
0 .

Rapporteurs:

Lecture 1

GRAPH THEORETIC MODELS OF PARALLEL COMPUTATION

Dr. P.E. Lauer
Dr. M.W. Shields

R.E. Miller

127

In the early 1960's under the direction of Professor G. Estrin a group

at UCLA developed a "fixed plus variable" computer structure [41]. To study

the scheduling and allocation probl ems of this parallel and f l exible machine

structure they deve l oped some acycl i c graph structures of the parallel

computations [92]. At MIT various models of parallel computation were developed,

some as Ph.D. theses under Professor Dennis. One of the early such models was

widely studied graphical that of Rodriguez [123].

models i s one devel oped by

One of the best known,

Petri [11 6], now known

still commands considerable research interest.

and

as Petri nets. Thi s structure

In the early 1960's Karp and

Mi ller started studying possible ways to speed up computers by adding special

purpose unit s to machines, and through these studi es developed a simple model

known as a computat i on graph [69].

Rather than try to review all of these models in detail here I will

briefly describe computation graphs and Petri nets (I presume most of you are

already familiar with Petri nets). I will then di scu ss some relationships

between computation graphs and Petri nets. Finally, I will introduce some

~nchronisation problems using semaphores , and show how these problems tie into

our two models of parallel computation.

A: Petri Nets

Although I assume that most of you are fami liar with Petri nets, a

brief description - to introduce the terminology I use - will be given.

Defini tion 1: A Petri net P ; (n, l:, R; 1<\,) consists of:

(i) a finite set n called places,

(ii) a finite set l: called tranSitions,

(iii) a relation Rs(nxl:)u(l:xn) , and

(iv) a mapping 1<\,: n-tN, call ed the initial marking, where N represent

the set of nonnegative integers.

128

Us~lly a Petri net is represented by a graph in which places anu transitions

are represented by nodes, R is -represented by directed edges, and ~ is

represented by dots in the place nodes. To distinguish the place and transition

nOdes , ci rcles 0 are usually used for places and bars I are used for transitions.

If nEn and c€~ where ('¥"):R, then -(T\ O')is represented by an edge directed from the

node for TT to the node for 0'. Similarly for a (cr, TT)ER by an edge from 0' to TT.

Places are used to hold markers called tokens and ~ assigns an initial number

of tokens to each place.

For a given place TT those transitions ~ for which (O'l,TT)ER are called

the input transitions of TT and those 0'1 for which (TT,O'l)ER are called the output

transitions for TT. Similarly, for a given C€~, those TTl for which (TT10')ER are

called the input places of a and those TTl for which (a, TTl)ER are called the

output places of 0'. The Petri net is thus a fixed graphi cal structure which is

supposed to represent the allowed sequencing of parallel processes. Usually

the transitions are viewed as processes and the tokens on the input places of a

transition are used to control the initiation of the process. A transi tion a

is called act ive or fireable if and only if each of its input places contains

one or more tokens. An active transition 0' may fire, and this can be interpreted

as the execution of the process represented by 0'. When 0' fires it reduces by 1

the number of tokens in each of its input places, and increases by 1 the number

of tokens in each of its output places. The firing of a transition thus changes

the distribution of tokens on places. Such a distribution of tokens is called

a marking. Through the marking change other transi t ions may become active.

It is the sequence of transition firings that is used to represent the computation

sequence in a Petri net. A sequence of transition firings is called a firing

sequence. It also defines, given an initial marking, a marking sequence. Since

a given place may be in the set of input places for more than one transition it

is possible that a single token in a place causes more than one transition to be

fireable. To prevent the number of tokens upon transition firing to become

negative it i s assumed that a token is used in only a single transition firing.

This is assumed formally in yet another way, namely by defining firing sequences

to be a sequence of transition l abels , implying t hat even though several transitions

are simultaneously f ireable, no simultaneous firing is allowed in the formal study.

Thus the next element in a firing sequence is one of t he transition labels as

picked arbitrari l y from the current set of fireable transitions. This represent-

ation of simultaneous action by different sequences of action will be commented

on further in my third lecture.

idealisation.

It is not clear that this is always a good

operation.

129

Some simple examples of Petri nets are helpful in understanding their

"!1
2

TI
1

Figure 1

In Figure 1, with the initial marking ha'Jing a token only in plA-ce '\ ,

the only fireable transi tion is a,. When cr,. fires it removes the token from TI,

and places tokens in TIa and TI3 • Then aa and Os are fireable so parallel

computat i on is represented . The structure TI4 and TIs then both a4 and a5 are

fireable, but because of the rule on a token being useable only in one firing

not both a4 and a5 can fire. A choice must be made. We say in general that a

pair of transit i ons al and a
J

are in conflict under a given marking M if both

~ and ~ are active in M and there i s some place TI. belonging to the input

places of both al and a3 with M(TI.) = 1. It is precisely under the conflict

situation that although both transitions are s imultaneously active they cannot

simultaneously fire.

The Petri net of Figure 2 i s an example that shows that the number of

tokens may grow unboundedly i n a place. Here a single firing of both a, and aa

causes TI3 to have two tokens. A single fir i ng of '<3 places tokens back in TI,

and TIa leaving one token in TI3 • Repeating this cycle of transition f i rings

causes the number of tokens in TI3 to grow to as large a number as desired.

130

Figure 2

Figure 3 gives an example of a very special kind of Petri net . A

Petri net P is called a marked graph if and only if each place IT of P has exactly

one output transition. When this restriction is made on Petri nets the graph

can be simplified by absorbing each place into an edge and then letting the place

marking be repres ented by a marking on the edge .

Figure 3

Similarly , restricting a Petri net so that each transition has exactly

one input place and one output place gives a special class of Petri net s called

state machines. This is r eadily seen by s implifYing the graph as done by

letting each trans ition now be represented by a directed edge from it s input

place to i ts output place. This then assumes the structure of a transition

diagram of a finite state machine, but here the edges are not labelled. If one

assumes an initial marking now as a s ingle token in a s ingle place (represent ing

the start state) then state to state transitions correspond to transition

firings. The analogy is too obvi ous to belayor. Both the marked graphs and

state machines are subclasses of Petri nets Vhat are considerably easter to

analyse than general Petri nets. Other subclasses of Petri nets have also been

defined and extensively studied. A number of properties of Petri nets are of

interest and worth defining. First we note that any marking M of a Petri net

P with n places can be viewed as an n-dimensional vector in which the value of

the ith coordinat e of the vector i s the number of tokens in the ith place of P.

Definition 2: The reachable set of markings R(P,Mo) of a Petri net

P = (n,L,R,Mo) = {M/

ending with M}.

a marking sequence starting with M and
o

Definition 3: A Petri net P i s called safe if MER(P,Mo) implies that each

coordinate of M is ei ther zero or one.

131

Thus a safe net is a net in which the number of tokens in any place

never exceeds one. This property is of interest when for some practical

considerations one is interpreting the Petri net to represent a set of inter

relat ed events and conditions, where conditions are represented as places. A

condition is int erpreted as holding if the place contains a token, and as not

holding if the place does not contain a token. For such situations it is

senseless to have more than one token in a place, so one wants to know that the

net representing events and condit ions i s a safe net.

A natural extension of safeness is k-bounded or k-safe.

Definition 4: A Petri net P is called k-safe if MER(P,Mo) implies that each

coordinate of M takes on values from the set {O,1, 2, ••• ,k}.

A second property of Petri nets is related to the current or eventual

fireability of transit i ons.

Definition 5: A transition a of a Petri net P = {n,L,R,Mo} is called live if

and only if for every MER(P,Mo) there is some firing sequence

continuing from M which fires a. The transition ais called

dead with respect to M if there is no firing sequence continuing

from M which fires a.

Definition 6: A Petri net P is cal led live if every transition of P is live.

The relevance of the property of liveness is evident when one interprets

the transitions of the Petri net as representing processes. Liveness of a

transi tion means that there is no way in which a sequence of process executions

can cause the system to get into a state from which the given process can never

again be executed. Thus both the liveness and deadness properties of Petri

nets are related to the concept of deadlocks in operating syst ems.

132

Given any Petri net P we would like to know how to determine if P is

safe , k-safe, live, or what transitions are dead, and with respect to what

markings. We will approach these problems via vector addition systems in the

next lecture.

One of the very intriguing aspects of Petri nets is the s imple and

illustrious way in which they repre~ent parallel sequencing. Some researchers

have enriched the model by various techniques. For example, by providing

tokens of different colours, by inhibitor edges , and by timings. It appears

that any such addit ion, although quite helpful for representing certain behaviours,

turns the model into one that Can simulate a Turing machine, and in that sense

makes it hopeless to completely analyse.

B: Computation Graphs

We now switch to discussing a different graphical model of parallel

computation called the computat ion graph. This was introduced in [69J and

studied and extended in a number of further studies ; e.g., [1, 96, 120J.

Basic Definitions

Definition 7: A computation graph G is a finite directed graph consisting of:

(i) nodes n
1

,n2 ,··· ,n,.2.

(ii) edges d1,dz, ••• ,d t , where any given edge dp is directed from

a specified node n, to a specified node n J •

(iii) four nonnegative integers A" Up' Wp,Tp associated with each

edge dp, where Tp ~ Wp.

In a computation graph each node n, is used to represent an operation

0, and each edge is used to r epresent a first-in-first-out queue of data. 1'hus

an edge dp directed from n, to nJ represents a queue of data flowing from n, to

n J • Results of operation 0, represented by n, are placed in the queue and may

later be used as operands for operation OJ represented by nJ •

paramet ers on edge dp are int erpreted as follol-ls:

The four

(1) Ap is the number of items init ially in the queue from n, to n J •

(2) Up is the number of it ems added to the queue each time operations 0,

terminates.

(3) Wp is the number of items removed from the queue each time operation ° J

initiates .

(4) Tp is a threshold giving the minimum number of items required in the queue

133

before oper ation 0 l can initiate .

Computat ions are represented in a computation gr aph as sequences of

operation perfor mances . An operation 0l' associated with node nl is said to

be eligible for initiation if and only if· each branch ~

contains at least Tp i tems in its queue. I t is assumed

directed into n
l

that no two perform-

ances of a given operation 0l can be initiated simul taneous l y .

initiated Wp items are removed from the queue of edge ~ for each such edge

directed into nl • When 0 l terminates each edge ~ directed out of nl has

~ i tems added to i ts queue.

These def ini t i ons of operation initiation and termination describe how

computations of t he computation graph are sequenced. Note that the actual times

required for operation performance ar e not specified. They are . in essence.

asynchronous . The poss ible sequences of initia tions for computation graphs

are called executions. An execution is represented as a sequence of sets

E = s, .s... •.. .• Sn •••• such that each Sn i s a subset of {1. 2 ••• • • ~}, the set of

nodes indices . If jESn then this means that 0l i s initiated at s tep n in

execution E. To be more preci se we define x(j . h) for jE[1. 2 •• •• • l) and

n = at 1 f 2 , ••• as:

x (j . O) = °
x(j. n) the number of sets Sm . 1$~n. for which j i s an element.

That i s . x(j.n) is the number of initiations of operation j i n the prefix

~ • s... ••..• S. of execution E.

precisely.

Wi th this notation we can define executions more

Defini tion 8: The sequence E = s, . s... •...• s. i s an execution of the comput

ation graph · G i ·f and only if. for all n. the following conditions

hold:

(i) if jES.+l and G has an edge from n, to nl • then

A" + Upx(i. n) - Wpx(j. n) ., Tp

(ii) if E i s finite and of length r . t hen for each nl there

exists an n, such that ~ is an edge from n,. to nl and

'\ + Upx(i . r) - Wpx(j . r) < Tp

•

134

Definition 9: An execution E is called proper if the f ollowing impli cation

holds :

(iii) if, for all n
l

and every edge'\, directed from n, to n
J

lip + U.x(i,n) - Wpx(j,n) 2: Tp '

then jE Sr for some r > n.

In an execut i on the occurrence of a set Sn in the sequence denotes the

simul taneous initiation of OJ for all jEs". This model i s one of the few t hat

formally (rather than just informally) allows for s imultaneous initiation of

operations .

Thus, an execution E i s viewed as a sequence of sets of events, not

necessarily equally" spaced in time, where an event is the i niti at i on of an

operat ion of G. As performances of operations in G proceed t hey generate an

executi on prefix. Each time an event, or set of s imultaneous events, occurs

a new element of the execution i s generated.

The linear forms

A, + Upx(i,n) - Wpx(j,n)

associated with each edge ~ of G and each Sn of an execution gives the number of

i tems in t he queue associated with'\, at this point in the execution if we assume

that all of the operations up to this point in E have actually terminated .

