the number of tokens in any place 

never exceeds one. This property is of interest when for some practical 

considerations one is interpreting the Petri net to represent a set of inter

relat ed events and conditions, where conditions are represented as places. A 

condition is int erpreted as holding if the place contains a token, and as not 

holding if the place does not contain a token. For such situations it is 

senseless to have more than one token in a place, so one wants to know that the 

net representing events and condit ions i s a safe net. 

A natural extension of safeness is k-bounded or k-safe. 

Definition 4: A Petri net P is called k-safe if MER(P,Mo ) implies that each 

coordinate of M takes on values from the set {O,1, 2, ••• ,k}. 

A second property of Petri nets is related to the current or eventual 

fireability of transit i ons. 

Definition 5: A transition a of a Petri net P = {n,L,R,Mo} is called live if 

and only if for every MER(P,Mo ) there is some firing sequence 

continuing from M which fires a. The transition ais called 

dead with respect to M if there is no firing sequence continuing 

from M which fires a. 

Definition 6: A Petri net P is cal led live if every transition of P is live. 

The relevance of the property of liveness is evident when one interprets 

the transitions of the Petri net as representing processes. Liveness of a 

transi tion means that there is no way in which a sequence of process executions 

can cause the system to get into a state from which the given process can never 

again be executed. Thus both the liveness and deadness properties of Petri 

nets are related to the concept of deadlocks in operating syst ems. 
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Given any Petri net P we would like to know how to determine if P is 

safe , k-safe, live, or what transitions are dead, and with respect to what 

markings. We will approach these problems via vector addition systems in the 

next lecture. 

One of the very intriguing aspects of Petri nets is the s imple and 

illustrious way in which they repre~ent parallel sequencing. Some researchers 

have enriched the model by various techniques. For example, by providing 

tokens of different colours, by inhibitor edges , and by timings. It appears 

that any such addit ion, although quite helpful for representing certain behaviours, 

turns the model into one that Can simulate a Turing machine, and in that sense 

makes it hopeless to completely analyse. 

B: Computation Graphs 

We now switch to discussing a different graphical model of parallel 

computation called the computat ion graph. This was introduced in [69J and 

studied and extended in a number of further studies ; e.g., [1, 96, 120J. 

Basic Definitions 

Definition 7: A computation graph G is a finite directed graph consisting of: 

(i) nodes n
1 

,n2 ,··· ,n,.2. 

(ii) edges d1,dz, ••• ,d t , where any given edge dp is directed from 

a specified node n, to a specified node n J • 

(iii) four nonnegative integers A" Up' Wp,Tp associated with each 

edge dp, where Tp ~ Wp. 

In a computation graph each node n, is used to represent an operation 

0, and each edge is used to r epresent a first-in-first-out queue of data. 1'hus 

an edge dp directed from n, to nJ represents a queue of data flowing from n, to 

n J • Results of operation 0, represented by n, are placed in the queue and may 

later be used as operands for operation OJ represented by nJ • 

paramet ers on edge dp are int erpreted as follol-ls: 

The four 

(1) Ap is the number of items init ially in the queue from n, to n J • 

(2) Up is the number of it ems added to the queue each time operations 0, 

terminates. 

(3 ) Wp is the number of items removed from the queue each time operation ° J 

initiates . 

(4) Tp is a threshold giving the minimum number of items required in the queue 
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before oper ation 0 l can initiate . 

Computat ions are represented in a computation gr aph as sequences of 

operation perfor mances . An operation 0l' associated with node nl is said to 

be eligible for initiation if and only if· each branch ~ 

contains at least Tp i tems in its queue. I t is assumed 

directed into n
l 

that no two perform-

ances of a given operation 0l can be initiated simul taneous l y . 

initiated Wp items are removed from the queue of edge ~ for each such edge 

directed into nl • When 0 l terminates each edge ~ directed out of nl has 

~ i tems added to i ts queue. 

These def ini t i ons of operation initiation and termination describe how 

computations of t he computation graph are sequenced. Note that the actual times 

required for operation performance ar e not specified. They are . in essence. 

asynchronous . The poss ible sequences of initia tions for computation graphs 

are called executions. An execution is represented as a sequence of sets 

E = s, .s... •.. .• Sn •••• such that each Sn i s a subset of {1. 2 ••• • • ~}, the set of 

nodes indices . If jESn then this means that 0l i s initiated at s tep n in 

execution E. To be more preci se we define x(j . h) for jE[1. 2 •• •• • l) and 

n = at 1 f 2 , ••• as: 

x ( j . O) = ° 
x( j. n) the number of sets Sm . 1$~n. for which j i s an element. 

That i s . x(j.n) is the number of initiations of operation j i n the prefix 

~ • s... ••..• S. of execution E. 

precisely. 

Wi th this notation we can define executions more 

Defini tion 8: The sequence E = s, . s... •...• s. .... i s an execution of the comput

ation graph · G i ·f and only if. for all n. the following conditions 

hold: 

(i) if jES.+l and G has an edge from n, to nl • then 

A" + Upx(i. n) - Wpx(j. n) ., Tp 

(ii) if E i s finite and of length r . t hen for each nl there 

exists an n, such that ~ is an edge from n,. to nl and 

'\ + Upx(i . r) - Wpx( j . r) < Tp 
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Definition 9: An execution E is called proper if the f ollowing impli cation 

holds : 

(iii) if, for all n
l 

and every edge'\, directed from n, to n
J 

lip + U.x(i,n) - Wpx(j,n) 2: Tp ' 

then jE Sr for some r > n. 

In an execut i on the occurrence of a set Sn in the sequence denotes the 

simul taneous initiation of OJ for all jEs". This model i s one of the few t hat 

formally (rather than just informally) allows for s imultaneous initiation of 

operations . 

Thus, an execution E i s viewed as a sequence of sets of events, not 

necessarily equally" spaced in time, where an event is the i niti at i on of an 

operat ion of G. As performances of operations in G proceed t hey generate an 

executi on prefix. Each time an event, or set of s imultaneous events, occurs 

a new element of the execution i s generated. 

The linear forms 

A, + Upx(i,n) - Wpx(j,n) 

associated with each edge ~ of G and each Sn of an execution gives the number of 

i tems in t he queue associated with'\, at this point in the execution if we assume 

that all of the operations up to this point in E have actually terminated . 

Thus, part (i) of the defini tion for executions insures that sufficient items 

are in the queues for OJ tOo" initiate. Condition (ii) insures that an execution 

will terminate onl y when" no further operat i ons are eligibl e for ini t i ation. 

Part (iii), for proper executions , insures that if an operation becomes eligibl e 

for initiation at a certain step, then it will actually be initiated after some 

finite number of steps . This property, often called t he " finite delay 

property," occurs in various forms in different models of parallel asynchronous 

computation and was apparently first introduced via asynchronous logic circuit s 

by D.E. Muller. 
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In an execution E terminations are not explicitly mentioned. This 

does not mean, however , that an execution physically is a set Sn of operations 

that all initiate simultaneously and then all termi nate before any further 

i ni t i ations. For exampl e , i f the i nequal ity ( stronger than that of (i) in 

Defi nition 8) 

ho l ds then it is possi ble 

occur before the x ( i , n)th 

definitions would result. 

that the x(j , n+1)st initiation of OJ may actually 

termination of 0, • No violation of the execution 

Any computation graph G may have a l arge set of executions, and this 

corresponds to the parallel and asynchronous nature of the model. This set of 

executions is, thus, the object to study since in some way it represent s the 

behaviour of G. 

We now consider some simple examples of computation graphs, shown in 

Figure 4 to illustrate our definitions. 

In Fi gure 4 we have i ndi cated within the graphs , and by equations , a 

particular interpretation of the computation graph of interest. Of course, 

the computation graph model does not include any particular interpretation of 

operations, it models only the sequencing of the operations. 

Figure 4 (a) shows a single node edge computation graph with initially 

two data items in the queue . Each performance of the operation removes one 

item and places one item on the queue , and two items are required as the 

threshold for operation initiation . Here we get only a s ingle execution 

E = ( 1},{ 1} , ••• ,( 1}, . .. If we assume ~ to be an add, and the two initial 

i tems each to be the integer 1, then E computes the Fibonacci sequence. In 

part (b) of the figure we can view the operation as adding two lists together 

(see equation) in whi ch the A list has 200 items, the B li st has 100 i tems and 

the C li st , which i s formed on the edge entering the end node , has 100 items. 

Note that many different sequences of execution exist for this graph . 
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1 

G 
A,U,W,T 

(a) J (2 ,1,1,2) ~ = ~-1 + ~-2 

(200,0,1; 1) (100,0,1,1) 

A list -
B list . 

(b) 

C list 

(0 ,1, 0 ,100 ) 
o. = a2 · 1 + a 2 · + b. 

1 1- 1 1 

i=1, 2, ,100 

(e) 

(1,1,1,1) (0 ,1,1,1) (1,1,1,1) 

(0,1,1,1) 

(1,1,1,1) 
(1,1,1,1) 

p = ~ 1 + 2hfP (x ~) Tn+1 n- n n, n 

Figure 4 
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Part (c) of Figure 4 depicts a parallel predictor-corrector scheme 

of computation for an ordinary differential equation devised by Miranker (1 01 J . 

The computation graph can be analysed to determine the amount of parallelism 

possible in this computation. 

Pr'eviously we defined a marked graph to be a special type of Petri net 

in which each place nEn has exactly one input transition and one output transit ion. 

Thus, the places in a marked graph can be absorbed into edges from transition to 

transition where tokens are then thought of lying on the edges. 

marked graph 

then becomes: 

r • • 

Our example 

'Thi s graph can now be considered to be a computation graph , of the same node 

and edge structure . The number of tokens on en edge become the number of items 

in the queue associated with the edge, and the transition firing rules directly 

transform into the restriction .that for any edge <\ of the computation graph 

Up = Wp = Tp = 1. The ~ values correspond to the ini hal marking l>b • A 

formal correspondence , which should be obvious from this informal discussion, 

thus could be given . Thereby each firing sequence of the marked 

correspond to an execution of t he computation graph. Executions 

graph would 

of the 

computation graphs having sets Sn with I s. I > 1 would not , however , correspond 
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directly to a single firing sequence but rather a subset of firing sequences 

where each such So would result in an arbitrary ordering of firings. Our 

example marked graph then becomes the following computation graph, 

(0, 1,1,1) (0, 1,1,1) 

nO ~ 0 
1 (1,1,1,1) 

n
2 (1,1,1,1) n3 

where ~ corresponds to 0'1, i = 1,2,3. 