Thus, part (i) of the defini tion for executions insures that sufficient items

are in the queues for OJ tOo" initiate. Condition (ii) insures that an execution

will terminate onl y when" no further operat i ons are eligibl e for ini t i ation.

Part (iii), for proper executions , insures that if an operation becomes eligibl e

for initiation at a certain step, then it will actually be initiated after some

finite number of steps . This property, often called t he " finite delay

property," occurs in various forms in different models of parallel asynchronous

computation and was apparently first introduced via asynchronous logic circuit s

by D.E. Muller.

135

In an execution E terminations are not explicitly mentioned. This

does not mean, however , that an execution physically is a set Sn of operations

that all initiate simultaneously and then all termi nate before any further

i ni t i ations. For exampl e , i f the i nequal ity (stronger than that of (i) in

Defi nition 8)

ho l ds then it is possi ble

occur before the x (i , n)th

definitions would result.

that the x(j , n+1)st initiation of OJ may actually

termination of 0, • No violation of the execution

Any computation graph G may have a l arge set of executions, and this

corresponds to the parallel and asynchronous nature of the model. This set of

executions is, thus, the object to study since in some way it represent s the

behaviour of G.

We now consider some simple examples of computation graphs, shown in

Figure 4 to illustrate our definitions.

In Fi gure 4 we have i ndi cated within the graphs , and by equations , a

particular interpretation of the computation graph of interest. Of course,

the computation graph model does not include any particular interpretation of

operations, it models only the sequencing of the operations.

Figure 4 (a) shows a single node edge computation graph with initially

two data items in the queue . Each performance of the operation removes one

item and places one item on the queue , and two items are required as the

threshold for operation initiation . Here we get only a s ingle execution

E = (1},{ 1} , ••• ,(1}, . .. If we assume ~ to be an add, and the two initial

i tems each to be the integer 1, then E computes the Fibonacci sequence. In

part (b) of the figure we can view the operation as adding two lists together

(see equation) in whi ch the A list has 200 items, the B li st has 100 i tems and

the C li st , which i s formed on the edge entering the end node , has 100 items.

Note that many different sequences of execution exist for this graph .

136
. -'111 d

1

G
A,U,W,T

(a) J (2 ,1,1,2) ~ = ~-1 + ~-2

(200,0,1; 1) (100,0,1,1)

A list -
B list .

(b)

C list

(0 ,1, 0 ,100)
o. = a2 · 1 + a 2 · + b.

1 1- 1 1

i=1, 2, ,100

(e)

(1,1,1,1) (0 ,1,1,1) (1,1,1,1)

(0,1,1,1)

(1,1,1,1)
(1,1,1,1)

p = ~ 1 + 2hfP (x ~) Tn+1 n- n n, n

Figure 4

137

Part (c) of Figure 4 depicts a parallel predictor-corrector scheme

of computation for an ordinary differential equation devised by Miranker (1 01 J .

The computation graph can be analysed to determine the amount of parallelism

possible in this computation.

Pr'eviously we defined a marked graph to be a special type of Petri net

in which each place nEn has exactly one input transition and one output transit ion.

Thus, the places in a marked graph can be absorbed into edges from transition to

transition where tokens are then thought of lying on the edges.

marked graph

then becomes:

r • •

Our example

'Thi s graph can now be considered to be a computation graph , of the same node

and edge structure . The number of tokens on en edge become the number of items

in the queue associated with the edge, and the transition firing rules directly

transform into the restriction .that for any edge <\ of the computation graph

Up = Wp = Tp = 1. The ~ values correspond to the ini hal marking l>b • A

formal correspondence , which should be obvious from this informal discussion,

thus could be given . Thereby each firing sequence of the marked

correspond to an execution of t he computation graph. Executions

graph would

of the

computation graphs having sets Sn with I s. I > 1 would not , however , correspond

138

directly to a single firing sequence but rather a subset of firing sequences

where each such So would result in an arbitrary ordering of firings. Our

example marked graph then becomes the following computation graph,

(0, 1,1,1) (0, 1,1,1)

nO ~ 0
1 (1,1,1,1)

n
2 (1,1,1,1) n3

where ~ corresponds to 0'1, i = 1,2,3.

Through this correspondence results of computation graphs can be

directly applied to marked graphs. See [96] for an example; we will not amplify

this here. S.c. Meyer has generalised the definition of computation graphs and

investigated, in a much more comprehensive manner, the correspondences between

computation graphs and marked graphs.

Since computation graphs are a particularly simple model, much can be

proved about them. For example, if each operation is assumed to perform a

specific function (from input variables to output variables) then it can be

shown that the sequences of data on the queues is independent of the particular

execution chosen. That is, computation graphs are determinate. Also, using

appropriate algebraic manipulation of the inequalities associated with a

computation graph algorithms exist for determining which operations of a comput

ation graph terminate, and with how many performances; which operations have an

unbounded number of performances, and what the bounds on queue lengths of data

are during executions.

139

C: Relation of Synchronisation Problems to Computation Graphs and Petri Nets.

To introduce some simple synchronisation problems it is convenient

to discuss semaphores.

The concept of semaphores was introduced by Dijkstra to provide a

means of coordinating cooperative sequential processes. Several mutual

exclusion problems and producer-consumer problems were also discussed there as

prime examples for the use of semaphores.

Definition 10: A semaphore is a nonnegative integer valued variable which can

be accessed by program processes only by the two types of

instructions p(s) and V(s) defined below.

This defi niti on is not made completely precise here; e .g., we leave

undefined some of the concepts, such as "processes" used in the definition . It

is hoped, however , that the notions will be clear from the examples we discuss.

Definition 11 : p(s) is an indivisible operation on a semaphore s. p(s) at

location L i s defined as :

L: if s < 1 go to LeIse s - 1.

Definition 12: V(s) i s an indivisible operation on a semaphore s defined by:

s ... s + 1.

The indivisibility of the P and V operations means that once started

the operation must be completed with interaction or interference by any other

P or V operation . Thus if V, (s) and Va(s) were acting on a single semaphore

"simultaneously" the semaphore ' value would be increased by 2 after completion

of both V, (s) and Va(s). If a semaphore value was 1 and two P operations were

attempting to operate on it, only one of the P operations (arbitrarily determined)

would be allowed to proceed, decreasing the value to O. The other P operation

would have to wait until the semaphore was again increased and then it would

have to compete with any other P operations on that semaphore that were

attempting to operate. If the original value had been 3, then both P operations

could proceed s imultaneously with the semaphore value ending up at value 1 •

••

140

As an example of semaphore usage consider the two process example depicted in

Figure 5

Figure 5
Mutual

Ex:clusion

Ex:ample

Process A

A1

A2

A3

(
Cri tical
Sections)

Process B

B1

B2

B3

In this example we consider the two processes A and B, each having three sub-

processes which are performed cyclically. The two processes can be performed

in parallel with the constraint that the two critical sections liz and Ba are

constrained so as not to run simultaneously. 'I'hat is, if liz i s being performed,

then 1\ or Es could also be in some stage of performance, but Ba is prohibited

from starting before liz finishes. The constraint is s~runetrically imposed for

Ba being performed. Other than that, no constraints beyond the individual

cyclic action are desired. This mutual exclusion problem i s a common one in

practice. Assume, for example, that liz and Ba are performing different functions

on a common file, then concurrent operation of the se two functions could cause

a malfunction.

The desired sequencing constraint is readily implemented with a single

semaphore s ,

started with

initially set to value 1.

a p(s) instruction and ended

Then each subprocess liz and

wi th a V(s) instruction.'

B2 can be

Of course,

t he arbit r ary choice of which P operation is performed when two are attempt i ng

to be performed allows cases in which just one of the processes, either A or B,

dominates the situat ion so that the other process i s eternally waiting at the

start of its critical section without ever actually getting a chance to be

performed. Some more complicated solutions prohibit such "eternal" ;;aits.

This simple mutual exclusion problem is readily modelled by a Petri

net - as sho\1ll in Figure 6.

Figure 6

141

Here transiti ons cr,. , 0"2 ' and q, are used to represent the subprocesses

A,. , Az, and Aa, respectivel y , of process Aj and 0"<1\, q" and q; represent B,., :Hz ,
and B" respectively. Also , place n., represents semaphore s, and it is tokens

in this place that control the mutually exclusive firings of 0"2 and 0"6.

We no;; turn to another class of synchronisation problems called

producer-consumer problems .

Producer-consumer problems are an important class of synchronisation

problems that arise ;;hen one considers the interconnection of a set of processes.

Essentially, the idea of a producer-consumer system is that a given process of

the system produces results that are used (consumed) by some other process.

Such problems should be common in distributed systems.

restricted system ;;e call unshared.

We first define a

142

Definition 13: An unsharecr procrucer- consumer system S consists of :

(i) a finite set B = (P:t , P." ••• , P1 J of processes,

(ii) a finite set S = (s" Sz , ... , S t J of semaphores ,

(iii) a funct i on 0': S ... BXB which assoc i ates an orcrerecr

pai r of processes with each semaphore ,

(iv) three functions ,,: S ... N

n: S ... N

v: S ... N

where for a semaphore s with O'(s) = (PI' Pj) , n(s) i s

the number of p (s) operations in the beginning of Pj.

v(s) is the number of V(s) operations at the encring of

PI . ancr ,,(s) i s the initial value assignecr to s.

In an unsharecr procrucer-consumer system each semaphore i s associatecr

with a pair of processes as shown below:

process semaphore s process

P . P.
~ J

Here the process PI is thought of as the "procrucer" of results for " consumer"

Pj' where P ancr V operations are usecr to incricate to the consumer when sufficient

items have been procrucecr for the consumer to start.

This unsharecr procrucer-consumer is a very restrictecr usage of

semaphores . The semaphore is " private" to the procrucer-consumer pair rather

than being sharecr by several procrucers or several consumers. However a process

may be consicrerecr to be a procrucer (or consumer) for several processes, just as

l ong as one semaphore i s usecr for each producer-consumer pai r .

A fairly crirect representation of unshared producer-consumer systems

by computation graphs should be evident. For an unshared producer-consumer

system S of ! processes ancr t semaphores we can construct a computation graph

GS with 2 nodes and t ecrges.

Each process PI of S is represente~ by a no~e ~ of GS' an~ each

semaphore S k is represented by an edge ~ of G
S

directed from nl to ~ if

0'(Sk) = (Pi , P l) • The parameters A.,. , Uk ' W" an~ Tk are ~efine~ as:

A,. = ~(s,)

U, v(s,)

W, = Tk = TI (s,) .

143

With this representation , the performance of an operation 0 l associate~ with nl

of GS correspon~s to the performance of process ~ of S. An execution of

G
S

correspon~s to an allowe~ sequence of process performances in S, where

termination properties of the two systems correspon~ , an~ where queue length of

dk corresponds to attained semaphore value of Sk.

This correspondence also shows why the generalised P and V operations

often called PV Chunk, ar e natural extensi ons of P's and V' s to consider.

An example of the computation graph GS for an unshared pro~ucer

consumer system i s shown in Figure 7.

This system S, by Definit i on 13 is:

B = (Il,. , p;' , I<;} S = (s,., Sz , 'I3 , s,,}

0'(s,.) = (p:, ,Il,. } TI(s,.) = 2 v(s,.) = 2

(X(S2) = (lli , Pl.,) TI(~) 1 v(~) = 1

0'(":3) = (I1.,p;,) TI (":3) 1 v(":3) = 1

0'(q") = (1\ ,Pd) TI (q,,) = 2 V(S4) = 2

We see that in this example initially only process ~ can start.

When I<; terminates an~ up~ates s" then I1. can start . When 1\ fini shes anll

upllates ":3 anll S4 then both P;, anll lli can start.

again only when both P;, anll lli have fini shed.

Process 1\ can ini tia te

The "unsharell" aspect of the systems we have just definell i s quite

restrictive. We generalise.

144

P(S1)

(a) S
P(s2)

P(s3)

P1

V(s3)

V(s4)

V(s4)

(0,1,1,0

Figure 7

~(s1) = ~(s4) = 2

~(s2) = ~ (s 3) = 0

(2, 2, 2,2)

P(s4)

P(s4)

P
3

V(s2)

(2,2,2,2)

Unshared PrOQucer - Consumer System S and Correspondi ng Computation Graph GS

Definition 14: A producer-consumer system S, consiste of:

(i) a finite set B = (P1,P2, ••• Pl } of processes ,

(ii) a finite set S = {s1,s2, ••• ,St} of semaphores,

(iii) three functions ~ : S ~ N

TT': SxB ~ N

,,': SxB ~ N

145

where for any s eS and peE, ~(s) is the initial value of s, TT'(S,p) is

the number of p(s) operations at the beginning of p, and ,,'(s,p) is

the number of V(s) operations at the end of p.