Through this correspondence results of computation graphs can be 

directly applied to marked graphs. See [96] for an example; we will not amplify 

this here. S.c. Meyer has generalised the definition of computation graphs and 

investigated, in a much more comprehensive manner, the correspondences between 

computation graphs and marked graphs. 

Since computation graphs are a particularly simple model, much can be 

proved about them. For example, if each operation is assumed to perform a 

specific function (from input variables to output variables) then it can be 

shown that the sequences of data on the queues is independent of the particular 

execution chosen. That is, computation graphs are determinate. Also, using 

appropriate algebraic manipulation of the inequalities associated with a 

computation graph algorithms exist for determining which operations of a comput

ation graph terminate, and with how many performances; which operations have an 

unbounded number of performances, and what the bounds on queue lengths of data 

are during executions. 
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C: Relation of Synchronisation Problems to Computation Graphs and Petri Nets. 

To introduce some simple synchronisation problems it is convenient 

to discuss semaphores. 

The concept of semaphores was introduced by Dijkstra to provide a 

means of coordinating cooperative sequential processes. Several mutual 

exclusion problems and producer-consumer problems were also discussed there as 

prime examples for the use of semaphores. 

Definition 10: A semaphore is a nonnegative integer valued variable which can 

be accessed by program processes only by the two types of 

instructions p(s) and V(s) defined below. 

This defi niti on is not made completely precise here; e .g., we leave 

undefined some of the concepts, such as "processes" used in the definition . It 

is hoped, however , that the notions will be clear from the examples we discuss. 

Definition 11 : p(s) is an indivisible operation on a semaphore s. p(s) at 

location L i s defined as : 

L: if s < 1 go to LeIse s - 1. 

Definition 12: V(s) i s an indivisible operation on a semaphore s defined by: 

s ... s + 1. 

The indivisibility of the P and V operations means that once started 

the operation must be completed with interaction or interference by any other 

P or V operation . Thus if V, (s) and Va(s) were acting on a single semaphore 

"simultaneously" the semaphore ' value would be increased by 2 after completion 

of both V, ( s) and Va(s). If a semaphore value was 1 and two P operations were 

attempting to operate on it, only one of the P operations (arbitrarily determined) 

would be allowed to proceed, decreasing the value to O. The other P operation 

would have to wait until the semaphore was again increased and then it would 

have to compete with any other P operations on that semaphore that were 

attempting to operate. If the original value had been 3, then both P operations 

could proceed s imultaneously with the semaphore value ending up at value 1 • 

•• 
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As an example of semaphore usage consider the two process example depicted in 

Figure 5 

Figure 5 
Mutual 

Ex:clusion 

Ex:ample 

Process A 

A1 

A2 

A3 

( 
Cri tical 
Sections ) 

Process B 

B1 

B2 

B3 

In this example we consider the two processes A and B, each having three sub-

processes which are performed cyclically. The two processes can be performed 

in parallel with the constraint that the two critical sections liz and Ba are 

constrained so as not to run simultaneously. 'I'hat is, if liz i s being performed, 

then 1\ or Es could also be in some stage of performance, but Ba is prohibited 

from starting before liz finishes. The constraint is s~runetrically imposed for 

Ba being performed. Other than that, no constraints beyond the individual 

cyclic action are desired. This mutual exclusion problem i s a common one in 

practice. Assume, for example, that liz and Ba are performing different functions 

on a common file, then concurrent operation of the se two functions could cause 

a malfunction. 

The desired sequencing constraint is readily implemented with a single 

semaphore s , 

started with 

initially set to value 1. 

a p(s) instruction and ended 

Then each subprocess liz and 

wi th a V(s) instruction.' 

B2 can be 

Of course, 

t he arbit r ary choice of which P operation is performed when two are attempt i ng 

to be performed allows cases in which just one of the processes, either A or B, 

dominates the situat ion so that the other process i s eternally waiting at the 



start of its critical section without ever actually getting a chance to be 

performed. Some more complicated solutions prohibit such "eternal" ;;aits. 

This simple mutual exclusion problem is readily modelled by a Petri 

net - as sho\1ll in Figure 6. 

Figure 6 
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Here transiti ons cr,. , 0"2 ' and q, are used to represent the subprocesses 

A,. , Az, and Aa, respectivel y , of process Aj and 0"<1\, q" and q; represent B,., :Hz , 
and B" respectively. Also , place n., represents semaphore s, and it is tokens 

in this place that control the mutually exclusive firings of 0"2 and 0"6. 

We no;; turn to another class of synchronisation problems called 

producer-consumer problems . 

Producer-consumer problems are an important class of synchronisation 

problems that arise ;;hen one considers the interconnection of a set of processes. 

Essentially, the idea of a producer-consumer system is that a given process of 

the system produces results that are used (consumed) by some other process. 

Such problems should be common in distributed systems. 

restricted system ;;e call unshared. 

We first define a 
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Definition 13: An unsharecr procrucer- consumer system S consists of : 

(i) a finite set B = ( P:t , P." ••• , P1 J of processes, 

( ii) a finite set S = ( s" Sz , ... , S t J of semaphores , 

(iii ) a funct i on 0': S ... BXB which assoc i ates an orcrerecr 

pai r of processes with each semaphore , 

( iv) three functions ,,: S ... N 

n: S ... N 

v: S ... N 

where for a semaphore s with O'( s ) = (PI' Pj ) , n( s) i s 

the number of p ( s ) operations in the beginning of Pj. 

v(s) is the number of V(s) operations at the encring of 

PI . ancr ,,(s) i s the initial value assignecr to s. 

In an unsharecr procrucer-consumer system each semaphore i s associatecr 

with a pair of processes as shown below: 

process semaphore s process 

P . P. 
~ J 

Here the process PI is thought of as the "procrucer" of results for " consumer" 

Pj' where P ancr V operations are usecr to incricate to the consumer when sufficient 

items have been procrucecr for the consumer to start. 

This unsharecr procrucer-consumer is a very restrictecr usage of 

semaphores . The semaphore is " private" to the procrucer-consumer pair rather 

than being sharecr by several procrucers or several consumers. However a process 

may be consicrerecr to be a procrucer (or consumer) for several processes, just as 

l ong as one semaphore i s usecr for each producer-consumer pai r . 

A fairly crirect representation of unshared producer-consumer systems 

by computation graphs should be evident. For an unshared producer-consumer 

system S of ! processes ancr t semaphores we can construct a computation graph 

GS with 2 nodes and t ecrges. 



Each process PI of S is represente~ by a no~e ~ of GS' an~ each 

semaphore S k is represented by an edge ~ of G
S 

directed from nl to ~ if 

0'( Sk) = (Pi , P l ) • The parameters A.,. , Uk ' W" an~ Tk are ~efine~ as: 

A,. = ~(s,) 

U, v(s,) 

W, = Tk = TI (s,) . 
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With this representation , the performance of an operation 0 l associate~ with nl 

of GS correspon~s to the performance of process ~ of S. An execution of 

G
S 

correspon~s to an allowe~ sequence of process performances in S, where 

termination properties of the two systems correspon~ , an~ where queue length of 

dk corresponds to attained semaphore value of Sk. 

This correspondence also shows why the generalised P and V operations 

often called PV Chunk, ar e natural extensi ons of P's and V' s to consider. 

An example of the computation graph GS for an unshared pro~ucer

consumer system i s shown in Figure 7. 

This system S, by Definit i on 13 is: 

B = ( Il,. , p;' , I<;} S = (s,., Sz , 'I3 , s,,} 

0'( s,. ) = (p:, ,Il,. } TI(s,.) = 2 v( s,. ) = 2 

(X( S2 ) = (lli , Pl.,) TI(~ ) 1 v(~ ) = 1 

0'( ":3 ) = (I1.,p;,) TI ( ":3 ) 1 v(":3) = 1 

0'( q" ) = (1\ ,Pd) TI ( q,,) = 2 V(S4 ) = 2 

We see that in this example initially only process ~ can start. 

When I<; terminates an~ up~ates s" then I1. can start . When 1\ fini shes anll 

upllates ":3 anll S4 then both P;, anll lli can start. 

again only when both P;, anll lli have fini shed. 

Process 1\ can ini tia te 

The "unsharell" aspect of the systems we have just definell i s quite 

restrictive. We generalise. 
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P(S1) 

(a ) S 
P(s2 ) 

P(s3) 

P1 

V(s3) 

V(s4) 

V(s4) 

(0,1,1,0 

Figure 7 

~(s1) = ~(s4) = 2 

~(s2) = ~ ( s 3) = 0 

(2, 2, 2,2) 

P(s4) 

P(s4) 

P
3 

V(s2 ) 

(2,2,2,2) 

Unshared PrOQucer - Consumer System S and Correspondi ng Computation Graph GS 



Definition 14: A producer-consumer system S, consiste of: 

(i) a finite set B = (P1,P2, ••• Pl } of processes , 

(ii ) a finite set S = {s1,s2, ••• ,St} of semaphores, 

(iii) three functions ~ : S ~ N 

TT': SxB ~ N 

,,': SxB ~ N 
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where for any s eS and peE, ~( s ) is the initial value of s, TT'(S,p) is 

the number of p(s) operations at the beginning of p, and ,,'(s,p) is 

the number of V(s) operations at the end of p. 

Here the TT ' and ,,' functi ons let a semaphore be used by any process. As before, 

however , we assume all P operations to occur at the st art of a process and all 

V operations to occur at t he end of a process. 

There is a correspondence between producer-consumer sys t ems and a 

generalized form of Petri net, which we now define. 

Definition 15: A generalized Pet ri net P = (n,E,R, Mo'~'~) consists of: 

(i) 

(ii) 

(iii) 

(iv) 

(v) 

a finite set IT called places, 

a f inite set E called t ransiti ons , 

a relati on RgnxE) U (Exn), 

a mapping M : IT ~ N, called t he initial marking, and 
o 

two functions ~: (nxE) ~ N and tv: ( ExIT) ~ N, where for TTCn and 

creE, Ar (TT, cr) = 0 if and only if (TT, cr)jR and ~ (cr, TT) = 0 if and only if 

(cr, TT))R. 

A generalized Petri net is like a Petri net (condition (i) through (iv)) 

wi th added functions ~ a nd ~ . These functions define the amount by 

which the m'.lllber of tokens on a place TT change by the f iring of a transition cr. 

A transit i on i s called active or f i reable in a gener al ized Petri net if each 

input pl ace TT to cr, contains at least Ar( TT, cr) tokens. The firing of an active 

transition cr changes the number of tokens on a place TT by the amount 

~(cr,TT) - Ar(TT, cr). We use the same terminology and concept s developed for 

Petri nets to discuss gener ali zed Petri nets. The only extension being general

i zing t he r emoval and addition of tokens by transition firing to be other than 

s ingle t oken changes. See (54,74,99] for further discussi on of generalized 

Petri nets. 
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The next two definitions describe structural restrictions on general

ized Petri nets. 

Definition 16: Two transitions 0', 0" of a generalized Petri net P are call 

equivalent transitions if and only if, for all 

TTen, lI:r(TT, 0') = lI:r(TT,O") and CV(O',TT) = CV(O",TT) . 

Definition 17: A generalized Petri net P is called irreflexive if and only if 

there does not exist any TTen and O'€n such that t>r( TT, 0') > 0 and 

CV(O',TT) >0 . 

A formal correspondence between producer-consumer systems and 

generalized Petri nets is depicted below: 

Producer-Consumer 

System S with 

B = (P1' P2 ' ... ,PI} 

S = (s1 ,s2"" ,St} 

Pj 
s. 

1 

TT'(si,Pj) ,0 
"'(s. ,p.) , 0 

1 J 
~(s) 

TT'(si,Pj) 

"'(s. ,p. ) 
1 J 

Generalized Petri 

net P with 

L: = ("1' "2"'" '1.} 
n = (TT1 , TT2 ' ... , T\ } 

"j 
TT. 

1 

(TTi , "j )~R 

( O'j' TTi ) cR 

M (TT. ) o 1 

lI:r ( TTi ' 0) 
CV( O'j' TTi ) 

Although .this correspondence between producer-consumer systems and 

generalized Petri nets give an isomorphism between the two models, we will show 

that it does not automatical ly provide an isomorphism between behaviours. This 

is shown by the next sample. Consider the three process producer-consumer system 

with ~(s1) = ~(s2)= 0 and ~(s3) = 1: 

P(s1 ) P(s2) 

P(s3) P(s2 ) P(s1 ) 

P1 : P2 : P3: 

V( s 1 ) v(s3 ) V(s3) 

V(s2 ) 
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Thi s corresponds to the Pet ri net: 

IT3 

This producer-consumer system has a deadlock. Note that after process 

P1 is performed both s1 and s2 change to a value of 1. Then P2 Can execute 

P(s1) and P2 can execute P( s2 ) which deadlocks the system. No deadlock occurs 

in the corresponding Petri net, however. Rather, after CT
1 

fires then both '2 
and CT

3 
become active. There is a conflict between '2 and CT3' but the global 

rules for firing transitions do not allow both CT2 and CT
3 

to fire. Thus, the 

conflict s ituation in the Petri net is r elated to the deadlock in the producer

consumer system. More complex examples, like the Cigarette Smokers Problem of 

Patil show that even a rearrangement of p(s ) operations in the processes cannot 

always circumvent the deadlocking problem. The s imultaneous taking of tokens 

from several places by a trans ition fi ring , whi ch prevents the firing of con

flicting transitions, i s what gives rise to the desire to generalize P oper

ations to operate simultaneously (or in an indivisible manner) on arbitrary 

subsets of semaphores. 

This example should amply demonstrate that one needs to carefully 

analyze correspondence between models to be sure that the desired properties 

carry over in the correspondence from one model to the othe~. Here we see 

they did not. A weak relationship between conflicts and deadlocks was noted 

but this has not been precisely described. 

In our next lecture we will introduce another formalization cal l ed 

vector addit ion sy s tems (VAS) which original ly arose in the stu~ of parallel 

program schemata. VAS have been shown equivalent (in some sense) to Petri nets 

and correspondences with other models also have been developed. 
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Lecture 2 

Schemata Models for Parallel Computation 

In this lecture I beiefly describe some of the schemata models and 

their results. Since vector addition systems, which first arose in parallel 

program schemata, have been shown to play a role in so many of the different 

studies of parallelism I will spend considerable time on these, and a related 

system called vector replacement systems. 

A: Schemata Models. 

Two bas ic types of schemata models exist. One is based on having a 

finite set of operations operating on a common memor,y, and whose control of the 

operations i s done by some of automata theoretic construct [72, 75 , 90 ,136]. 

Thus we have a schema S = (M,A.T) where M is the memor,y, A is the set of 

operations and T is the control. The models are usually uninterpreted models 

or partially uninterpreted models meaning that the particular functions and 

decisions associated with the operations are not specified. 

A second type of schemata model is based upon elementar,y operation 

schemas (usually a finite set of them) which are interconnected to form a data

flow schema [37,80,129]. In these, rules of interconnection are often specified 

in order to insure determinacy of the interconnected schema. That is, we have 

sufficient conditions for determinacy. In contrast, in the (M,A,T) schemata 

one develops constraints on the schemata (usually global in nature) from which 

necessar,y and sufficiency of determinacy follow. 

The more purely automata type models var,y anywhere from fini te automata 

forms [17,1 8 ] to parallel random aCCess programmed machine in nature. A special 

iterative form has been studied [87 , 88 ] in which some complexity types of results 

have been obtained. 

B: Basic Properties and Proof Techniques. 

As we have remarked earlier, determinacy i s one of the better under

stood properties of parallel computation. It takes several different forms in 

. the different models, but in essence it means that the outcome of the computation 

is unique and does not depend upon the particular relative times that operations 

are allowed to be performed. The computation graph is by its structure always 
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determinate, as are some of the data-flow schemata. In terms of schemata one 

can envision different types of determinacy. It means that for any memory 

location the complete sequence of values that appear in the location during 

computation under a given interpretation is independent of how the individual 

operations were sequenced. Necessary and sufficient conditions are developed 

for such determinacy and they are shown to be essentially the Bernstein cond

itiions (15] on overlap on domain and range locations of operations. Also, for 

a broad class of schemata , namely repetition-free, lossless, persistent, commut

ative, counter schema it is shown that determinacy is decidable. The technique 

for showing this is a more-or-less standard sliding a rgument which is used in 

Church-Rosser type theorems which allows one to slide symbols of one sequence 

of operations to match anothe r sequence without changing memory values. Another 

aspect of the proof involves vector addition systems of which we say more later. 

A rather surprising aspect of the decidability of determinacy (as well as other 

properties) is its lack of "stability." It has been shown [94] that if the 

single property of repetition-free is removed from the hypothesis then deter

minacy becomes undecidable. This boundary between the decidability and undecid

ability can be viewed as the most rudimentary measure of complexity, although 

some of the properties are known to be quite complex (85] even though they are 

decidable . 

Normally, this strong form of determinacy is more than really desired. 

Often one would only require the final values (assuming termination) of two 

computation sequences to match on either all, or a specified subset, of memory. 

The strong determinacy of course implies t his weaker "output determinacy" but 

little i s known how to obtain output determinacy without requiring determinacy 

throughout the sequence . 

The determinacy property does not arise directly in terms of Petri nets. 

This is because the Petri net does not have interpreted functional operations nor 

does it have a formal way, like interpretations for schemata, of adding them. 

Thus any such questions must be dealt with outside the Petri net model. The 

conflict situation in Petri nets does, however, give rise to an obvious s ituation 

that looks like it would lead to indeterminacy. Also, it has been shown to be 

intimately connected with deadlocks -- as was shown in the first lecture . 

Other properties of interest include: termination , i.e. how many times 

the operations of the model are performed; boundedness, i.e. , the number of 

operation performances that can be done concurrently ; and the number of control 
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states tha-t are reachable in computations. For schemata all of these properties 

are decidable in a manner similar to determinacy, and become undecidable without 

repetition-freeness assumed. For computation graphs rather straightforward 

algorithms for boundedness and termination can be derived. In Petri nets bound

edness is defined in terms of the maximum number of tokens that can reside in any 

place at any moment. A net is called "safe" if this bound is one. Termination 

is expressed by the term "liveness" in a Petri net. A transition in a Petri net 

is called "live" if from any reachable token distribution it is possible to reach 

a situation in which the transition is fireable. Boundedness and safeness follow 

directly from the decidability of a problem in vector addition systems whereas 

liveness is equivalent to the "reachability problem" in vector addition systems. 

Since vector addition systems are a simple mathematical construct, and 

since they underlie many problems concerning parallel computation, I have decided 

to discuss vector addition systems at some length here. 

c: Vector Addition Systems and Vector Replacement Systems 

Vector addition systems were originally formulated and studied to prove 

that certain properties of parallel program schemata were decidable [71,72]. 

Subsequently they were seen to be an appropriate formalation of previously studi ed 

problems [53,55 , 70,99], and have been widely applied to various problems since 

then [51,63,113]. Keller [74 ] generalized VAS to vector replacement systems to 

extend their modelling capability to other classes of asynchronous systems . 

In this section we introduce VAS and VRS as purely mathematical objects, 

and state some of the known results about these systems. Later we will see how 

these are applied to problems in parallelism and asynchronism. 

We first discuss vector addition systems as found in [72]. 

Definition 1: An r-dimensional vector addition system is a pair W = (d,W) where d 

is an r-dimensional vector of nonnegative integers, and W is a finite set of 

r-dimensional integer vectors. 

The reachability set R(W) is the set of all vectors of the form d+w1+w2+ ••• +wi~ 

for i = 1,2, ... ,s. That is, R(W) is the set of points that can be reached from d 

by successively adding elements of W such that the path of points so formed always 

remains in the first orthant. 
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A simple example: r = 2, d = (1,1), W = ((-2,1),(0,1),(3,-1)}. Note 

that (4,1)eR(W) since (4,1) = (1,1) + (3,-1) + (0,1) and the successive points 

(1,1), (4,0) and (4,1) are all in the first orthant. 

(1 ) 

(2 ) 

(3) 

We use the following terminology: 

For r-dimensional vectors x and y,x~y if and only if x.~y. for i = 1,2, ••• ,r. 
1 1 

We sometimes use ° to denote the r-dimensional vector of zeroes. 

w is a symbol such that if n is an integer then n<w and n+w = w. In some 

sense w intuti vely means "as large as desired." 

(4) A rooted tree is a directed graph with some designated node, 6, called the 

root, which has no edges directed into it, each other node has one edge 

directed into it, and each vertex can be reached through a directed path 

from the root. If e and ~ are distinct nodes of the rooted tree having a 

directed path from e to ~ then we say e<~. If there i s a directed edge from 

C to 11 then 11 is called a successor of C. If 11 is a node with no edge 

directed out of it, then 11 is called an end. 

For W we construct a rooted tree T(W) with labelled nodes lee) for each 

node e, where lee) is an r-dimensional vector label having components from N U (w}. 

Definition 2: T(W) consists of: 

(1) a root 6 with label 1(6) = d. 