Here the TT ' and ,,' functi ons let a semaphore be used by any process. As before,

however , we assume all P operations to occur at the st art of a process and all

V operations to occur at t he end of a process.

There is a correspondence between producer-consumer sys t ems and a

generalized form of Petri net, which we now define.

Definition 15: A generalized Pet ri net P = (n,E,R, Mo'~'~) consists of:

(i)

(ii)

(iii)

(iv)

(v)

a finite set IT called places,

a f inite set E called t ransiti ons ,

a relati on RgnxE) U (Exn),

a mapping M : IT ~ N, called t he initial marking, and
o

two functions ~: (nxE) ~ N and tv: (ExIT) ~ N, where for TTCn and

creE, Ar (TT, cr) = 0 if and only if (TT, cr)jR and ~ (cr, TT) = 0 if and only if

(cr, TT))R.

A generalized Petri net is like a Petri net (condition (i) through (iv))

wi th added functions ~ a nd ~ . These functions define the amount by

which the m'.lllber of tokens on a place TT change by the f iring of a transition cr.

A transit i on i s called active or f i reable in a gener al ized Petri net if each

input pl ace TT to cr, contains at least Ar(TT, cr) tokens. The firing of an active

transition cr changes the number of tokens on a place TT by the amount

~(cr,TT) - Ar(TT, cr). We use the same terminology and concept s developed for

Petri nets to discuss gener ali zed Petri nets. The only extension being general

i zing t he r emoval and addition of tokens by transition firing to be other than

s ingle t oken changes. See (54,74,99] for further discussi on of generalized

Petri nets.

146

The next two definitions describe structural restrictions on general

ized Petri nets.

Definition 16: Two transitions 0', 0" of a generalized Petri net P are call

equivalent transitions if and only if, for all

TTen, lI:r(TT, 0') = lI:r(TT,O") and CV(O',TT) = CV(O",TT) .

Definition 17: A generalized Petri net P is called irreflexive if and only if

there does not exist any TTen and O'€n such that t>r(TT, 0') > 0 and

CV(O',TT) >0 .

A formal correspondence between producer-consumer systems and

generalized Petri nets is depicted below:

Producer-Consumer

System S with

B = (P1' P2 ' ... ,PI}

S = (s1 ,s2"" ,St}

Pj
s.

1

TT'(si,Pj) ,0
"'(s. ,p.) , 0

1 J
~(s)

TT'(si,Pj)

"'(s. ,p.)
1 J

Generalized Petri

net P with

L: = ("1' "2"'" '1.}
n = (TT1 , TT2 ' ... , T\ }

"j
TT.

1

(TTi , "j)~R

(O'j' TTi) cR

M (TT.) o 1

lI:r (TTi ' 0)
CV(O'j' TTi)

Although .this correspondence between producer-consumer systems and

generalized Petri nets give an isomorphism between the two models, we will show

that it does not automatical ly provide an isomorphism between behaviours. This

is shown by the next sample. Consider the three process producer-consumer system

with ~(s1) = ~(s2)= 0 and ~(s3) = 1:

P(s1) P(s2)

P(s3) P(s2) P(s1)

P1 : P2 : P3:

V(s 1) v(s3) V(s3)

V(s2)

147

Thi s corresponds to the Pet ri net:

IT3

This producer-consumer system has a deadlock. Note that after process

P1 is performed both s1 and s2 change to a value of 1. Then P2 Can execute

P(s1) and P2 can execute P(s2) which deadlocks the system. No deadlock occurs

in the corresponding Petri net, however. Rather, after CT
1

fires then both '2
and CT

3
become active. There is a conflict between '2 and CT3' but the global

rules for firing transitions do not allow both CT2 and CT
3

to fire. Thus, the

conflict s ituation in the Petri net is r elated to the deadlock in the producer

consumer system. More complex examples, like the Cigarette Smokers Problem of

Patil show that even a rearrangement of p(s) operations in the processes cannot

always circumvent the deadlocking problem. The s imultaneous taking of tokens

from several places by a trans ition fi ring , whi ch prevents the firing of con

flicting transitions, i s what gives rise to the desire to generalize P oper

ations to operate simultaneously (or in an indivisible manner) on arbitrary

subsets of semaphores.

This example should amply demonstrate that one needs to carefully

analyze correspondence between models to be sure that the desired properties

carry over in the correspondence from one model to the othe~. Here we see

they did not. A weak relationship between conflicts and deadlocks was noted

but this has not been precisely described.

In our next lecture we will introduce another formalization cal l ed

vector addit ion sy s tems (VAS) which original ly arose in the stu~ of parallel

program schemata. VAS have been shown equivalent (in some sense) to Petri nets

and correspondences with other models also have been developed.

148

Lecture 2

Schemata Models for Parallel Computation

In this lecture I beiefly describe some of the schemata models and

their results. Since vector addition systems, which first arose in parallel

program schemata, have been shown to play a role in so many of the different

studies of parallelism I will spend considerable time on these, and a related

system called vector replacement systems.

A: Schemata Models.

Two bas ic types of schemata models exist. One is based on having a

finite set of operations operating on a common memor,y, and whose control of the

operations i s done by some of automata theoretic construct [72, 75 , 90 ,136].

Thus we have a schema S = (M,A.T) where M is the memor,y, A is the set of

operations and T is the control. The models are usually uninterpreted models

or partially uninterpreted models meaning that the particular functions and

decisions associated with the operations are not specified.

A second type of schemata model is based upon elementar,y operation

schemas (usually a finite set of them) which are interconnected to form a data

flow schema [37,80,129]. In these, rules of interconnection are often specified

in order to insure determinacy of the interconnected schema. That is, we have

sufficient conditions for determinacy. In contrast, in the (M,A,T) schemata

one develops constraints on the schemata (usually global in nature) from which

necessar,y and sufficiency of determinacy follow.

The more purely automata type models var,y anywhere from fini te automata

forms [17,1 8] to parallel random aCCess programmed machine in nature. A special

iterative form has been studied [87 , 88] in which some complexity types of results

have been obtained.

B: Basic Properties and Proof Techniques.

As we have remarked earlier, determinacy i s one of the better under

stood properties of parallel computation. It takes several different forms in

. the different models, but in essence it means that the outcome of the computation

is unique and does not depend upon the particular relative times that operations

are allowed to be performed. The computation graph is by its structure always

149

determinate, as are some of the data-flow schemata. In terms of schemata one

can envision different types of determinacy. It means that for any memory

location the complete sequence of values that appear in the location during

computation under a given interpretation is independent of how the individual

operations were sequenced. Necessary and sufficient conditions are developed

for such determinacy and they are shown to be essentially the Bernstein cond

itiions (15] on overlap on domain and range locations of operations. Also, for

a broad class of schemata , namely repetition-free, lossless, persistent, commut

ative, counter schema it is shown that determinacy is decidable. The technique

for showing this is a more-or-less standard sliding a rgument which is used in

Church-Rosser type theorems which allows one to slide symbols of one sequence

of operations to match anothe r sequence without changing memory values. Another

aspect of the proof involves vector addition systems of which we say more later.

A rather surprising aspect of the decidability of determinacy (as well as other

properties) is its lack of "stability." It has been shown [94] that if the

single property of repetition-free is removed from the hypothesis then deter

minacy becomes undecidable. This boundary between the decidability and undecid

ability can be viewed as the most rudimentary measure of complexity, although

some of the properties are known to be quite complex (85] even though they are

decidable .

Normally, this strong form of determinacy is more than really desired.

Often one would only require the final values (assuming termination) of two

computation sequences to match on either all, or a specified subset, of memory.

The strong determinacy of course implies t his weaker "output determinacy" but

little i s known how to obtain output determinacy without requiring determinacy

throughout the sequence .

The determinacy property does not arise directly in terms of Petri nets.

This is because the Petri net does not have interpreted functional operations nor

does it have a formal way, like interpretations for schemata, of adding them.

Thus any such questions must be dealt with outside the Petri net model. The

conflict situation in Petri nets does, however, give rise to an obvious s ituation

that looks like it would lead to indeterminacy. Also, it has been shown to be

intimately connected with deadlocks -- as was shown in the first lecture .

Other properties of interest include: termination , i.e. how many times

the operations of the model are performed; boundedness, i.e. , the number of

operation performances that can be done concurrently ; and the number of control

150

states tha-t are reachable in computations. For schemata all of these properties

are decidable in a manner similar to determinacy, and become undecidable without

repetition-freeness assumed. For computation graphs rather straightforward

algorithms for boundedness and termination can be derived. In Petri nets bound

edness is defined in terms of the maximum number of tokens that can reside in any

place at any moment. A net is called "safe" if this bound is one. Termination

is expressed by the term "liveness" in a Petri net. A transition in a Petri net

is called "live" if from any reachable token distribution it is possible to reach

a situation in which the transition is fireable. Boundedness and safeness follow

directly from the decidability of a problem in vector addition systems whereas

liveness is equivalent to the "reachability problem" in vector addition systems.

Since vector addition systems are a simple mathematical construct, and

since they underlie many problems concerning parallel computation, I have decided

to discuss vector addition systems at some length here.

c: Vector Addition Systems and Vector Replacement Systems

Vector addition systems were originally formulated and studied to prove

that certain properties of parallel program schemata were decidable [71,72].

Subsequently they were seen to be an appropriate formalation of previously studi ed

problems [53,55 , 70,99], and have been widely applied to various problems since

then [51,63,113]. Keller [74] generalized VAS to vector replacement systems to

extend their modelling capability to other classes of asynchronous systems .

In this section we introduce VAS and VRS as purely mathematical objects,

and state some of the known results about these systems. Later we will see how

these are applied to problems in parallelism and asynchronism.

We first discuss vector addition systems as found in [72].

Definition 1: An r-dimensional vector addition system is a pair W = (d,W) where d

is an r-dimensional vector of nonnegative integers, and W is a finite set of

r-dimensional integer vectors.

The reachability set R(W) is the set of all vectors of the form d+w1+w2+ ••• +wi~

for i = 1,2, ... ,s. That is, R(W) is the set of points that can be reached from d

by successively adding elements of W such that the path of points so formed always

remains in the first orthant.

1) 151

A simple example: r = 2, d = (1,1), W = ((-2,1),(0,1),(3,-1)}. Note

that (4,1)eR(W) since (4,1) = (1,1) + (3,-1) + (0,1) and the successive points

(1,1), (4,0) and (4,1) are all in the first orthant.

(1)

(2)

(3)

We use the following terminology:

For r-dimensional vectors x and y,x~y if and only if x.~y. for i = 1,2, ••• ,r.
1 1

We sometimes use ° to denote the r-dimensional vector of zeroes.

w is a symbol such that if n is an integer then n<w and n+w = w. In some

sense w intuti vely means "as large as desired."

(4) A rooted tree is a directed graph with some designated node, 6, called the

root, which has no edges directed into it, each other node has one edge

directed into it, and each vertex can be reached through a directed path

from the root. If e and ~ are distinct nodes of the rooted tree having a

directed path from e to ~ then we say e<~. If there i s a directed edge from

C to 11 then 11 is called a successor of C. If 11 is a node with no edge

directed out of it, then 11 is called an end.

For W we construct a rooted tree T(W) with labelled nodes lee) for each

node e, where lee) is an r-dimensional vector label having components from N U (w}.

Definition 2: T(W) consists of:

(1) a root 6 with label 1(6) = d.

(2) let ~ be a node of T(W)

(a) if for some vertex e <: ~ lee) = 1(11) then ~ is an end.

(b) otherwise successors of 11 are formed (one for each wcW for which

l(~) + w:<o). Let I\., denote the suCCessor of 11 associated with weW.

then 1(1\.,) is determined as follows:

(i) if there is a e <: I\., such that

lee) ~ l(~) + wand

(l(e)\«l(~) + w)i

then (l(I\.,»i = w

(ii) if no such e exists , then (l(I\.,»i = (l(~) + w)i'

This is a complicated definition which needs some explaining. The

recursive form of the definition for T(W) provides a means for recursively

constructing T(W) starting with the root with label d. Given any node e of

T(W) that has not yet been shown to be an end we first construct trial successors

to C' one for each wi eW with temporary l abel lee) + 'ii' If l(e) + wi\o then it

6

152

is not a node of T(W), otherwise parts 2b(i) and (ii) of the definition are used

to obtain the permanent label for this node , component by component. Having the

permanent label one can check to see if the node is an end. The initial portion

of the tree T(W) for our exampl e vector addition system is shown in Figure 1.

(Ul, Ul)

(1 ,Ul) (Ul, Ul)

(Ul,Ul)

Fi gure 1

(Ul ,Ul)

(Ul,Ul)

T(W) for example W.