(2) let ~ be a node of T(W) 

(a) if for some vertex e <: ~ lee) = 1(11) then ~ is an end. 

(b) otherwise successors of 11 are formed (one for each wcW for which 

l(~) + w:<o). Let I\., denote the suCCessor of 11 associated with weW. 

then 1(1\.,) is determined as follows: 

(i) if there is a e <: I\., such that 

lee) ~ l(~) + wand 

(l(e)\«l(~) + w)i 

then (l(I\.,»i = w 

(ii) if no such e exists , then (l(I\.,»i = (l(~) + w)i' 

This is a complicated definition which needs some explaining. The 

recursive form of the definition for T(W) provides a means for recursively 

constructing T(W) starting with the root with label d. Given any node e of 

T(W) that has not yet been shown to be an end we first construct trial successors 

to C' one for each wi eW with temporary l abel lee) + 'ii' If l(e) + wi\o then it 



6 

152 

is not a node of T(W), otherwise parts 2b(i) and (ii) of the definition are used 

to obtain the permanent label for this node , component by component. Having the 

permanent label one can check to see if the node is an end. The initial portion 

of the tree T( W) for our exampl e vector addition system is shown in Figure 1. 

( Ul, Ul) 

(1 ,Ul) ( Ul, Ul) 

(Ul,Ul) 

Fi gure 1 

(Ul ,Ul) 

(Ul,Ul) 

T(W) for example W. 

The crucial fact about T(W) that makes it useful is stated in the following 

theorem. 

Theorem 1: For any vector addi tion system W,T(W) is finite. 

This is proved in [72 . Theorem 4. 1 J 

Before continui ng we note that T(W) provides some information about 

the reachability set R(W ) . If T(W) contains a node, and l(C) is finite in all 

components then the path from 6 to C shows how the vector l(C) Can be reached 

from d by successively adding elements from W such that the path always remai ns 

in the first orthant. If some co-ordinates of a node Care Ul, this in some 

(Ul, Ul) 

(00,0) 

sense means that by successi ve applicat i on of some subsequence of vectors this 

co- ordinate value Can be made "as large as desired", or can be "pumped" . Since 

several Ul'S in , Can interact with each other, care must be taken in such pumping. 

With careful analysis (see proof in [72, Theorem 4.2 J) we obtain the following 

theorem. 
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Theorem 2 : Let x be an r-dimensional vector of nonnegative integers . Then the 

following statements are equivlant: 

(1) there is a y£R(W) such that x~; 

(2 ) the r e is a node ~eT(W) such that xSl (~). 

Now, since T(W) i s f init e, and can be recursively constructed, we 

obtain a number of dec i dable propert i es for vector addition systems, again from 

Corollar,y 1: It is decidable of a vector addi tion system Wand a point x 

whether R(W ) contains a point y~x . 

Corollar,y 2: I t i s decidable of an r-dimensional vector system and a s et 

0S{1, 2, ••• ,r} whether the coordinates in 0 are simultaneously unbounded. 

Corollar,y 3: It is decidable of a vector addition system W whether R(W) is 

finite or infinite. 

Even though the construct i on of T( W) appear s to be rather straight

forward , from a complexi ty point of view it has been shown in general to 

require exponent i al space [21,85 J. Also some problems concerning vector 

addition systems have been shown to be undeci dable . 

Theorem 3: There is no algorithm to decide, for two vector additon systems Wand 

V, whether 
R(W) S R(V). 

This i s an unpublished result of M.O. Rabin . This result and the 

fo llowing b,y Hack are given in [51 J. 

Theorem 4: There is no algorithm to decide, for two vector addition systems W 

and V, whether 

R(W) = R(V) 

A f i nal pr oblem for vector addit i on systems that has obtained consi der

able attention is called the reachability problem. This is the question: 

I s there an algorithm to deci de , given a vector addition system W 

and a nonnegative integer vector x , whether x eR(W). 

Sacerdote and Tenny claim t o have such an algorithm. Also see [55,107,142J. 
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We now turn to Keller's VRS' s [74]. 

Definition 3: A vector replacement system V = (d,V) consists of: 

(i) d, an r-dimensiona l vector of nonnegative integers, a nd 

(ii) V, a finit e set of ordered pairs of r-dimensional integer vectors 

V = ((u1,v1),(u2,v2)" " '(up'vp)} where uiSO and ui SVi,i = 1,2, ••• ,p. 

The u. are called the test vectors and t he v . are called the replacement 
1 1 

vectors, and fo r notational convenience we let p(v . ) = u . . In [74] the 
1 1 

components of u. are a llowed to be st rict ly positive as well as 0 or negative. 
1 

However, s ince as Keller notes , only the nonpositive components matter 

mathematically, we restrict ourselves to ui entries which are 0 or less. 

The reachability set R(v) of a vector replacement system V = (d,V) is 

the set of all vectors of the form 

••• 

•• • 

+ v(s) such that v(j) c V for all j e 1, 2, ••• ,s and 

+ v(i-1) + p(v(i )) ~ 0 for al l i = 1,2, ••• ,s • 

Clearly, vector addition systems are simply a special t ype of vector 

replacement system fo r which (u.). = min[O, (v. ) . ] f or all i and j. The concepts 
1 J 1 J 

of reachability sets for VAS and VRS a r e a l so obviously very s imilar. What 

Keller could show, in fact, was the notion of the T(W) tree immediately 

genera lized to VRS' s where the test l(~) + w ~ 0 was replaced with a l(~) + u. ~ 0 
1 

test, but where new node labe l s were formed by using t he replacement vectors as 

(l(~) + v.) .• Then he s howed Theor ems 1, 2 , and Corollaries 1, 2, and 3 could 
1 J 

be generali zed to VRS with no essential changes in their proofs. Thus, t he 

f initeness of the tree T(V ) and its resulting meaning for R(V) carried over 

immediately to VRS. Of course , the undecidability results (Theorems 3 and 4) 

also trivially hold for VRS. Whether the dec i dability of the reachability 

problem carries over to VRS is not immediately clear (the algorithm and it's 

proof are complex ) but I suspect that it does. 

D: Encoding Parallelism and Asynchronism Probl ems. 

In this section we discuss some of the encodings of parallel and 

asynchronous problems into vector addition and vector replacement systems. To 

do so we will find it necessary to briefly describe some of the structures being 

encoded. This will be done in the briefest way possible. Readers unfamiliar with 

these structures will undoubtedly find it necessary to obtain necessary details in 

the cit ed l iterature. 
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The first us e of vector addition systems, and indeed their original 

int roduct i on, was for showing that certain problems about count er schemat a (a 

speci al form of parallel program schemata ) wer e decidable [72 ]. A counter schema 

consists of a set M of memor,y locations, a finite set A of operations, and a 

control T. The control contains a finite set of st at es S, pl us a finite number 

k of counters . Thus, a state of the control is an element of S X Nk. Any given 

counter schema S i s encoded into a vector addition system W as fo llows. W has 
s s 

ls i + k + IAI 

coordinates, where the ls i coordinates represent the S stat e behaviour. The k 

coordinates represent counter values and the IAI coordinates represent the ~ 

list lengths of operations in A during computations for the schema. Each of 

these three encodings into the lsi, k, and IAI coordinates are quite typical of 

VAS encodings . Since Ws = (d,W) to define the VAS we have to s~ both how d and 

The vector d is formed as follows: W are formed. 

d es ) = 1 
0 

d(s ) = 0 

d (i) = TT. 
~ 

d(a) = 0 

Now, s ince 

now at how 

,i.e. the coordinate corresponding to the initial stat e sOSS i s 

set equal to 1 . 

for ssS, s/ sO 

i = 1 ,2, ••• ,k. Here d ( i ) represents the coordinate of t he i th 

counter 

a s A. 

and TT. i s the initial value of this counter. 
~ 

Here d(a) represent s the coordinate of operation a, and 

initially i t has no performances in progress so it is set to O. 

TT. ~ 0 for each count er, the vector d ~ 0 as r equired. We will look 
~ 

vectors in Ware f ormed by describing separatel y how the ls i, k , and 

IAI part s are encoded. We assume that the schema i s undergoing a state trans-

ition from s. eS to s. sS due to s ome event fJ which is an initiat i on or terminat i on 
J ~ 

of an operation a sA. The lsi 
(the ith ), -1 in one position 

part 

(the 

of each wsW has +1 in one 

jth), and O' s elsel-lhere. 

coordinate position 

That i s, it i s of 

the fo r m: 

0 ••• 0 1 0 ••• 0 -1 0 ••• 0 

or 0 ••• 0 -1 0 • •• 0 1 0 ••• 0 

This indicates the possibility of a state change from state s. to s.. Being in a 
J ~ 

state s . will be indi cated 
J 

coordinate associat ed with 

other elements of S. Thus 

in arriving at a point in H(W ) which has +1 in the 
s 

s. and O' s in 
J 

applying this 

al l other coordinates associated ,nth 

part of the vector corresponds to 

changing coordinate s . 
J 

of the vector contains 

from 1 to 0 and coordinate s . from 0 to 1. The k part 
~ 

in each coordinate the change in value of the counter 

which is expected to occur in the transition from s. to s . under even fJ. For 
J ~ 
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the IAI part of the vector, if cr is an initiation of operation a then +1 is 

entered into the coordinate for a, with O's elsewhere. If cr is a termination 

of operation a then -1 is entered into the coordinate for a and O's placed 

elsewhere. 

Now, since there are only a finite number of states in S, and a finite 

number of events cr, we see that the construction forms a finite number of integer 

valued vectors, so W is as required and W = (d,W) is indeed a VAS. It is also 
s 

quite clear that starting at d and proceeding from reachable point to reachable 

point in R(W ) corresponds to a computation for the schema S. Thereby through 
s 

this encoding 

in particular 

we can study properties of computations via reachability questions, 

using the tree construction T(W ), in W. In [72 J this i s done 
s s 

for such properties as repetition-freeness, commutativity, boundedness, determin

acy and others, where so~etimes coordinates are added to W to encode and test s 
the property in question. 

We illustrate how a "mutual-exclusion" question can be viewed via W • s 
Suppose we have designed a counter schema in which operations a and b are used 

to represent two critical regions which are never to be performed concurrently. 

We will see that the question of whether the schema actually accomplishes this 

aim can be decided using W without adding any extra coordinates. s 

We proceed as follows: 

Given schema S we form W and from that construct the tree T(W ), which by Theorem 
s s 

1 is finite. Now, operations a and b can be performed concurrently if and only 

if at some point in some computation their ~ lists are simultaneously greater 

than O. But this condition holds is and only if some node label of T(W ) has 
s 

both its a and b coordinates greater than zero. This is immediately checkable 

by inspecting each of the finitely many labels. Thus, this mutual exclusion 

problem is decidable directly through our encoding and T(W ) construction. s 
Granted, the algorithm to decide m~ not be particularly elegant or efficient 

by this approach, but at least the decidability was obtained through a very 

direct and si~ple observation. 