The crucial fact about T(W) that makes it useful is stated in the following

theorem.

Theorem 1: For any vector addi tion system W,T(W) is finite.

This is proved in [72 . Theorem 4. 1 J

Before continui ng we note that T(W) provides some information about

the reachability set R(W) . If T(W) contains a node, and l(C) is finite in all

components then the path from 6 to C shows how the vector l(C) Can be reached

from d by successively adding elements from W such that the path always remai ns

in the first orthant. If some co-ordinates of a node Care Ul, this in some

(Ul, Ul)

(00,0)

sense means that by successi ve applicat i on of some subsequence of vectors this

co- ordinate value Can be made "as large as desired", or can be "pumped" . Since

several Ul'S in , Can interact with each other, care must be taken in such pumping.

With careful analysis (see proof in [72, Theorem 4.2 J) we obtain the following

theorem.

153

Theorem 2 : Let x be an r-dimensional vector of nonnegative integers . Then the

following statements are equivlant:

(1) there is a y£R(W) such that x~;

(2) the r e is a node ~eT(W) such that xSl (~).

Now, since T(W) i s f init e, and can be recursively constructed, we

obtain a number of dec i dable propert i es for vector addition systems, again from

Corollar,y 1: It is decidable of a vector addi tion system Wand a point x

whether R(W) contains a point y~x .

Corollar,y 2: I t i s decidable of an r-dimensional vector system and a s et

0S{1, 2, ••• ,r} whether the coordinates in 0 are simultaneously unbounded.

Corollar,y 3: It is decidable of a vector addition system W whether R(W) is

finite or infinite.

Even though the construct i on of T(W) appear s to be rather straight

forward , from a complexi ty point of view it has been shown in general to

require exponent i al space [21,85 J. Also some problems concerning vector

addition systems have been shown to be undeci dable .

Theorem 3: There is no algorithm to decide, for two vector additon systems Wand

V, whether
R(W) S R(V).

This i s an unpublished result of M.O. Rabin . This result and the

fo llowing b,y Hack are given in [51 J.

Theorem 4: There is no algorithm to decide, for two vector addition systems W

and V, whether

R(W) = R(V)

A f i nal pr oblem for vector addit i on systems that has obtained consi der

able attention is called the reachability problem. This is the question:

I s there an algorithm to deci de , given a vector addition system W

and a nonnegative integer vector x , whether x eR(W).

Sacerdote and Tenny claim t o have such an algorithm. Also see [55,107,142J.

154

We now turn to Keller's VRS' s [74].

Definition 3: A vector replacement system V = (d,V) consists of:

(i) d, an r-dimensiona l vector of nonnegative integers, a nd

(ii) V, a finit e set of ordered pairs of r-dimensional integer vectors

V = ((u1,v1),(u2,v2)" " '(up'vp)} where uiSO and ui SVi,i = 1,2, ••• ,p.

The u. are called the test vectors and t he v . are called the replacement
1 1

vectors, and fo r notational convenience we let p(v .) = u . . In [74] the
1 1

components of u. are a llowed to be st rict ly positive as well as 0 or negative.
1

However, s ince as Keller notes , only the nonpositive components matter

mathematically, we restrict ourselves to ui entries which are 0 or less.

The reachability set R(v) of a vector replacement system V = (d,V) is

the set of all vectors of the form

•••

•• •

+ v(s) such that v(j) c V for all j e 1, 2, ••• ,s and

+ v(i-1) + p(v(i)) ~ 0 for al l i = 1,2, ••• ,s •

Clearly, vector addition systems are simply a special t ype of vector

replacement system fo r which (u.). = min[O, (v.) .] f or all i and j. The concepts
1 J 1 J

of reachability sets for VAS and VRS a r e a l so obviously very s imilar. What

Keller could show, in fact, was the notion of the T(W) tree immediately

genera lized to VRS' s where the test l(~) + w ~ 0 was replaced with a l(~) + u. ~ 0
1

test, but where new node labe l s were formed by using t he replacement vectors as

(l(~) + v.) .• Then he s howed Theor ems 1, 2 , and Corollaries 1, 2, and 3 could
1 J

be generali zed to VRS with no essential changes in their proofs. Thus, t he

f initeness of the tree T(V) and its resulting meaning for R(V) carried over

immediately to VRS. Of course , the undecidability results (Theorems 3 and 4)

also trivially hold for VRS. Whether the dec i dability of the reachability

problem carries over to VRS is not immediately clear (the algorithm and it's

proof are complex) but I suspect that it does.

D: Encoding Parallelism and Asynchronism Probl ems.

In this section we discuss some of the encodings of parallel and

asynchronous problems into vector addition and vector replacement systems. To

do so we will find it necessary to briefly describe some of the structures being

encoded. This will be done in the briefest way possible. Readers unfamiliar with

these structures will undoubtedly find it necessary to obtain necessary details in

the cit ed l iterature.

155

The first us e of vector addition systems, and indeed their original

int roduct i on, was for showing that certain problems about count er schemat a (a

speci al form of parallel program schemata) wer e decidable [72]. A counter schema

consists of a set M of memor,y locations, a finite set A of operations, and a

control T. The control contains a finite set of st at es S, pl us a finite number

k of counters . Thus, a state of the control is an element of S X Nk. Any given

counter schema S i s encoded into a vector addition system W as fo llows. W has
s s

ls i + k + IAI

coordinates, where the ls i coordinates represent the S stat e behaviour. The k

coordinates represent counter values and the IAI coordinates represent the ~

list lengths of operations in A during computations for the schema. Each of

these three encodings into the lsi, k, and IAI coordinates are quite typical of

VAS encodings . Since Ws = (d,W) to define the VAS we have to s~ both how d and

The vector d is formed as follows: W are formed.

d es) = 1
0

d(s) = 0

d (i) = TT.
~

d(a) = 0

Now, s ince

now at how

,i.e. the coordinate corresponding to the initial stat e sOSS i s

set equal to 1 .

for ssS, s/ sO

i = 1 ,2, ••• ,k. Here d (i) represents the coordinate of t he i th

counter

a s A.

and TT. i s the initial value of this counter.
~

Here d(a) represent s the coordinate of operation a, and

initially i t has no performances in progress so it is set to O.

TT. ~ 0 for each count er, the vector d ~ 0 as r equired. We will look
~

vectors in Ware f ormed by describing separatel y how the ls i, k , and

IAI part s are encoded. We assume that the schema i s undergoing a state trans-

ition from s. eS to s. sS due to s ome event fJ which is an initiat i on or terminat i on
J ~

of an operation a sA. The lsi
(the ith), -1 in one position

part

(the

of each wsW has +1 in one

jth), and O' s elsel-lhere.

coordinate position

That i s, it i s of

the fo r m:

0 ••• 0 1 0 ••• 0 -1 0 ••• 0

or 0 ••• 0 -1 0 • •• 0 1 0 ••• 0

This indicates the possibility of a state change from state s. to s.. Being in a
J ~

state s . will be indi cated
J

coordinate associat ed with

other elements of S. Thus

in arriving at a point in H(W) which has +1 in the
s

s. and O' s in
J

applying this

al l other coordinates associated ,nth

part of the vector corresponds to

changing coordinate s .
J

of the vector contains

from 1 to 0 and coordinate s . from 0 to 1. The k part
~

in each coordinate the change in value of the counter

which is expected to occur in the transition from s. to s . under even fJ. For
J ~

156

the IAI part of the vector, if cr is an initiation of operation a then +1 is

entered into the coordinate for a, with O's elsewhere. If cr is a termination

of operation a then -1 is entered into the coordinate for a and O's placed

elsewhere.

Now, since there are only a finite number of states in S, and a finite

number of events cr, we see that the construction forms a finite number of integer

valued vectors, so W is as required and W = (d,W) is indeed a VAS. It is also
s

quite clear that starting at d and proceeding from reachable point to reachable

point in R(W) corresponds to a computation for the schema S. Thereby through
s

this encoding

in particular

we can study properties of computations via reachability questions,

using the tree construction T(W), in W. In [72 J this i s done
s s

for such properties as repetition-freeness, commutativity, boundedness, determin

acy and others, where so~etimes coordinates are added to W to encode and test s
the property in question.

We illustrate how a "mutual-exclusion" question can be viewed via W • s
Suppose we have designed a counter schema in which operations a and b are used

to represent two critical regions which are never to be performed concurrently.

We will see that the question of whether the schema actually accomplishes this

aim can be decided using W without adding any extra coordinates. s

We proceed as follows:

Given schema S we form W and from that construct the tree T(W), which by Theorem
s s

1 is finite. Now, operations a and b can be performed concurrently if and only

if at some point in some computation their ~ lists are simultaneously greater

than O. But this condition holds is and only if some node label of T(W) has
s

both its a and b coordinates greater than zero. This is immediately checkable

by inspecting each of the finitely many labels. Thus, this mutual exclusion

problem is decidable directly through our encoding and T(W) construction. s
Granted, the algorithm to decide m~ not be particularly elegant or efficient

by this approach, but at least the decidability was obtained through a very

direct and si~ple observation.

We next turn to a "maximum parallelism" question in terms of computation

graphs. Computation graphs were introduced in [69 J and have been widely studied.

In [99'J it was shown how to encode computation graphs into VRS. Basically a

computation graph is a finite directed graph with nodes n1,n2 , ••• nl and edges

d
1

,d
2

, ••• ,d
t

, where each node represents an operation, each edge represents a

first-in-first-out queue of data from the source to sink node of the edge, and

each edge d has four control parameters A ,U , W and T associated with it
p P P P P

157

with T
p

., W •
P

the

Letting I(n.) denote the set of indices of edges directed into n .
1 1

and O(n.)
1

set of indices of edges directed out of n., the vector replacement
1

system V(G) = (d,V) associated with a computation graph G is defined as follows.

d = (~,~, ••• At), the vector of initial number of items in each queue. V

consist s of 1 pairs of vectors, one for each n . of G. Letting (u . ,v.) denote
111

the pair for n. we have
1

(u.) .
1 J

and

{

-OT j if j e I(ni)

otherwise

-Wjif j c I(ni) no(ni)

U. if j e O(n.) n I(n .)
J 1 1

o otherwise

A vector in R(V(G)) corresponds to a set of mutually attainable queue lengths on

the edges of G, and using the T(V(G)) construction one can readily determine for

each queue whether it is bounded or not. The problem we are interested in,

however, requires considerable addition to V(G) for solution.

In a computation graph a node can "fire" if it has sufficient data on

all of its incoming queues (as defined by the T parameters). A computation then

corresponds to a sequence of subsets of nodes , where the nodes in each such set

are all envisaged as firing concurrently. Maximum parallelism for a computation

graph thus corresponds to the maximum size subset of nodes that can occur in any

computation for that graph. We wish to encode this maximum parallelism question

into VRS form. To do so the V(G) construction requires substantial additions.

In V(G) each (u. ,v.) pair corresponded to a single node firing. Since we wish
1 1

to model simultaneous node firings we add to this a (u,v) pair for each subset

of nodes, and let the entries indicate the overall affect on the queue lengths

of this simultaneous firing. (This is the vector sums of the single node (u. ,v.)
1 1

vectors for nodes in the subset). Now in addition we add coordinates to the

modified V(G). We add a single "control " coordinate , plus one coordinate for

each (u,v) pair. In the control coordinate both the u value and the v value are

set to -1. The value in the (u,v) coordinate i s set to k, where k i s the

cardinality of the subset of nodes represented by the (u,v) vector pair. All

other extra coordinate values are set to a to complete this part of the construct

i on . To complete the construction we add a mate (u',v') vector pair to V for

each (u,v) already constructed. Both u' and v' have a -k placed in the (u,v)

coordinate; v' has a + 1 in the control coordinate, and both u' and v' are zero

elswhere. The initial vector is that of V(G) with a 1 added in the control

coordinate and a's elsewhere. This completes the construction. We now have a

VRS for G that we denote by V'(G). Applying any particular (u,v) pair (not the

(u',v') mates) corresponds to the simultaneous firing of the nodes in the subset

represented by (u,v). The control coordinate insures that after a (u,v) pair is

applied then a (u',v') pair must be applied before another (u,v) pair is applied .

The +k and -k entries insure that the (u',v') pair applied must be the mate of

the (u,v) pair just previously applied. A reachable path in V'(G) now

corresponds directly to a f iring sequence in the computation graph. We next

construct the tree T(V'(G)). Inspection of the node labels in the (u,v)

coordinates with nonzero value determine exactly which subsets of nodes can

fire simultaneously , and maximizing over this value gives the attainable maximum

parallelism of G.

To solve this problem, then, we have introduced several more encoding

tricks . The (u,v) pairs provided the desired values to measure the size of the

sets, and the extra (u,v) pairs generalized single node firing to multiple node

firing. Again, however, we make no claims for the efficiency of this decision

procedure .

We now turn to the relationship between generalized Petri nets and

vector addition systems.

Suppose P is an irreflexive generalized Petri net without equivalent

transitions , where II = (n
1
,n

2
, ••• , nn} and E = (cr

1
,cr2 , ••• ,crt }. A system

W(p) = (d,W) corresponding to P is defined as follows

(1) d is an n-coordinate nonnegative integer vector:

(2)

d = (M (n
1

),M (n
2

), ••• ,M (n)).
o 0 0 n

We also use M to represent this marking vector.
o

W is a set of t vectors, one for each transition of P. Let w. denote
th J

the vector for transition crj and (w j)k the k coordinate value of ,/ j'

. then define

159

It should be clear that W(P) is a vector addition system in which any

reachable path of W(P) corresponds to a firing sequence of P. Without going into

detail (see [99]) it should be clear that for any vector a:ddi tion system one can

also construct a corresponding irreflexivegeneralized Petri net without equivalent

transitions. Thus, there is an isomorphism between these two structures, giving

the result:

Theorem 5: There is an isomorphism between irreflexive generalized Petri nets

without equivalent transitions and vector addition systems which provide an

isomorphism between firing sequences and reachable paths.

The reader may wish to provide the details for these constructions and

results which have been omitted here. Note that the irreflexive and equivalent

transition restrictions are important to have the simple i somorphism results.

If a Petri net had equivalent transitions (]. and (]. then the construction of
1 J

W(P) would give the same vector for w. and w .• Since W is a set the information
1 J

about equivalent transitions is lost in the mapping from the generalized Petri

net P to W(P). Thus there would not longer be an isomorphism between firing

sequences and reachable paths. The irreflexive property of P means that in

transforming a vector addition system to a generalized Petri net that a nonzero

entry (wj)k in wjcw immediately indicat es the interconnection of place 1k with

transitions a .• If (w.)k ~ 0 there is no direct connection. If (w.)k ~ a~
J J J

then 1k is in the output set of places for (]j and has "b ((]j' 1k) ~ a. If

(w j)k ~ a<O then 1k is in the input set of (]j and has t..r (1k' (]j) ~ a. Irreflex

itivity insures that no confusion can exist from the general relation

"b«(]j'1k) - t..r(1k'(]j).

From Theorem 5 relating reachable points in W(P) and reachable markings

in P we immediately obtain:

Corollary 4: For any

transitions R(W(P» ~

irreflexive generalized Petri net vlithout equivalent

R(P,M). o

Thus many properties about generalized Petri nets can be studied via

the corresponding vector addition system. For example, the coordinate values of

reachable points in R(W(P» determine safeness and k-safeness.

For the remainder of this lecture when we use P fora Petri net we will

mean an irreflexive generalized Petri net without equivalent transitions. A

simple restatement of safeness now is:

."

Corollary 5: P is safe if and only i f each r eachable point in R(W(P)) has

coordinate values that lie in the set (O, 1}, and P is k-safe if and only if

the coordinate values li e in the set (O, 1, ••• ,k}.

Corollary 6: The properties safe and k-safe for P a re decidable.

Proof: Inspect nodes of T(W(P)). For safeness l abels on the tree must have

coordinate values only f rom (O,1}, and for k-safeness from (O,1, ••• ,k}. Natural ly

all of T(W(P)) may not have to be constructed to prove t hat a given P is not safe

or not k-safe.

A much l ess immediate corollary , which was shown by Hack (55J t hrough

a compl ex seri es of const ruct i ons using Petri nets, i s:

Corollary 7: The quest i ons of liveness of a Petri net P and of whether xeR(W(p))

in a vector addition syst em are recur sively equivalent .

The corollaries stated for vector addition systems using the T(W)

tree -- are also direct ly t r ans l ated into results for Petri net s. Namely , for

any marking M it is decidabl e whether there i s an M' ~ M in R(P,M). It is
o

deci dable, for any subset of places , whether markings can be reached where the

number of tokens in these places are simul t aneously unbounded. It is decidable

whether R(P, M) is fi nit e or infinite.
o

Consider now the property of whether a given transition 0 i s dead with

respect to a part i cular marking M. A simple modification of W(P) allows one to

decide this. Construct W'(P) = (M',W') exactly like W(P) but add one extra

coordinate to represent the firing of o. Let M' be the initial marking which is

equal to M, and with ° the extra coordinate value. Now the weW' representing 0

l et the ext r a coordinate val ue equal one, and for all other W€W' that coordinate

value is set equal to zero . Now 0 is dead with respect to M if and only if there

is no P€W' (p)) with a value i n the extra coordinate greater than zero. Thi s can

be tested by inspect i on of T(W'(P)). This t echnique of adding coordinates to

count or test certain properties i s useful for testing other properties as well.

The generali zation of vector addi tion systems made by Ke l ler (74 J to

vector replacement systems allows one to develop a correspondence between vector

replacement systems and generalized Petri nets without equival ent transitions

giving analogous results to those we have just discussed, see Keller (74J and

Miller (99J for details.

E: Conclusions

From all of the different uses for vector addition systems we have

discussed, as well as from the inherently simple combinatorial structure of VAS

it should be clear that vector addition systems form a basic mathematical ideal

ization that is both useful and elegant for considering problems of paralleli sm

and synchronization. I suspect that numerous other appli cati ons of VAS will

continue to be discovered.

162

Lecture 3

On Formulations Relating to Loosely Connected Processes

In attempting to understand and design compl ex systems programs an

extensive literature has arisen concerning such systems. A part of this work

deals with resource sharing among loosely connected processes, where the system

is thought of being composed of a number of semi-independent processes that run,

more-o~less s imultaneously, but that have to interact in a cooperative manner

when using resources that are available ~o the various processes. This lite~

ature on system synchronisation includes three principal types of work, namely:

1) Synchronisation primitives

2) Programming solutions to particular problems

3) Mathematical formulations, e.g., using Petri nets , path expressions,

graph models, systems of processes models, etc.

In this talk I will diSCUSS, primarily, some relatively new results on the

system of processes approach of these mathematical formulations. This work is

in recent papers by Miller and Yap, but also has close ties to the work of Lipton

and also Gilbert and Chandler. Some of the Petri net and other parallelism

model applications have already been alluded to in the previous talks. The path

expression approach as described in works of Campbell, Habermann and Lauer, I will

not discuss here. Much of this work was done right here at Newcastle and people

from here would be much more capable of discussing this than I.

After sonle informal descriptions of synchroni sat ion problems I will

describe two mathematical formulations for such problems: a system of process

model and a synchronisation graph model. Using these formulations I will then

show how various properties of synchronisation can be formalised, and also discuss

a few theorems:

163

A. TYpical Synchronisation Problems

There have been quite a few different synchroni sation problems

discussed in the literature. They have been g i ven names such as: the mutual

exclusion problem, the producer-consumer problem, the readers-writers

the dining philosophers problem, the cigarette smokers problem, etc.

problem,

Each of

these problems depicts a certain type of interacti on between a number of

concurrent processes and the utilisation of common resources. We will use

mutual exclusion and the dining philosophers problems as examples in our

formulations.

Mutual exclusion can be described as having n processes that access a

common resource (say a file). To insure integrity of the file we restrict

utilisation in such a way that at most one process can have access to the file

at any time. Beyond that one wants the system to be designed so that all

processes are treated "fairly" in being able to get access . No process shoul d

be l ocked out , nor should the system deadl ock. In our formal treatment these

requirements wil l be formally stated.

The dining philosophers problem considers n processes arranged in a

ci rcle with a resource between each process around the ci rcle. For a process

to enter a certain critical region it must gain access to two resources - one to

its left and one to i ts right. Again , only one process can access a given

resource at a time, and the problem i s to design a system that allows such

access, and again gives "fl'ir" treatment to each process. Figures 1 and 2

depi ct mutua l exclusion and dining philosophers, respectively.

Process 1 Process 2

File

Resource

Process n

Figure 1 Mutual Exclusion

B:

Process n

R
n /

Process 1

Fi gure 2: Dining Philosophers

Systems of Process es

Process 2

We now define our system of processes model. In our formul at i ons, we

will see that r esources are not directly formalised. This i s an omi ssi on and

not an oversi ght . We want to model t he fact that synchronisation in processes

is a funct i on of the common data variables. It i s these variables, rather than

the resources themselves , that are visible to the processes . Even though these

data variables are not the resources themselves , they are intended to reflect the

state of t he resources as seen by the processes (e. g . whether a resource i s

available) •

A "process", as f ormulated here , consist s of a finit e set of i nstructions

(i.e. the program) which begins it s computa tion at a given initial instruction,

with some ini t i a l data values . The process s equentia lly executes instructions,

where each instruc t ion determines two th i ngs : it computes new data values and it

specifi es the next instructi on to be executed. We a l so include the concept of

a process failing. This i s done by specifying a failure function which determines

how the data values are changed in the event of f a ilure.

m
Defini tion 2.1. g) ~ <iIo ' 1» is called the data set where D ~ X D. ,

i~ 1 J.

each D. is
J.

a set, i ~ 1,2, ••• ,m, and dO is an arbitrary element of D called the initial

data.

We take (J) to be fixed for this discussion. A typical member of D is

denoted by d ~ <d1, ••• , d~ where d. E
J.

i = 1,2, •.. ,m.

Definition 2.2. A process on ~ is a 4-tuple, P ~ <e, A, v., f> where:

(i) C is a finite set call ed the (instruction) counter values with two

distinguished elements Co and cf • Co is called the initial

counter value and cf the failure counter value. Elements of

C - (cf } is cal'led the (normal) next instruction function, where

A(Cfjd) ~ Co for all d E D.

(ii) A: C X D~ C - (cf } is called the (normal) next instruction function,

where A(cfjd) ~ Co for all d E D.

(iii) v.:C X D~D is called the failure transformation function.

Each instruction of the program is represented by a counter value of C.

We will often refer to members of C as instructions, even though this is not,

strictly accurate. Beginning at the initial instruction, cO' and with initial

data, dO ' the process progresses by using the A function to specify the (normal)

next instruction to be executed, and the V. function to specify the new data

values. Note that the range of A excludes cf so that, normally, the failure

counter value is not entered. Later we will show how a transition into the

failure value is accomplished.

We are now ready to define how a collection of semi-independent

proces~es act cooperatively through a common data set ii) •

Def ini tion 2.3. A syst,em of n processes on [J) i s

Pi iii li
~ <I:: , A , V. , 'I' >, i ~ 1,2, ••• , n, is a process

Ci n cj~¢ for i f. j.

a set ~ ~ (pi}~~1
on $lJ, and

where each

166

We cal l pi the ith process. We will use superscripts to denote the

process bei ng referred to. For example, c~ and c~ are the init i al and fai lure

t 1 f th . th W ft f t C>\ d coun er va ues 0 e 1 process. eo en suppress re erence O DU an n

when understood. Hence "process" and " system of processes" (or just " system")

are usual l y used. Note that the defi ni t i ons of process and system of processes

imply that the only communi cati on between processes occur t hrough$b . Also ,

although GD coul d i ncl ude al l the variables of i nterest i n the computationa,

control , and interact i on aspects of the processes , it i s often conveni ent to

consider ~ to be only that part of the data used fo r process control and

interaction. No process may modi fy or read another process's counter· value .

In particular, the use or intent to use a common resource by one process can

only be indicated to other processes by some conventions on ~ values.

We next consi der how system actions may be defined:

Defini t i on 2.4. An instantaneous description (i .d.) of ~ is an (n+m)-tuple ,
1 n i

I = <C t ••• , C , d1, • .. t dn? where .: i = 1, 2, •• " n , and <d1, •• • , d > E D.

The initial i .d. of ~ is 10 = cO ; dO
initial data value .

where
_ 1 2 _ m
Co = < cO ' co , •• ·, cd> , and dO is the

Defi ni tion 2. 5. Let I = c ; d, I ' = C' ; d ' be i. d .' s of~, i E [rl]. The binary

relation ,,~ " is said to hold between I and I ', wr i tten
i , ~

1 -:--1 I ', iff (i) 1I .(c ,) = 1I . (c) , for j = 1, •• • ,n, j f. i ,
i , L: J J

and (ii) either IIi (c ') = c~ and d' = l/ (d:)

or rr.(c ') = ,hrr .(C) ;d) and d' = \1i(n.(c);d).
1 1 1

We write 17 I ' iff ::I i E en] such that I T,t 1'.