We next turn to a "maximum parallelism" question in terms of computation 

graphs. Computation graphs were introduced in [69 J and have been widely studied. 

In [99'J it was shown how to encode computation graphs into VRS. Basically a 

computation graph is a finite directed graph with nodes n1,n2 , ••• nl and edges 

d
1

,d
2

, ••• ,d
t

, where each node represents an operation, each edge represents a 

first-in-first-out queue of data from the source to sink node of the edge, and 

each edge d has four control parameters A ,U , W and T associated with it 
p P P P P 
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with T 
p 

., W • 
P 

the 

Letting I(n.) denote the set of indices of edges directed into n . 
1 1 

and O(n. ) 
1 

set of indices of edges directed out of n., the vector replacement 
1 

system V(G) = (d,V) associated with a computation graph G is defined as follows. 

d = (~,~, ••• At ), the vector of initial number of items in each queue. V 

consist s of 1 pairs of vectors, one for each n . of G. Letting (u . ,v.) denote 
111 

the pair for n. we have 
1 

(u. ) . 
1 J 

and 

{

-OT j if j e I(ni ) 

otherwise 

-Wjif j c I(ni ) no(ni ) 

U. if j e O(n.) n I(n . ) 
J 1 1 

o otherwise 

A vector in R(V(G)) corresponds to a set of mutually attainable queue lengths on 

the edges of G, and using the T(V(G)) construction one can readily determine for 

each queue whether it is bounded or not. The problem we are interested in, 

however, requires considerable addition to V(G) for solution. 

In a computation graph a node can "fire" if it has sufficient data on 

all of its incoming queues (as defined by the T parameters ). A computation then 

corresponds to a sequence of subsets of nodes , where the nodes in each such set 

are all envisaged as firing concurrently. Maximum parallelism for a computation 

graph thus corresponds to the maximum size subset of nodes that can occur in any 

computation for that graph. We wish to encode this maximum parallelism question 

into VRS form. To do so the V(G) construction requires substantial additions. 

In V(G) each (u. ,v. ) pair corresponded to a single node firing. Since we wish 
1 1 

to model simultaneous node firings we add to this a (u,v) pair for each subset 

of nodes, and let the entries indicate the overall affect on the queue lengths 

of this simultaneous firing. (This is the vector sums of the single node (u. ,v. ) 
1 1 

vectors for nodes in the subset ). Now in addition we add coordinates to the 

modified V(G). We add a single "control " coordinate , plus one coordinate for 

each (u,v) pair. In the control coordinate both the u value and the v value are 

set to -1. The value in the (u,v) coordinate i s set to k, where k i s the 



cardinality of the subset of nodes represented by the (u,v) vector pair. All 

other extra coordinate values are set to a to complete this part of the construct

i on . To complete the construction we add a mate (u',v') vector pair to V for 

each (u,v) already constructed. Both u' and v' have a -k placed in the (u,v) 

coordinate; v' has a + 1 in the control coordinate, and both u' and v' are zero 

elswhere. The initial vector is that of V(G) with a 1 added in the control 

coordinate and a's elsewhere. This completes the construction. We now have a 

VRS for G that we denote by V'(G). Applying any particular (u,v) pair (not the 

(u',v') mates) corresponds to the simultaneous firing of the nodes in the subset 

represented by (u,v). The control coordinate insures that after a (u,v) pair is 

applied then a (u',v') pair must be applied before another (u,v) pair is applied . 

The +k and -k entries insure that the (u',v') pair applied must be the mate of 

the (u,v) pair just previously applied. A reachable path in V'(G) now 

corresponds directly to a f iring sequence in the computation graph. We next 

construct the tree T(V'(G)). Inspection of the node labels in the (u,v) 

coordinates with nonzero value determine exactly which subsets of nodes can 

fire simultaneously , and maximizing over this value gives the attainable maximum 

parallelism of G. 

To solve this problem, then, we have introduced several more encoding 

tricks . The (u,v) pairs provided the desired values to measure the size of the 

sets, and the extra (u,v) pairs generalized single node firing to multiple node 

firing. Again, however, we make no claims for the efficiency of this decision 

procedure . 

We now turn to the relationship between generalized Petri nets and 

vector addition systems. 

Suppose P is an irreflexive generalized Petri net without equivalent 

transitions , where II = (n
1
,n

2
, ••• , nn} and E = (cr

1
,cr2 , ••• ,crt }. A system 

W(p) = (d,W) corresponding to P is defined as follows 

(1) d is an n-coordinate nonnegative integer vector: 

(2 ) 

d = (M (n
1

),M (n
2

), ••• ,M (n )). 
o 0 0 n 

We also use M to represent this marking vector. 
o 

W is a set of t vectors, one for each transition of P. Let w. denote 
th J 

the vector for transition crj and (w j)k the k coordinate value of ,/ j' 

. then define 
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It should be clear that W(P) is a vector addition system in which any 

reachable path of W(P) corresponds to a firing sequence of P. Without going into 

detail (see [99]) it should be clear that for any vector a:ddi tion system one can 

also construct a corresponding irreflexivegeneralized Petri net without equivalent 

transitions. Thus, there is an isomorphism between these two structures, giving 

the result: 

Theorem 5: There is an isomorphism between irreflexive generalized Petri nets 

without equivalent transitions and vector addition systems which provide an 

isomorphism between firing sequences and reachable paths. 

The reader may wish to provide the details for these constructions and 

results which have been omitted here. Note that the irreflexive and equivalent 

transition restrictions are important to have the simple i somorphism results. 

If a Petri net had equivalent transitions (]. and (]. then the construction of 
1 J 

W(P) would give the same vector for w. and w .• Since W is a set the information 
1 J 

about equivalent transitions is lost in the mapping from the generalized Petri 

net P to W(P). Thus there would not longer be an isomorphism between firing 

sequences and reachable paths. The irreflexive property of P means that in 

transforming a vector addition system to a generalized Petri net that a nonzero 

entry (wj)k in wjcw immediately indicat es the interconnection of place 1k with 

transitions a .• If (w.)k ~ 0 there is no direct connection. If (w.)k ~ a~ 
J J J 

then 1k is in the output set of places for (]j and has "b ( (]j' 1k) ~ a. If 

(w j)k ~ a<O then 1k is in the input set of (]j and has t..r (1k' (]j) ~ a. Irreflex

itivity insures that no confusion can exist from the general relation 

"b«(]j'1k) - t..r(1k'(]j). 

From Theorem 5 relating reachable points in W(P) and reachable markings 

in P we immediately obtain: 

Corollary 4: For any 

transitions R(W(P» ~ 

irreflexive generalized Petri net vlithout equivalent 

R(P,M ). o 

Thus many properties about generalized Petri nets can be studied via 

the corresponding vector addition system. For example, the coordinate values of 

reachable points in R(W(P» determine safeness and k-safeness. 

For the remainder of this lecture when we use P fora Petri net we will 

mean an irreflexive generalized Petri net without equivalent transitions. A 

simple restatement of safeness now is: 

." 



Corollary 5: P is safe if and only i f each r eachable point in R(W(P)) has 

coordinate values that lie in the set (O, 1}, and P is k-safe if and only if 

the coordinate values li e in the set (O, 1, ••• ,k}. 

Corollary 6: The properties safe and k-safe for P a re decidable. 

Proof: Inspect nodes of T(W(P)). For safeness l abels on the tree must have 

coordinate values only f rom (O,1}, and for k-safeness from (O,1, ••• ,k}. Natural ly 

all of T(W(P)) may not have to be constructed to prove t hat a given P is not safe 

or not k-safe. 

A much l ess immediate corollary , which was shown by Hack (55J t hrough 

a compl ex seri es of const ruct i ons using Petri nets, i s: 

Corollary 7: The quest i ons of liveness of a Petri net P and of whether xeR(W(p ) ) 

in a vector addition syst em are recur sively equivalent . 

The corollaries stated for vector addition systems using the T(W) 

tree -- are also direct ly t r ans l ated into results for Petri net s. Namely , for 

any marking M it is decidabl e whether there i s an M' ~ M in R(P,M). It is 
o 

deci dable, for any subset of places , whether markings can be reached where the 

number of tokens in these places are simul t aneously unbounded. It is decidable 

whether R(P, M ) is fi nit e or infinite. 
o 

Consider now the property of whether a given transition 0 i s dead with 

respect to a part i cular marking M. A simple modification of W(P) allows one to 

decide this. Construct W'(P) = (M',W') exactly like W(P) but add one extra 

coordinate to represent the firing of o. Let M' be the initial marking which is 

equal to M, and with ° the extra coordinate value. Now the weW' representing 0 

l et the ext r a coordinate val ue equal one, and for all other W€W' that coordinate 

value is set equal to zero . Now 0 is dead with respect to M if and only if there 

is no P€W' (p )) with a value i n the extra coordinate greater than zero. Thi s can 

be tested by inspect i on of T(W'(P)). This t echnique of adding coordinates to 

count or test certain properties i s useful for testing other properties as well. 

The generali zation of vector addi tion systems made by Ke l ler (74 J to 

vector replacement systems allows one to develop a correspondence between vector 

replacement systems and generalized Petri nets without equival ent transitions 

giving analogous results to those we have just discussed, see Keller (74J and 

Miller (99J for details. 



E: Conclusions 

From all of the different uses for vector addition systems we have 

discussed, as well as from the inherently simple combinatorial structure of VAS 

it should be clear that vector addition systems form a basic mathematical ideal

ization that is both useful and elegant for considering problems of paralleli sm 

and synchronization. I suspect that numerous other appli cati ons of VAS will 

continue to be discovered. 
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Lecture 3 

On Formulations Relating to Loosely Connected Processes 

In attempting to understand and design compl ex systems programs an 

extensive literature has arisen concerning such systems. A part of this work 

deals with resource sharing among loosely connected processes, where the system 

is thought of being composed of a number of semi-independent processes that run, 

more-o~less s imultaneously, but that have to interact in a cooperative manner 

when using resources that are available ~o the various processes. This lite~ 

ature on system synchronisation includes three principal types of work, namely: 

1) Synchronisation primitives 

2) Programming solutions to particular problems 

3) Mathematical formulations, e.g., using Petri nets , path expressions, 

graph models, systems of processes models, etc. 

In this talk I will diSCUSS, primarily, some relatively new results on the 

system of processes approach of these mathematical formulations. This work is 

in recent papers by Miller and Yap, but also has close ties to the work of Lipton 

and also Gilbert and Chandler. Some of the Petri net and other parallelism 

model applications have already been alluded to in the previous talks. The path 

expression approach as described in works of Campbell, Habermann and Lauer, I will 

not discuss here. Much of this work was done right here at Newcastle and people 

from here would be much more capable of discussing this than I. 

After sonle informal descriptions of synchroni sat ion problems I will 

describe two mathematical formulations for such problems: a system of process 

model and a synchronisation graph model. Using these formulations I will then 

show how various properties of synchronisation can be formalised, and also discuss 

a few theorems: 
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A. TYpical Synchronisation Problems 

There have been quite a few different synchroni sation problems 

discussed in the literature. They have been g i ven names such as: the mutual 

exclusion problem, the producer-consumer problem, the readers-writers 

the dining philosophers problem, the cigarette smokers problem, etc. 

problem, 

Each of 

these problems depicts a certain type of interacti on between a number of 

concurrent processes and the utilisation of common resources. We will use 

mutual exclusion and the dining philosophers problems as examples in our 

formulations. 

Mutual exclusion can be described as having n processes that access a 

common resource (say a file). To insure integrity of the file we restrict 

utilisation in such a way that at most one process can have access to the file 

at any time. Beyond that one wants the system to be designed so that all 

processes are treated "fairly" in being able to get access . No process shoul d 

be l ocked out , nor should the system deadl ock. In our formal treatment these 

requirements wil l be formally stated. 

The dining philosophers problem considers n processes arranged in a 

ci rcle with a resource between each process around the ci rcle. For a process 

to enter a certain critical region it must gain access to two resources - one to 

its left and one to i ts right. Again , only one process can access a given 

resource at a time, and the problem i s to design a system that allows such 

access, and again gives "fl'ir" treatment to each process. Figures 1 and 2 

depi ct mutua l exclusion and dining philosophers, respectively. 

Process 1 Process 2 

File 

Resource 

Process n 

Figure 1 Mutual Exclusion 
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Process n 

R 
n / 

Process 1 

Fi gure 2: Dining Philosophers 

Systems of Process es 

Process 2 

We now define our system of processes model. In our formul at i ons, we 

will see that r esources are not directly formalised. This i s an omi ssi on and 

not an oversi ght . We want to model t he fact that synchronisation in processes 

is a funct i on of the common data variables. It i s these variables, rather than 

the resources themselves , that are visible to the processes . Even though these 

data variables are not the resources themselves , they are intended to reflect the 

state of t he resources as seen by the processes (e. g . whether a resource i s 

available) • 

A "process", as f ormulated here , consist s of a finit e set of i nstructions 

(i.e. the program) which begins it s computa tion at a given initial instruction, 

with some ini t i a l data values . The process s equentia lly executes instructions, 

where each instruc t ion determines two th i ngs : it computes new data values and it 

specifi es the next instructi on to be executed. We a l so include the concept of 

a process failing. This i s done by specifying a failure function which determines 

how the data values are changed in the event of f a ilure. 



m 
Defini tion 2.1. g) ~ <iIo ' 1» is called the data set where D ~ X D. , 

i~ 1 J. 

each D. is 
J. 

a set, i ~ 1,2, ••• ,m, and dO is an arbitrary element of D called the initial 

data. 

We take (J) to be fixed for this discussion. A typical member of D is 

denoted by d ~ <d1, ••• , d~ where d. E 
J. 

i = 1,2, •.. ,m. 

Definition 2.2. A process on ~ is a 4-tuple, P ~ <e, A, v., f> where: 

(i) C is a finite set call ed the (instruction) counter values with two 

distinguished elements Co and cf • Co is called the initial 

counter value and cf the failure counter value. Elements of 

C - (cf } is cal'led the (normal) next instruction function, where 

A(Cfjd) ~ Co for all d E D. 

(ii) A: C X D~ C - (cf } is called the (normal) next instruction function, 

where A(cfjd) ~ Co for all d E D. 

(iii) v.:C X D~D is called the failure transformation function. 

Each instruction of the program is represented by a counter value of C. 

We will often refer to members of C as instructions, even though this is not, 

strictly accurate. Beginning at the initial instruction, cO' and with initial 

data, dO ' the process progresses by using the A function to specify the (normal) 

next instruction to be executed, and the V. function to specify the new data 

values. Note that the range of A excludes cf so that, normally, the failure 

counter value is not entered. Later we will show how a transition into the 

failure value is accomplished. 

We are now ready to define how a collection of semi-independent 

proces~es act cooperatively through a common data set ii) • 

Def ini tion 2.3. A syst,em of n processes on [J) i s 

Pi iii li 
~ <I:: , A , V. , 'I' >, i ~ 1,2, ••• , n, is a process 

Ci n cj~¢ for i f. j. 

a set ~ ~ (pi}~~1 
on $lJ, and 

where each 
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We cal l pi the ith process. We will use superscripts to denote the 

process bei ng referred to. For example, c~ and c~ are the init i al and fai lure 

t 1 f th . th W ft f t C>\ d coun er va ues 0 e 1 process. eo en suppress re erence O DU an n 

when understood. Hence "process" and " system of processes" ( or just " system") 

are usual l y used. Note that the defi ni t i ons of process and system of processes 

imply that the only communi cati on between processes occur t hrough$b . Also , 

although GD coul d i ncl ude al l the variables of i nterest i n the computationa, 

control , and interact i on aspects of the processes , it i s often conveni ent to 

consider ~ to be only that part of the data used fo r process control and 

interaction. No process may modi fy or read another process's counter· value . 

In particular, the use or intent to use a common resource by one process can 

only be indicated to other processes by some conventions on ~ values. 

We next consi der how system actions may be defined: 

Defini t i on 2.4. An instantaneous description (i .d.) of ~ is an (n+m)-tuple , 
1 n i 

I = <C t ••• , C , d1, • .. t dn? where .: i = 1, 2, •• " n , and <d1, •• • , d > E D. 

The initial i .d. of ~ is 10 = cO ; dO 
initial data value . 

where 
_ 1 2 _ m 
Co = < cO ' co , •• ·, cd> , and dO is the 

Defi ni tion 2. 5. Let I = c ; d, I ' = C' ; d ' be i. d .' s of~, i E [ rl ]. The binary 

relation ,,~ " is said to hold between I and I ', wr i tten 
i , ~ 

1 -:--1 I ', iff (i) 1I .(c , ) = 1I . (c) , for j = 1, •• • ,n, j f. i , 
i , L: J J 

and (ii ) either IIi (c ' ) = c~ and d' = l/ (d:) 

or rr.(c ' ) = ,hrr .(C) ;d) and d' = \1i(n.(c );d ). 
1 1 1 

We write 17 I ' iff ::I i E en ] such that I T,t 1'. 

Definition 2. 5 specifies how transi tions from one i .d . i nto another 

may· be effected. The ei ther-or clause of (ii) i ndicates that a process may 

either fail (vi a ~ ) or take a normal transition (via A and \1) . We say that 

I ~ I ' is a failure transition or normal transi tion accordi ng to whi ch of 
1 , "-

the either-or clauses of ( i i) is applicable . We a l so say that process i causes 

the transition I ~ I'. As usual, references to ~ are omitted when convenient. 
1 , "-

* * The relations -:+ and - are the reflexi ve transit i ve cl osure of -:+ and -, 
1 1 

respectively. 

reachable . 

* If 10 -4 11, where 10 i s the initi a l i. d., we say that 11 is 
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Definition 2.6. A sequence of i.d.'s,jf = (11, 12, . •• ) is called a transition 

sequence iff i ~ 1, Ii-+Ii+1. A transition sequence has the finite delay 

property for J S [n] i ff one of the fo llowing 2 conditions holds: 

(i) J is finite 

(ii) Vj E J, either for inf initely many k ' s , ITj(Ik ) = c; or for 

infinitel y many k's , Ik ~ I k+ 1 is a normal transition caused by 

process j. 

Definition 2. 7. 
J sequence on I: , 

A sequenc~ of i.d. ' s j = (11, 1
2

, ••• ) is cal led a computation 

where J S en], iff 

* (i) 10 ~ 11 i.e. 11 is reachable. 

(ii) Vi E (1,1, ••• } I .~ I. 1 is a transition caused by some process j 
J. J.+ 

where j E J. 

(iii) j has the finite de l ay property for J. 

J is called a nonfailing computation sequence on I:J is in addition to 

(i) - (iii), it satisfies 

(iv) 11 k E (1, 2, ••• } Ik~ Ik+1 i s a normal transi~ ion. 

Notation: If J = en], we say " computation sequence on 1:" or Simply, " computat i on 

sequence ," instead of "computation sequence on I:[n]". If J = [j}, then "I:(j}" 

is replaced by "I: j". 

A computation sequence i s thus seen to be a sequence of consecutive 

i.d.'s which occurs in some computat i on of the system 1:. The finite delay 

property for J implies that unless a process in J is failed, it must execute 

instructi ons at finite intervals in the computation sequence. That is, no 

nonfailing process in J can be " infinitely slower" than the other processes of 

the system. Note that the processes are independent in the sense that any 

process i E [ n ] may act at any time, that i s , from any i. d. each process can 

cause either a normal or a failing transition. 
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C: Properties of Processes. 

We now turn to stating certain properties on systems of processes which 

seem to be common properties in many of the synchronisation problems. Throughout 

this section, we assume ~ to be the system of n processes on~, as already 

introduced. 

Property P1: Instruction executability 

Vi E (n), Vc E C\ 3an i.d. I which is reachable and rr.(I) = c. 
1 

This property simply . states that we need only restrict our attention 

to those instructions that may be executed. Notice that the i.d. I may be 

reachable only via some i process failing, for example, if c = cf • 

Property P2: Critical Region 

Vi E [n ], 

This says that each process in ~ has a criti cal region in which the 

use of some resource is required. We have not yet specified how the resource 

is to be used. That will depend upon the nature of the particular synchroniz

ation problem. 

Property P3: Trying Region 

Vi E [ri ), Ti c Ci - (cr. , c~ } such that 
-:L 

(i) Ci Vd E i - c E Ti Vc E D, ).. (ci d ) = cr. ;. , 
-:L 

(ii) 'ri Vd E i - Ti (cr. }. and Vc E D, ).. (Ci d ) c' ;. c ' E U , 
-:L 

This condition states that there is a subset of ins tructions Ti which 

precedes the critical region in the sense that before entering the critical 

region, the process has to execute instructions from Ti (condition (i)). Ti 

'also has the property that the only normal (i.e. nonfailing) 

through the critical region (condition (ii)). Combining P3 

exit from Ti i s 

and P1 we see that 
i - -there is acE T and q d E D such that ).. (cid) = cr .• 

. --:J. 