Definition 2. 5 specifies how transi tions from one i .d . i nto another

may· be effected. The ei ther-or clause of (ii) i ndicates that a process may

either fail (vi a ~) or take a normal transition (via A and \1) . We say that

I ~ I ' is a failure transition or normal transi tion accordi ng to whi ch of
1 , "-

the either-or clauses of (i i) is applicable . We a l so say that process i causes

the transition I ~ I'. As usual, references to ~ are omitted when convenient.
1 , "-

* * The relations -:+ and - are the reflexi ve transit i ve cl osure of -:+ and -,
1 1

respectively.

reachable .

* If 10 -4 11, where 10 i s the initi a l i. d., we say that 11 is

167

Definition 2.6. A sequence of i.d.'s,jf = (11, 12, . ••) is called a transition

sequence iff i ~ 1, Ii-+Ii+1. A transition sequence has the finite delay

property for J S [n] i ff one of the fo llowing 2 conditions holds:

(i) J is finite

(ii) Vj E J, either for inf initely many k ' s , ITj(Ik) = c; or for

infinitel y many k's , Ik ~ I k+ 1 is a normal transition caused by

process j.

Definition 2. 7.
J sequence on I: ,

A sequenc~ of i.d. ' s j = (11, 1
2

, •••) is cal led a computation

where J S en], iff

* (i) 10 ~ 11 i.e. 11 is reachable.

(ii) Vi E (1,1, ••• } I .~ I. 1 is a transition caused by some process j
J. J.+

where j E J.

(iii) j has the finite de l ay property for J.

J is called a nonfailing computation sequence on I:J is in addition to

(i) - (iii), it satisfies

(iv) 11 k E (1, 2, ••• } Ik~ Ik+1 i s a normal transi~ ion.

Notation: If J = en], we say " computation sequence on 1:" or Simply, " computat i on

sequence ," instead of "computation sequence on I:[n]". If J = [j}, then "I:(j}"

is replaced by "I: j".

A computation sequence i s thus seen to be a sequence of consecutive

i.d.'s which occurs in some computat i on of the system 1:. The finite delay

property for J implies that unless a process in J is failed, it must execute

instructi ons at finite intervals in the computation sequence. That is, no

nonfailing process in J can be " infinitely slower" than the other processes of

the system. Note that the processes are independent in the sense that any

process i E [n] may act at any time, that i s , from any i. d. each process can

cause either a normal or a failing transition.

;

168

C: Properties of Processes.

We now turn to stating certain properties on systems of processes which

seem to be common properties in many of the synchronisation problems. Throughout

this section, we assume ~ to be the system of n processes on~, as already

introduced.

Property P1: Instruction executability

Vi E (n), Vc E C\ 3an i.d. I which is reachable and rr.(I) = c.
1

This property simply . states that we need only restrict our attention

to those instructions that may be executed. Notice that the i.d. I may be

reachable only via some i process failing, for example, if c = cf •

Property P2: Critical Region

Vi E [n],

This says that each process in ~ has a criti cal region in which the

use of some resource is required. We have not yet specified how the resource

is to be used. That will depend upon the nature of the particular synchroniz

ation problem.

Property P3: Trying Region

Vi E [ri), Ti c Ci - (cr. , c~ } such that
-:L

(i) Ci Vd E i - c E Ti Vc E D,).. (ci d) = cr. ;. ,
-:L

(ii) 'ri Vd E i - Ti (cr. }. and Vc E D,).. (Ci d) c' ;. c ' E U ,
-:L

This condition states that there is a subset of ins tructions Ti which

precedes the critical region in the sense that before entering the critical

region, the process has to execute instructions from Ti (condition (i)). Ti

'also has the property that the only normal (i.e. nonfailing)

through the critical region (condition (ii)). Combining P3

exit from Ti i s

and P1 we see that
i - -there is acE T and q d E D such that).. (cid) = cr .•

. --:J.

(as 'r1
i s called) is seen as a protocol that processes

Thus the trying region

have to go through in

order to be synchroni sed properly for entry into their critical region.

169

Property P4: Loose Connectedness

'Vi E [~] if 9 = (11, ••• , I k_ 1, I k) i s a computation. sequence of L; for

which TI. (r.) ~ Tl U { cr .} for j = 1,2, ••• ,k-1 and TI. (Ik) E Tl, and process i
lJ -:J. 1

is nonfailing in if, then there exists a nonfailing computation sequence of L;i,

Jr' = (11, ••• ,1' j- 1' Ij) such that Ii = 11, and TIi(Ij) E Ti.

We view loose connectedness as the ability of a process, when outside

of i ts trying region or criti cal region, to proceed independently to its tryi ng

regi on. Note that the exi stence of j)' is predicated upon the exi stence of J .

Property P5: Failure Indication

Le t c ;d

If TI . (0)
1

two reachabl e i.d ' s and i E En].

then d of d' .

This property says that when a process i s failed, this fac t is i ndi cated

by the data values.

The next two propert i es specify the flow of instructions between t he

various regions of a process. Notice that they are condi t ions on s ingle

processes rather than cooperating processes in a system.

Property p6: Trying Region Reachability

II i E En], if 11

there exists a nonfailing

TIi(Ik) E Ti.

is any reachable i.d. of L; where TI.(I 1) =
1 .

computation sequence (11,I2, ••• ,Ik) of L;l

Property P7: Cycl ic Processes

i
cO' then

such t hat

Vi E En], Vi-d. 11, where 'Vj of i, TI .(11) ~ Tj U[.£!:..} then t here exists
J . J .

a nonfailing computation sequence (I1,I2, ••• ,Ik) of L;l such that TIi(I
k

) = c~.

Property p6 says that process i (acting alone in L;i) can reach the

trying region from its initial counter value via a nonfailing computation,

independent of the data values. Property oF? says that process i (agai n act i ng

a lone in L;i) may al ways return to its ini t i al instruction provided the other

;

170

processes are not trying or in their critical region, hence cyclic. So we see

that the typical cycle of a cyclic process consists of going from c~ to Ti (by P6),

from Ti to ~ (by P3) and from ~ ba~k t~ c~ (by P7!) all in a nonfailing

manner. Also, by the definition of A\),1(cf ;d) = c~, so a failed process is
i

restarted at cO'

Property pe: Critical Region Reachability

Vi E [n],

n. (I
k

) = cr .•

a nonfailing computation sequence (IO, ••• ,Ik) such

that
1 -l.

This property simply states that from the initial i.d. we should

be able to reach each critical region in a nonfailing way. Of course, to

do so may require processes other than process i to execute their instruct

ions, possibly going through their own critical regions before process i

reaches its critical region.

Property P9: Non-Trying Region

This property states that each process upon leaving its critical

in the trying region. This has often been termed region enters a region not

"the rest of the program." It is useful to include this property. It allows

one to test that the sequencing protocol is such that some process j which is

trying to enter its critic~ region is not indefinitely delayed by some process i

which is in a non-trying region.

D: Synchronisation Graphs.

The system of processes formulation seems rather straightforward (modulo

a number of defi~itional decisions). It is intenaed to capture the basic notions

of the synchronisation problem literature, and is somewhat related to a formu

lation of Lipton. Now we introduce a formalism we call synchronisation graphs.

It provides a formal analysis technique which is close in spirit to that of

transition graphs of Moore and Mealy for finite state machines. Gilbert and

Chandler developed a similar graphical model for analysing synchronisation, but

our use of synchronisation graphs differs from the results in their paper.

171

We first need some graph theoretic terminology.

Definition 3.1. A directed graph with multiloops, G; <V,E,~ is a triple such

that V and E are sets (of'vertices and edges, respectively) where '(:E-+V x V such

that Ve,f E E, v{e); V(f) ; <u,v'> and e If ~ u; V.

If '(e) ; <u,v'>, then the edge e is directed from u to v. If u I v,

then there is at most one e E E such that '(e) ; <tt,v'>. But if u; v, then more

than one edge, say e and f, may exist such that '(e) ; '(f) ; <v,V>. Thus, a

directed graph with multiloops is a special case of directed multigraphs in which

the only multiple edges are self-loops .

Definition 3.2. The outdegree of

{eEEI 3u such that '(e) ; <v,lP}.

outdegrees of v E v.

v, v E V, i s the cardinality of the set

The out degree of G is the maximum over all

We are now ready to define a synchronisation graph.
n ' ,
X el

, each el
is a finite set with (c~,ci} c ei , c~

i; 1

Let (;; <cO' C>,

I ci, where e

Definition 3.3.

such that

A synchronisat ion graph on <(} ,~> is a triple S ; <G, a,13>

(i) G ; <v,E,~ is a directed graph with multiloops and each

v E v has outdegree 2n.

(ii) 13:E-t{0,1} x en] such that Ve,f E E, '(e) ; <u,v'>, '(f) ; <u,»

and elf ~ 13(e) I13(f).

(iii) a:V~ e x D such that

(a) a i s an injection.

(b) JvO E V,_called the initial vertex and a(vo) ; IO where

IO; COi dO'

(c) 'lie E E, 13(e) <b,:i> and

for all j I i, j E en].

We call a the vertex label function and 13 the edge label function of S.

The motivation for synchronisation graphs is that, given any system of processes

~ , we can define a synchronisation graph S such that each vertex of S (i.e. vertex

:

172

of G where S = <G,~,~) represents an i.d. of E where ~(v) is the i.d. represented

by vertex v. A directed edge of

a transition of E, ~(u)~a(v).

S, e E E such that y(e) = <u,v>, then represents

If \3(e) = <b,]>, then a(u)-4a(v) is caused by

process i, where b = a indicates a failure transition and b = 1 indicates a

normal transition. Thus, the edge label function tells us which process caused

the transition and whether the transition is a normal transition or a failure

transition.

Definition 3.4. Let J s en). A sequence of edges , p = (e1,e2, •••) is a

path of SJ iff TI 2(y(ek» = TI 1(y(ek+1» and TI 2(\3(ek» E J for k = 1, 2, •••

J = En), then we say "path of S" in place of "path of S[n)" . Similarly, if

J = (i}, "path of Si ll will do.

If

We adopt various notations for paths. So e 1 ~ ek denotes that there

is a path beginning at e 1 and ending at ek • Note that we can uniquely determine

the sequence of vertices on a given path, but a sequence of vertices does not

uniquely determine a path (because of self-loops). When both the vertices and

edges of a path p = (e1,e2, •••) are of interest, we write
- e e elr () p = v1 ---,>1 v2_2 ••• ~ vk+r ••• where v1,v2'.·. is the sequence of

vertices uniquely defined by p. ... when only

the vertices of p are of interest . We
e1. e 2 elr

i s a path va ~ V 1 - ••• --"'+ vk+1

say a vertex vk+1 is reachable iff there

starting from the initial vertex. Note

that this coincides with our definition of a reachable i.d. in Section 2.1 in the

sense that v1 is reachable implies that a(v1) is reachabl e (as an i.d.). From

now on, we restrict our attention to only reachable vertices so that the

term:i.nology "'Iv E V" should be read "'Iv E V and v is reachable". Hopefully this

will cause no confusion, and for emphasis we sometimes still Sa;["reachable".

e 1 e? ek Definition 3.5. Let J S En) and p = v1 ~ v2 - ••• ~ vk+1

be a path of SJ with v
1

reachable. Then p is called a computation

iff one of the following two conditions holds:

(i) P if finite.

~+1) ••.

J path of S

i (ii) 'Vi E J, either TIi(a(vk » = cf for infinitely many k's or

\3 (e
k

) = <1,]> for infinitely many k ' s .

Again, we say " computation path of S" or "computation path of Sill when J = En)

or J = {i}, respectively.

113

Definition 3.6.
J e1 e 2

A computation path of S , p = v1 ~v2 ~ • • • i s called

nonfailing iff Vk E(1, 2, ••• ,} (13 (ek)) = 1.

The following theor em shows how the system of processes and synchroni sation

graphs are rel ated formally:

Theorem 3. 1 • Let E be a

ci are the counter values

system of n

for the ith

processes on ~ such that C

process and

n
= X

i=1
ci where

Then there ei xsts an effectively constructed canoni cal synchronisation

graph, S = <G, 0',13> on <(] ,9;) > satisfying the following:

(i) There i s a biject i on between the reachable i '.d . ' s of E and t he

vertices of S, as given by O':V-+ C x D. Also , O'(vo) = Co;do
where Vo i s the initial vertex.

(ii) Each v E V has out degree 2n .

(iii) There i s a b i ject ion between computat i on sequences of E,
- _ _ e1 e 2 j = (11, 12",,) , and computat~on paths of S, p = v 1 ---4> v 2 ~ .. "

such that Vk = 1, 2, ••• , 0'(vk) = 1k •

(iv) Ve E E, 13 (e) = <b, i> and Y (e) = <u, v> implies that the -transition

O'(u)--?a(v) of E i s caused by process i and the transition is a

failure or a norma l transition according to whether b = 0 or 1,

respectively.

Following Theorem 3.1 we associate wi t h each sys tem of processes E it s

canonical synchroni sation graph SeE). We a l so write O' (S) = (O'(v)lvEV} , and i t

is easy t o see that O'(S(E)) is t he set of all reachable i.d.' s of E.

The synchroni sation graphs are built on the idea of the "globa l states"

of the systems of processes , and this notion i s not new. Clearly, a synchroni-

sat i on graph for a part icular synchronisation problem could have a very l arge

number , or even an infinity, of vertices, and this makes it impractical a s a

detailed analys i s tool for the problem. The novelty of the formulation, however,

s eems to be it s use to state problem requirement s and to prove general t heorems

like tho se for data r equirements as stated later.

:

174

E: The Mutual Exclusion Problem.

We no.w begin to consider synchronisation problems and formulate

Requirements for their solution in terms of synchronisation graphs. We choose

the mutual exclusion problem to start our di scussion, first , because it is one

of the earliest and best known synchronisation problems, and second, because it

has been studied extensively. It seems that all the analyses that have appeared

in the literature concentrate on particular programming so lutions. Our emphasis

here, however , is the inherent properties of synchronisat ion problems , in the sense

that all solutions (relat ive to our model of processes) should satisfy these

properties.

Our strategy is as follows: We formalise the informal requirements
on solutions to a particular synchronisation problem by placing restrictions on

synchronisation graphs . Our definition of system of processes seems to include

almost al l conventional systems , in particular all alleged solutions to synchron

isation problems in the literature . But , for any system of processes there is

a synchronisation graph (Theorem 3 .1). Thus, any alleged solution to a

synchronisat i on problem leads to an associated synchroni sat,ion graph, which can

then be analysed to see if it sat isfies the Requirements we will give. For this

approach to hold, of course , we must assume that the properties we state actually

capture the informal problem requirements. This assumption cannot be formally

guaranteed, but we hope the stated Requirements capture the intuitive ideas .

Nevertheless , any argument with the stated properties can now be based on precise

statements. Al so , anyone who disputes our Requirements or Properties should

consider providing alternative but precise formulations . The advantage of this

(compared with previous approaches of supplying a parti cular programming solution

along with an argument that the solution is correct) is that we now have a uni fo rm

framework (synchronisation graphs) to discuss Requirements on solutions without

assuming speci f i cs about a particular program solution.

The notation of Section D, associated with a synchroni sat ion graph S(E)

is assumed for our statement of Requirements.

Requirement R1: Mutual Exclusion

'lIE OI(S) , 'Ii , j E en], i of j '" n. (I) of cr . or n .(1) of cr .•
1 -:t J -J

175

This simply states that no (reachable) i.d.'s allow two processes to be

in the critical region simultaneously.

Requirement R2: Trying Region Competition

'Vi E En],

such that ".(a(v .))
1 J

if P = v 1
E Ti, j =

e e2 ek_1 -4 v
2

---"+ ••• ~vk is a computation path

a nonfailing computation path

1,2, j .. ,k-2 and "i(a(vk)) = ~, then there exists

of S ,

e'.
-4v'.

J
such that vi cr .•

--:I.

This Requirement states that if a process in the trying region can

eventually enter its critical region from an i.d. I, then it should be able to

reach its critical region without competing with other processes not already in

the trying region. In particular, this formalises Dijkstra ' s requirement that

a process stopping way outside its critical region cannot block another process.

Note that this Requirement is predicated upon the existence of a computation path

that enters the critical region.

undesirable "logical defect."

OtherWise, it would presuppose no lockout, an

Requirement R3~ No Deadlock

There does not exist an infinite computation path p.= v1--+v2--+ ••• such

that for some i E En], and for all 1,= 1,2, ••• , "i(a(v
t

)) E T1 and

Vj E En], "/a(v.e)) of .££.j.

That is to say, no deadlock implies that it is impossible for a process

to be continually trying to enter its critical region but still have no process

ever enter its critical region.

Requirement R4: No Lockout

There does not exist an infinite computat ion path p = vl~v2--+ •••

such that for some i E En], and for all .l =1 , 2, ••• , "i (a(v.e)) E T1.

We note that R4 implies R3: Assuming R4, then using the properties of

trying regi ons (p3) it is easy to see that if process i tries "long enough"

without failing, then eventually cr. will be entered.
-1

R4.

However, R3 does not imply

Requirements R1, R2, and either R3 or R4 (along with suitable Properties)

appear as the "minimal" Requirements on any solution to the mutual exclusion

problem. However, it seems that Requirement R2, and some of the Properties are

formulated explicitly here for the first time.

Additional requirements for "refined" solutions were subsequently added

by informal statements in the mutual exclusion problem literature.

attempt to give precise statements of these requirements.

We now

Requirement R5: No Global Variables

Vi E (m], 3jo E (n] such that

n .(a(u)) f n .(a(v)) ~ n2(~(e)) = jO. n+l n+l.

e
"Ie E E 't/u,v E S, u_vand

This condition states that each variab}e of D is changed by actions

from exactly one process. That process may be viewed as the owner of the

variable. Other processes may read but not mOdify the variable.

Requirement R6: Finite Range

'v'i E (m], ID. I is finite. l.

Hence each variable may assume only finitely many values. Note that

this implies that the corresponding synchronisation graph is finite i.e. has

finitely many vertices.

Requirement R7: Linear Wait

e1 e
2

e
k

_
1

Vi E (n] ~d Vcomputation paths p = v1 ---+":2- ••• ~vk' k2:4,

where ni (a(v.(.)) E Tl. for .l = 1,2, ••• , k, there does not exist

j E (n], j f i, such that n.(a(v2)) = n.(a(vk)) = cr ., · n.(a(v1)) f cr . and for
J J -J J -J

some 1 E{3,4, ••• ,k-1} n/a(v!)) f .2!.j.

Thi s condition states that if a process is in its trying region through

out some computation sequence , then in that sequence , no other process may enter

its critical region more than once.

177

Requirement R8: FIFO

Vi, j E en], computation paths p = v1- v2- ••• -+vk'

n . (0!(v
1
» E Ti , n .(0!(v

1
» d Tj lJ (cr.) and n .(O!(vk» = cr. implies that

~ J '" -J J . -J
1 E (1, ••• ,k-1) such that ni(O!(v~» = ~ or c~.

This Requirement impose s a FIFO discipline on processes entering the

critical region. The trying region acts as the FIFO queue (compare Peterson

and Fischer's notion of "gateway"). Any process

FIFO queue by failing. Naturally, this property

may default its position in

implies R7 (Linear wait).

note that R8 may be r,elaxed somewhat by assuming that ~ distinguished

instruction in Ti is the "door" and the priority of processes depend on which

process enters the door first.

Requirement.

Requirement R9: Branch or Write

We do not consider this more complicated

(i) 'Vi E en] , "'c E ci, if for some d' E D, ~i(C;d ') r- d ', then there exist

c' E Ci such that Vd E D, hi(c;d) = c'.

(ii) Vi E en], "'c E ci, if for some d' , d" E D, hi(c;d') r- hi(C;d"),

then Vd E D, ~i (c;d) = d.

This condit ion forces all instructions to be of one of two types:

the

We

Condition

may never

(i) says that if the instruction "writes" into some

cause a branch (i.e . hi(C;d) is independent of d).

variable, then it

Condition (ii)

says that if the instructi on "branches", then i t may never write into a variable
i - -(i. e. ~ (c;d) = d always).

One may see Requirement R9 as an at tempt to restrict the power of

synchronisation primitives. An example of a "trivial" solution that is

excluded by Requirement R9 is the following: Each process has its critical

region preceded by a peS) and followed by a V(S)

•

· peS) ;

cr.
-:l.

V(S) ;
•

:

Note that this solution satisfies what we had called the "minimum requirements"

of t he mutual exclusion probl em, i.e. R1, R2 and R3 (or R4, depending on the

different interpret ations of t he peS) instruct i on). Also, the semantics of

pes) i s the "busy wait" interpretation, s ince our definition of processes cannot

model the "queue" interpretation.

Requirement R10: Monadic Instructions

Vi E en], 3jo E em] such that if d' = ~i(C;d), t hen d and -d' are identical except on jO.

This condition says that at most one variable may be modified by an

instruction. This is a feature satisfied by many programming languages where

there is onl y s ingle vari able (as contrasted with array) assignment statements .

Like R9, th i s condition seeks to restrict t he po,wer of instructions . Notice

that this condition does not exclude an instruction depending upon more than

one variable .

F. The Requi rements for Dining Philosophers

It i s interesting to note that almost no change is required in stating

the requirements for the dining philosophers problem from what we have al ready

done for mutual exclusion . The only change i s that Requirement R1 (Mutual

Exclusion) is replaced with a new nei ghbour exclus i on requirement as stated now:

Requirement R1 ':

'9' IEa(S) , ViE[n-1]

(n,(I) f cr , or n. 1(1) f cr. 1)
1 --:J, 1+ ~+

and (nn(I) f ~ or n1(I) f ££1).

G. Some Theorems on Synchroni sation

We now di scuss three theorems concerni ng synchronisation. The f irs t

two theorems are lower bounds on the size of D, and the third has to do with

the questi on of representing simultanei ty in terms of sequences .

Theorem 4. 1. Let Z be a system of processes that satisfies

(Critical Regions) and p8 (Cri t i cal Region Reachability) .

Properties P2

If S(Z) satisfies

Requirement R1 (Mutual Exclusion) then ~1. That i s , D has at l east one variable.

' .

119

This theorem i s tight, s ince the P, V solution uses only one variable

and satisfies the stated requirements.

Theorem 4.2. Let ~ be a system of processes t hat satisfies Properties P2 and PB.

If S(~) sat i sfies Requirement R1 (Mutual Exclus ion) and Requirement R5 (No

Gl obal Variables) t hen ~n. In particular, D has at least one local variable

per process.

This theorem i s al so tight . A solution exists with only one local

variable per process where each such variable takes on only three values.

Theorem 4.3.
(ii) for all

Under the conditions that (i) instructions are dichotomised, and

instructions c, at most one vari abl e in 6(c)Up(c) is public , then

" s imultaneity '" commutativity".

Without going into the details necessary to describe all the terms

used here, this theorem means that under some fairly stri ngent conditions on the

complexity of instructions the behaviour of the system as seen by sequences of

action s is identical to the behaviour (i. e ., includes all possible behaviours)

when simultaneous actions actuall y can occur . Also , by examples, it is known

that deleting either of these conditions causes simultaneous behaviour which

does not occur when viewed as instruction sequences.

This result will appear i n a forthcoming paper, "On Formulating

Simultaneity for Studying Parallelism and Synchronisation" by Miller and Yap.

A preliminary versi on of this resul t appears in the 1978 ACM Theory of Computing

Proceedings.

:

180

Selected Bibliography

[1) Adams, D.A., "A model fo r parallel computations," in
Parallel Processor Sys terns, Technologies, and
Applications, L.C. Hobbs, et aI., Ed . Washington,
D.C. :Spartan, 1970, pp. 311-333.

[2) Agerwala, T., "A complete model for representi ng the
coordination of asynchronous processes," Hopkins Computer
Research Report 1132, Computer Sc ience Program, the Johns
Hopkins University, (July 1974).

(3)

[4)

[5)

Agerwala, T., "An analysis of
asynchronous processes," Hopkin s

controlling agents f o r
Computer Research Report.

11 35, Computer Science Prog ram, The Johns Hopkins
University, (August 1974).

Agerwala, T. and Fl ynn, M. , " Commen ts on capab il i tie s ,
limitations, and I correctness' of Petr i nets," in
Proceed ings of the 1st Annual Symposium on Computer - -- --
Archi tecture, Lipovski, G. J. and Szygenda, S.A. (Ed s.)
Univ ersity of Florida , (December 1973) , pp . 81 - 86.

Anderson, D.W., F.J. Sparac i o, and R.M. Tomasulo,
handling," IBM
8-24.

"Mac hine philosophy and in struction
~ Res. Develop. , Vol. 11, Jan . 1967, pp.

[6) Aschenbrennner, R.A.: Flynn, M.J .; and Robi nson, G.A . ,
"Intrinsic multiproc ess ing, " Proc . AFIPS, 1967 Spring
Jt . Computer Conf., 30, AFIPS Press, Motvale, N.J., 1967,
pp. 81-86 . -

[7) Baer, J .L . and E. C. Russel, "Pr eparation and evaluation of
com pute r programs for . parallel processing systems ," in
Parallel Processor Systems, Technologies, and
Applications, L.C. Hobbs, et al., Ed. Washington, D.C . :
Spartan, 1970 , pp. 375-415.