( as 'r1 
i s called) is seen as a protocol that processes 

Thus the trying region 

have to go through in 

order to be synchroni sed properly for entry into their critical region. 
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Property P4: Loose Connectedness 

'Vi E [~] if 9 = (11, ••• , I k_ 1, I k ) i s a computation. sequence of L; for 

which TI. (r.) ~ Tl U { cr .} for j = 1,2, ••• ,k-1 and TI. (Ik ) E Tl, and process i 
lJ -:J. 1 

is nonfailing in if, then there exists a nonfailing computation sequence of L;i, 

Jr' = (11, ••• ,1' j- 1' Ij) such that Ii = 11, and TIi(Ij) E Ti. 

We view loose connectedness as the ability of a process, when outside 

of i ts trying region or criti cal region, to proceed independently to its tryi ng 

regi on. Note that the exi stence of j)' is predicated upon the exi stence of J . 

Property P5: Failure Indication 

Le t c ;d 

If TI . (0) 
1 

two reachabl e i.d ' s and i E En]. 

then d of d' . 

This property says that when a process i s failed, this fac t is i ndi cated 

by the data values. 

The next two propert i es specify the flow of instructions between t he 

various regions of a process. Notice that they are condi t ions on s ingle 

processes rather than cooperating processes in a system. 

Property p6: Trying Region Reachability 

II i E En], if 11 

there exists a nonfailing 

TIi(Ik ) E Ti. 

is any reachable i.d. of L; where TI.(I 1) = 
1 . 

computation sequence (11,I2, ••• ,Ik ) of L;l 

Property P7: Cycl ic Processes 

i 
cO' then 

such t hat 

Vi E En], Vi-d. 11, where 'Vj of i, TI .(11) ~ Tj U[.£!:..} then t here exists 
J . J . 

a nonfailing computation sequence (I1,I2, ••• ,Ik ) of L;l such that TIi(I
k

) = c~. 

Property p6 says that process i (acting alone in L;i) can reach the 

trying region from its initial counter value via a nonfailing computation, 

independent of the data values. Property oF? says that process i (agai n act i ng 

a lone in L;i) may al ways return to its ini t i al instruction provided the other 

; 
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processes are not trying or in their critical region, hence cyclic. So we see 

that the typical cycle of a cyclic process consists of going from c~ to Ti (by P6), 

from Ti to ~ (by P3) and from ~ ba~k t~ c~ (by P7!) all in a nonfailing 

manner. Also, by the definition of A\ ),1(cf ;d) = c~, so a failed process is 
i 

restarted at cO' 

Property pe: Critical Region Reachability 

Vi E [n], 

n. (I
k

) = cr .• 

a nonfailing computation sequence (IO, ••• ,Ik ) such 

that 
1 -l. 

This property simply states that from the initial i.d. we should 

be able to reach each critical region in a nonfailing way. Of course, to 

do so may require processes other than process i to execute their instruct

ions, possibly going through their own critical regions before process i 

reaches its critical region. 

Property P9: Non-Trying Region 

This property states that each process upon leaving its critical 

in the trying region. This has often been termed region enters a region not 

"the rest of the program." It is useful to include this property. It allows 

one to test that the sequencing protocol is such that some process j which is 

trying to enter its critic~ region is not indefinitely delayed by some process i 

which is in a non-trying region. 

D: Synchronisation Graphs. 

The system of processes formulation seems rather straightforward (modulo 

a number of defi~itional decisions). It is intenaed to capture the basic notions 

of the synchronisation problem literature, and is somewhat related to a formu

lation of Lipton. Now we introduce a formalism we call synchronisation graphs. 

It provides a formal analysis technique which is close in spirit to that of 

transition graphs of Moore and Mealy for finite state machines. Gilbert and 

Chandler developed a similar graphical model for analysing synchronisation, but 

our use of synchronisation graphs differs from the results in their paper. 



171 

We first need some graph theoretic terminology. 

Definition 3.1. A directed graph with multiloops, G; <V,E,~ is a triple such 

that V and E are sets (of'vertices and edges, respectively) where '(:E-+V x V such 

that Ve,f E E, v{e); V(f) ; <u,v'> and e If ~ u; V. 

If '(e) ; <u,v'>, then the edge e is directed from u to v. If u I v, 

then there is at most one e E E such that '(e) ; <tt,v'>. But if u; v, then more 

than one edge, say e and f, may exist such that '(e) ; '(f) ; <v,V>. Thus, a 

directed graph with multiloops is a special case of directed multigraphs in which 

the only multiple edges are self-loops . 

Definition 3.2. The outdegree of 

{eEEI 3u such that '(e) ; <v,lP}. 

outdegrees of v E v. 

v, v E V, i s the cardinality of the set 

The out degree of G is the maximum over all 

We are now ready to define a synchronisation graph. 
n ' , 
X el

, each el 
is a finite set with (c~,ci} c ei , c~ 

i; 1 

Let (;; <cO' C>, 

I ci, where e 

Definition 3.3. 

such that 

A synchronisat ion graph on <(} ,~> is a triple S ; <G, a,13> 

(i) G ; <v,E,~ is a directed graph with multiloops and each 

v E v has outdegree 2n. 

(ii) 13:E-t{0,1} x en] such that Ve,f E E, '(e) ; <u,v'>, '(f) ; <u,» 

and elf ~ 13(e) I13(f). 

(iii) a:V~ e x D such that 

(a ) a i s an injection. 

(b) JvO E V,_called the initial vertex and a(vo) ; IO where 

IO; COi dO' 

(c) 'lie E E, 13(e) <b,:i> and 

for all j I i, j E en]. 

We call a the vertex label function and 13 the edge label function of S. 

The motivation for synchronisation graphs is that, given any system of processes 

~ , we can define a synchronisation graph S such that each vertex of S (i.e. vertex 

: 
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of G where S = <G,~,~) represents an i.d. of E where ~(v) is the i.d. represented 

by vertex v. A directed edge of 

a transition of E, ~(u)~a(v). 

S, e E E such that y(e) = <u,v>, then represents 

If \3(e) = <b,]>, then a(u)-4a(v) is caused by 

process i, where b = a indicates a failure transition and b = 1 indicates a 

normal transition. Thus, the edge label function tells us which process caused 

the transition and whether the transition is a normal transition or a failure 

transition. 

Definition 3.4. Let J s en). A sequence of edges , p = (e1,e2, ••• ) is a 

path of SJ iff TI 2(y(ek» = TI 1(y(ek+1» and TI 2(\3(ek» E J for k = 1, 2, ••• 

J = En), then we say "path of S" in place of "path of S[n)" . Similarly, if 

J = (i}, "path of Si ll will do. 

If 

We adopt various notations for paths. So e 1 ~ ek denotes that there 

is a path beginning at e 1 and ending at ek • Note that we can uniquely determine 

the sequence of vertices on a given path, but a sequence of vertices does not 

uniquely determine a path (because of self-loops). When both the vertices and 

edges of a path p = (e1,e2, ••• ) are of interest, we write 
- e e elr () p = v1 ---,>1 v2_2 ••• ~ vk+r ••• where v1,v2'.·. is the sequence of 

vertices uniquely defined by p. ... when only 

the vertices of p are of interest . We 
e1. e 2 elr 

i s a path va ~ V 1 - ••• --"'+ vk+1 

say a vertex vk+1 is reachable iff there 

starting from the initial vertex. Note 

that this coincides with our definition of a reachable i.d. in Section 2.1 in the 

sense that v1 is reachable implies that a(v1) is reachabl e (as an i.d.). From 

now on, we restrict our attention to only reachable vertices so that the 

term:i.nology "'Iv E V" should be read "'Iv E V and v is reachable". Hopefully this 

will cause no confusion, and for emphasis we sometimes still Sa;[ "reachable". 

e 1 e? ek Definition 3.5. Let J S En) and p = v1 ~ v2 - ••• ~ vk+1 

be a path of SJ with v
1 

reachable. Then p is called a computation 

iff one of the following two conditions holds: 

(i) P if finite. 

~+1) ••. 

J path of S 

i (ii) 'Vi E J, either TIi(a(vk » = cf for infinitely many k's or 

\3 (e
k

) = <1,]> for infinitely many k ' s . 

Again, we say " computation path of S" or "computation path of Sill when J = En) 

or J = {i}, respectively. 
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Definition 3.6. 
J e1 e 2 

A computation path of S , p = v1 ~v2 ~ • • • i s called 

nonfailing iff Vk E(1, 2, ••• ,} (13 ( ek)) = 1. 

The following theor em shows how the system of processes and synchroni sation 

graphs are rel ated formally: 

Theorem 3. 1 • Let E be a 

ci are the counter values 

system of n 

for the ith 

processes on ~ such that C 

process and 

n 
= X 

i=1 
ci where 

Then there ei xsts an effectively constructed canoni cal synchronisation 

graph, S = <G, 0',13> on <(] ,9;) > satisfying the following: 

(i) There i s a biject i on between the reachable i '.d . ' s of E and t he 

vertices of S, as given by O':V-+ C x D. Also , O'(vo) = Co;do 
where Vo i s the initial vertex. 

( ii ) Each v E V has out degree 2n . 

(iii) There i s a b i ject ion between computat i on sequences of E, 
- _ _ e1 e 2 j = (11, 12",, ) , and computat~on paths of S, p = v 1 ---4> v 2 ~ .. " 

such that Vk = 1, 2, ••• , 0'( vk ) = 1k • 

( iv) Ve E E, 13 ( e) = <b, i> and Y (e) = <u, v> implies that the -transition 

O'(u)--?a(v) of E i s caused by process i and the transition is a 

failure or a norma l transition according to whether b = 0 or 1, 

respectively. 

Following Theorem 3.1 we associate wi t h each sys tem of processes E it s 

canonical synchroni sation graph SeE). We a l so write O' (S) = (O'(v)lvEV} , and i t 

is easy t o see that O'(S(E)) is t he set of all reachable i.d.' s of E. 

The synchroni sation graphs are built on the idea of the "globa l states" 

of the systems of processes , and this notion i s not new. Clearly, a synchroni-

sat i on graph for a part icular synchronisation problem could have a very l arge 

number , or even an infinity, of vertices, and this makes it impractical a s a 

detailed analys i s tool for the problem. The novelty of the formulation, however, 

s eems to be it s use to state problem requirement s and to prove general t heorems 

like tho se for data r equirements as stated later. 

: 
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E: The Mutual Exclusion Problem. 

We no.w begin to consider synchronisation problems and formulate 

Requirements for their solution in terms of synchronisation graphs. We choose 

the mutual exclusion problem to start our di scussion, first , because it is one 

of the earliest and best known synchronisation problems, and second, because it 

has been studied extensively. It seems that all the analyses that have appeared 

in the literature concentrate on particular programming so lutions. Our emphasis 

here, however , is the inherent properties of synchronisat ion problems , in the sense 

that all solutions (relat ive to our model of processes) should satisfy these 

properties. 

Our strategy is as follows: We formalise the informal requirements 
on solutions to a particular synchronisation problem by placing restrictions on 

synchronisation graphs . Our definition of system of processes seems to include 

almost al l conventional systems , in particular all alleged solutions to synchron

isation problems in the literature . But , for any system of processes there is 

a synchronisation graph (Theorem 3 .1 ). Thus, any alleged solution to a 

synchronisat i on problem leads to an associated synchroni sat,ion graph, which can 

then be analysed to see if it sat isfies the Requirements we will give. For this 

approach to hold, of course , we must assume that the properties we state actually 

capture the informal problem requirements. This assumption cannot be formally 

guaranteed, but we hope the stated Requirements capture the intuitive ideas . 

Nevertheless , any argument with the stated properties can now be based on precise 

statements. Al so , anyone who disputes our Requirements or Properties should 

consider providing alternative but precise formulations . The advantage of this 

(compared with previous approaches of supplying a parti cular programming solution 

along with an argument that the solution is correct ) is that we now have a uni fo rm 

framework (synchronisation graphs) to discuss Requirements on solutions without 

assuming speci f i cs about a particular program solution. 

The notation of Section D, associated with a synchroni sat ion graph S(E) 

is assumed for our statement of Requirements. 

Requirement R1: Mutual Exclusion 

'lIE OI(S) , 'Ii , j E en], i of j '" n. (I) of cr . or n .(1) of cr .• 
1 -:t J -J 
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This simply states that no (reachable) i.d.'s allow two processes to be 

in the critical region simultaneously. 

Requirement R2: Trying Region Competition 

'Vi E En], 

such that ".(a(v .)) 
1 J 

if P = v 1 
E Ti, j = 

e e2 ek_1 -4 v
2 

---"+ ••• ~vk is a computation path 

a nonfailing computation path 

1,2, j .. ,k-2 and "i(a(vk)) = ~, then there exists 

of S , 

e'. 
-4v'. 

J 
such that vi cr .• 

--:I. 

This Requirement states that if a process in the trying region can 

eventually enter its critical region from an i.d. I, then it should be able to 

reach its critical region without competing with other processes not already in 

the trying region. In particular, this formalises Dijkstra ' s requirement that 

a process stopping way outside its critical region cannot block another process. 

Note that this Requirement is predicated upon the existence of a computation path 

that enters the critical region. 

undesirable "logical defect." 

OtherWise, it would presuppose no lockout, an 

Requirement R3~ No Deadlock 

There does not exist an infinite computation path p.= v1--+v2--+ ••• such 

that for some i E En], and for all 1,= 1,2, ••• , "i(a(v
t

)) E T1 and 

Vj E En], "/a(v.e)) of .££.j. 

That is to say, no deadlock implies that it is impossible for a process 

to be continually trying to enter its critical region but still have no process 

ever enter its critical region. 

Requirement R4: No Lockout 

There does not exist an infinite computat ion path p = vl~v2--+ ••• 

such that for some i E En], and for all .l =1 , 2, ••• , "i (a(v.e)) E T1. 

We note that R4 implies R3: Assuming R4, then using the properties of 

trying regi ons (p3) it is easy to see that if process i tries "long enough" 

without failing, then eventually cr. will be entered. 
-1 

R4. 

However, R3 does not imply 



Requirements R1, R2, and either R3 or R4 (along with suitable Properties) 

appear as the "minimal" Requirements on any solution to the mutual exclusion 

problem. However, it seems that Requirement R2, and some of the Properties are 

formulated explicitly here for the first time. 

Additional requirements for "refined" solutions were subsequently added 

by informal statements in the mutual exclusion problem literature. 

attempt to give precise statements of these requirements. 

We now 

Requirement R5: No Global Variables 

Vi E (m], 3jo E (n] such that 

n .(a(u)) f n .(a(v)) ~ n2(~(e)) = jO. n+l n+l. 

e 
"Ie E E 't/u,v E S, u_vand 

This condition states that each variab}e of D is changed by actions 

from exactly one process. That process may be viewed as the owner of the 

variable. Other processes may read but not mOdify the variable. 

Requirement R6: Finite Range 

'v'i E (m], ID. I is finite. l. 

Hence each variable may assume only finitely many values. Note that 

this implies that the corresponding synchronisation graph is finite i.e. has 

finitely many vertices. 

Requirement R7: Linear Wait 

e1 e
2 

e
k

_
1 

Vi E (n] ~d Vcomputation paths p = v1 ---+":2- ••• ~vk' k2:4, 

where ni (a( v.(.)) E Tl. for .l = 1,2, ••• , k, there does not exist 

j E (n], j f i, such that n.(a(v2)) = n.(a(vk)) = cr ., · n.(a(v1)) f cr . and for 
J J -J J -J 

some 1 E{3,4, ••• ,k-1} n/a(v!)) f .2!.j. 

Thi s condition states that if a process is in its trying region through

out some computation sequence , then in that sequence , no other process may enter 

its critical region more than once. 
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Requirement R8: FIFO 

Vi, j E en], computation paths p = v1- v2- ••• -+vk' 

n . (0!(v
1
» E Ti , n .(0!(v

1
» d Tj lJ ( cr.) and n .(O!(vk» = cr. implies that 

~ J '" -J J . -J 
1 E (1, ••• ,k-1) such that ni(O!(v~» = ~ or c~. 

This Requirement impose s a FIFO discipline on processes entering the 

critical region. The trying region acts as the FIFO queue (compare Peterson 

and Fischer's notion of "gateway"). Any process 

FIFO queue by failing. Naturally, this property 

may default its position in 

implies R7 (Linear wait). 

note that R8 may be r,elaxed somewhat by assuming that ~ distinguished 

instruction in Ti is the "door" and the priority of processes depend on which 

process enters the door first. 

Requirement. 

Requirement R9: Branch or Write 

We do not consider this more complicated 

(i) 'Vi E en] , "'c E ci, if for some d' E D, ~i(C;d ' ) r- d ', then there exist 

c' E Ci such that Vd E D, hi( c;d) = c'. 

(ii) Vi E en], "'c E ci, if for some d' , d" E D, hi(c;d') r- hi(C;d"), 

then Vd E D, ~i (c;d) = d. 

This condit ion forces all instructions to be of one of two types: 

the 

We 

Condition 

may never 

(i) says that if the instruction "writes" into some 

cause a branch (i.e . hi(C;d) is independent of d). 

variable, then it 

Condition (ii) 

says that if the instructi on "branches", then i t may never write into a variable 
i - -(i. e. ~ (c;d) = d always). 

One may see Requirement R9 as an at tempt to restrict the power of 

synchronisation primitives. An example of a "trivial" solution that is 

excluded by Requirement R9 is the following: Each process has its critical 

region preceded by a peS) and followed by a V(S) 

• 

· peS) ; 

cr. 
-:l. 

V(S) ; 
• 

: 



Note that this solution satisfies what we had called the "minimum requirements" 

of t he mutual exclusion probl em, i.e. R1, R2 and R3 (or R4, depending on the 

different interpret ations of t he peS) instruct i on). Also, the semantics of 

pes) i s the "busy wait" interpretation, s ince our definition of processes cannot 

model the "queue" interpretation. 

Requirement R10: Monadic Instructions 

Vi E en], 3jo E em] such that if d' = ~i(C;d), t hen d and -d' are identical except on jO. 

This condition says that at most one variable may be modified by an 

instruction. This is a feature satisfied by many programming languages where 

there is onl y s ingle vari able (as contrasted with array) assignment statements . 

Like R9, th i s condition seeks to restrict t he po,wer of instructions . Notice 

that this condition does not exclude an instruction depending upon more than 

one variable . 

F. The Requi rements for Dining Philosophers 

It i s interesting to note that almost no change is required in stating 

the requirements for the dining philosophers problem from what we have al ready 

done for mutual exclusion . The only change i s that Requirement R1 (Mutual 

Exclusion) is replaced with a new nei ghbour exclus i on requirement as stated now: 

Requirement R1 ': 

'9' IEa(S) , ViE[n-1] 

(n,(I) f cr , or n. 1(1) f cr. 1) 
1 --:J, 1+ ~+ 

and (nn( I) f ~ or n1(I ) f ££1). 

G. Some Theorems on Synchroni sation 

We now di scuss three theorems concerni ng synchronisation. The f irs t 

two theorems are lower bounds on the size of D, and the third has to do with 

the questi on of representing simultanei ty in terms of sequences . 

Theorem 4. 1. Let Z be a system of processes that satisfies 

(Critical Regions) and p8 (Cri t i cal Region Reachability) . 

Properties P2 

If S(Z) satisfies 

Requirement R1 (Mutual Exclusion) then ~1. That i s , D has at l east one variable. 
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This theorem i s tight, s ince the P, V solution uses only one variable 

and satisfies the stated requirements. 

Theorem 4.2. Let ~ be a system of processes t hat satisfies Properties P2 and PB. 

If S(~) sat i sfies Requirement R1 (Mutual Exclus ion) and Requirement R5 (No 

Gl obal Variables) t hen ~n. In particular, D has at least one local variable 

per process. 

This theorem i s al so tight . A solution exists with only one local 

variable per process where each such variable takes on only three values. 

Theorem 4.3. 
(ii) for all 

Under the conditions that (i) instructions are dichotomised, and 

instructions c, at most one vari abl e in 6(c)Up(c) is public , then 

" s imultaneity '" commutativity". 

Without going into the details necessary to describe all the terms 

used here, this theorem means that under some fairly stri ngent conditions on the 

complexity of instructions the behaviour of the system as seen by sequences of 

action s is identical to the behaviour (i. e ., includes all possible behaviours) 

when simultaneous actions actuall y can occur . Also , by examples, it is known 

that deleting either of these conditions causes simultaneous behaviour which 

does not occur when viewed as instruction sequences. 

This result will appear i n a forthcoming paper, "On Formulating 

Simultaneity for Studying Parallelism and Synchronisation" by Miller and Yap. 

A preliminary versi on of this resul t appears in the 1978 ACM Theory of Computing 

Proceedings. 

: 
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