[8) Baer, J.L . , D. P. Bovet, and G. Estring, "Legality and
other proper ties of graph models of computations,"
J.Assoc.Comput. Mach. , ~ July 1970, pp. 543-552.

[9) Baer, J.L .. "A survey of some theoretical aspects of
multiprocessing," ACM Computing Surv eys, Vol. 5, No.1,
March 1973, pp. 31-80.

[10) Bahrs, A.A., "Operation patterns (an extensib l e model of
an extensible language) ," Int'l Symp . Theoretical
Programming, Novosibirsk, USSR, · Aug. 7-11, 1972, Lecture
Notes in Computer Science, Vol. 5 , Springer-Verlag, 1974,
pp. 2 17-246.

[11l Baker, H. G., "Petri nets and languages," Computation
Structures Group Memo 68, Pr oject MAC, M.l. T. (May 1972).

[1 2) Baker, H. G. , "Equivalenc e pr oblems of Petri nets," S.M.
Thesis, Department of Electr i cal Engineering, M.l. T.,
(J une 1973).

183

progranming control , " Comm. Assoc . Comput. Mach. , ~

pp. 569-570 , September 1965.

[40] Dill, F.H., "Alternative computer archiectures using LSl."

[41]

IBM Research Report RC 5555, June 1976.

Estrin, G., B.
processing i n a
Trans. Electron.
1963.

Bussell , R. Turn, and J. Bibb , "Parallel
restr uc turable computer system, " IEEE

Comput. , EC- 12 , pp . 747-755, December

[42] Flynn, M. J ., A. Podvin, and K. Shimizu, "A multiple
instruc tion stream processor with shared resources," in
Parallel Processor Systems, Technologies, and
Applications, L.C. Hobbs , et al., Ed . ~Iashington, D. C.:
Spartan, 1970, pp. 251-286 .

[43] Gill , S., "Parallel progranming," Comput. b pp- 2-10,
April 1958.

[4 4] Goldstine , H.H ., L. P. Horwitz , R.M . Karp , and R.E . Miller,
"On the parallel execution of macroinstructions," IBM
Research Repo r t RC-1262 , Aug ust 17 , 1964.

[45] Gonzales , M. J . and C.V. Ramamoorthy, " Recognition and
representation of parallel processable st r eams in computer
prograns ," in Parallel Processor Systems, Technologi e s,
and Applications, L.C . Hobbs et a1., Ed. Washington,
D. C. ,: Spartan 1970 , pp . 335 - 371.

[46] Gonzales, M.J. and C.V. Ramamoorthy, "Program suitability
for par allel processing , " IEEE Trans. Com put . , C-20,
pp. 647-654 , June 1971.

[47] Gosden, J.A., " Explici t parallel processing description
and control in programs for mul ti- and uni-proc essor
computers, " in 1966 Fall Joint Comput. Conf., AFIPS
Conf. Proc . , 29,.--Washington , D.C.: Spartan , 1966,
pp. 651-660.

[48] Graham, W. R., " The parallel and the pipeline compute r s,"
Datamation , pp. 68-71, April 1970.

[49]

[50]

Graham, W. R., " The impact of
computer technology, " pr esented
Lockheed Aircraft Conf. Comput.
Structures, August 13, 1970.

Gregory, J . and R. McReynolds ,
IEEE Trans . Electron . Comput.,
December 1963.

future developments in
at the Joint Air Force and
Oriented Analysis of Shell

"The SOLOMON computer,"
EC-12 , pp. 774-781,

[51] Hack, M. , " The equality problem for vector addition
systems i s undecidable ," Computat i on St r uctures Group Memo
121, Project MA C, M.l. T. , 1975, pp. 1-32.

[52] Hack, M. , " Analysis of production schemata by Petri nets, "
S .M . Thesis , Department of El. Eng ., MIT ; also MAC tr - 94 ,

184

Project MAC, MIT, (February 1972), Errata Hack, M.,
"Corrections to ' Analysis of production schemata by Petri
nets ' ," Computation Structures Note 17, Project MAC, MIT,
(June 1974).

[53J Hack, M. , " A Petri net version of Rabin's undecidability
proof for vector addition systems ," Computation Structures
Group Memo 94, Project MAC, MIT, (December 1973).

[54J Hack , M., "Decision problems for Petri nets and vector
addition systems," Computation Structures Group Memo 95-1,
Project MAC, MIT, (August 1974).

[55J Hack, M. , " The recursive equivalence of the reachability
problem and the liveness problem for Petri nets and vec t or
addition systems ," Computation Structures Group Memo 107,
Project MAC, MIT, (August 1974), 9 pp; also in 15th
Symposi um on Switching and Automata Theory, IEEE, New
York.

[56 J Hack, M., " Petr i net languages," Computation Struc tur es
Group Memo 124, Project MAC, MIT , (Ju ne 1975).

[57J Hansal, A. and G.M. Schwab, "On marked graphs II I," Report
LN 25.6.038, IBM Vienna Labs, Vienna, Austrai , (September
1972) .

[58 J Henhapl, W., "Firing sequences of marked graphs, " Report
LN 25.6.023 , IBM Vienna Labs, Vienna , Austria , (February
1972) .

[59J Henhapl, W., "Firing
Report LN 25.6.036 ,
(June 1972).

se quences of marked g r aphs II,"
IBM Vienna Labs, Vienna, Austria,

[60J Harper, S . D., " Automatic parallel processing ,"
Proc. Computing and Data Processing Society of Canada,

[61 J

[62J

[63J

[64J

Second Conference-,--(June-T960, 321-331. --

Holt, A.W . ,
Rep. AD676972,
Rep. ,Rome Air
September 1968.

et al., " Applied
Inform. Syst. Theory

Devel. Cen., Co ntract

Data Res. Inc.,
Proj ect Final
AF30(602)-4211,

Holt, A.W. and F. Commoner , " Events and conditions ," in
Rec. Proj ect MAC Conf. Concurrent Syst . and Parallel
computation. New York: Assoc. Comput .l'l8ch., 1970,
pp. 3-52.

Holt,
Ph .D.
1971 ;

R. C., " On deadlocks in computer systems ,"
dissertation, Cornell University, Ithaca, January
also Department Comput. Sci. Tech. Rep. 71-91.

Horwitz, L.P.,
"Index Register
August 20, 1964.
January 1966.

R.M. Karp , R.E. Miller and S. Winograd ,
Allocation, " IBM Research Report RC-1264,

ACM Journal, Vol. 13, No.1, pp. 43-61,

185

[65J Irani, K.B . and C.R. Sonnenburg, "Exploitation of Implicit
Pa r allelisn in Arithemetic Expre ssions for an Asynchronous
Env ironment, " Department of Elec. and Computer
Engineering, Un i vers i ty 0 f Michigan Report, Ann Arbor
Michigan, 1975.

[66 J Izbicki, H., " On marked g r aphs , " IBM Lab. ,
Austria, Rep . LR 25 .6 .023 , Septemb er 1971.

Vienna ,

[67] Izbicki , H., "On marked graphs II," Repo r t LN 25 . 6. 029,
IBM Vi en na Labs, Vienna, Austria, January 1972.

[68J Jones , N.D. , L.H. Landweber , and Y.E. Lien, "Complexity of
some problems in Petri nets ," 1976.

[69J Karp , R.M. and R. E. Miller, " Prope rties of a model for
paral lel computations; determ inacy, t e rmination,
queue ing ," IBM Research Report RC-1 285, September 1964 .
Also , SIAM ~ Vol. 14 , No.6, pp. 1390-1411, November
1966.

[70 J Karp , R., R. Miller, and S . Winograd, "The organisation of
computations for uniform recurrence equations ," IBM
Research Report RC-1667, 1966 . Also ~ACM , Vo l. 14 ,
No.3 , July 1967 , pp . 563-590 .

[71 J Karp , R. and R. Miller, "Parallel progran schemata: A
mathematical model for parallel computation ," IEEE
Conf . Record 8th Annual Symposium on Switc hing and
Automata Theory , pp. 55-61, October , 1967.

[7 2 J Karp , R.M. and R.E. Miller, "Parallel program schemata,"
IBM Researc h Report RC 2053 , 1968. JCSS l... pp. 147-195,
May, 1969.

[73J Keller, R.M., " Look-ahead processors," ACM Computing
Surveys , L. No.4 , December 1975 , pp . 177-195.

[74J Keller , R.M., "Vector replacement systems : A fo rm ali sm fo r
modelling asynchronous systems ," Princ e t one Un iver s ity,
E.E. Technical Report No. 117, December , 1972. Revised
January 1974.

[75J

[76J

[77J

Keller , R. M., " Parallel progran schemata and maximal
parallelisn, " J .ACM 20 , 3 (July 1973) 514-537; and J .AC M
20 , 4 (October 1973), 696-710.

Keller, R.M., " On ma xim ally
Conf. Rec . , 1970 IEEE 11th
Automata Theory,pp. 32- 50-. -

paral lel sc hemata ,"
Annu. Symp. Swi tching

i n
and

Keller , R.M., " On the decomposition of
systems ," in Conf . Rec ., 1972
Annu. Symp. Switching and Automata Theory pp.

asynchronous
IEEE 13th
78-89 .

[78J Knuth, D., " Additional comments on a problem in concurrent
prog r anm ing control, " Comm. Assoc . Comput. Mach . , Vol. 9 ,
pp . 321 - 322 , May 1966 .

:

:

186

[79J Kosaraju, S. R., "Limitations of Dijkstra's semaphore
primitives and Petri nets," Technical Report 25, The Johns
Hopkins University, (May 1973), also in Operating Systems
Review, Vol. 7, No.4, (October 1973), pp. 122-126.

[80J Dosinski, P.R., "A data flow programming language," IBM

[81l

T. J. Watson Research Centre Report RC-4264, Yorktown
Heights, N. Y., March 1973.

Kotov, V.E., and A.S. Maringani, "On transformation of
sequential programs into asynchronous parallel progrcrns"
in Proc. IFIPS Congress, 1968, pp. J37-J45.

[82J Kotov, V. E., "Towards automatic construction of parallel
programs," Int'l Symp. on Theoretical Programming,
Novosibirsk, USSR, August 7-11, 1972. In Lecture Notes
in Computer Sc ience , Vol. 5, Spr inger-VerI ag 1974,
pp. 309-331.

[83J Kuck, D.J.; Muraoka, Y. ; and Chen, S.C., " On the number of
operations simultaneously executable in FORTRAN-like
programs and their resul ting speed-up." IEEE
Trans. Computers, C-21 , 12 December 1972, 1293-1409.

[84J Lehman, "A survey of problems and preliminary resul ts
concerning parallel processing and parallel processors, "
Proc. IEEE, Vol. 54, December 1966, pp. 1889-1901.

[85J Lipton , R.J., "The reachability problem requires
exponential space," Yale University, Computer Sc i ence
Department, Research Report 1162, January 1976 (to appear
in Theoretical Computer Science J.).

[86J Lipton, R.J., L. Snyder, and Y. Zalcstein, "A comparative
study of parallel computation ," Proceedings, 15th Annua l
IEEE SympoSium on Switching and Automata Theory, October,
1974.

[87J Lipton, R.J., R.E. Miller, and L. Snyder, "Introduction to
linear asynchronous structures , " to appear in Proc. of
Symposium on Petri Nets and Related Methods, M.L T.,
Cambridge, Mass., July 1-3, 1975.

[88J Lipton, R.J., R.E. Miller, and L. Snyder , "Synchronisation
and computing capabilities of linear synchronous
structures," in Proceedings of the Sixteenth Annual
Symposium on Foundations of Computer Science, Berke l ey ,
CaL, October 13-15, 1975, pp . 19-28. Also full version
to appear in JCSS.

[89J

[90J

Logrippo , L.,
Conf. Rec. 1972
Automa~heory,

"Renamings
IEEE 13th

pp:67-7o.-

Logrippo, L., "Renamings in
Ph.D. dissertation, University
Canada, February 1974.

in program schemas,"
Ann. Symp. Switching

in
and

parall el program schemas ,"
of Waterloo, Waterloo,

187

[91] Luconi, F.L. , " Output functional computational
structures ," in Conf. Rec., 1968 IEEE 9th
Ann . Symp. Switc hing and Automata Theory, pp. 76-84.

[9 2] Martin, D.F., and G. Es tr in, " Models of comput atio ns and
systems -- Evaluation o f vertex probabilities in graph
models of computations," J. Assoc. Comput. Mach., Vol. 14 ,
pp. 281 - 299 , April 1967.

[93] Merlin, P.M. , " A Methodol ogy for the Design and
Implementation of Communicatio n Protocols ," IEEE Trans. on
Communications, Vol. COM- 24 , No .6 , June 1976 , pp. 614-
621.

[94] Miller, R.E. , " Some undecidability r esults for parallel
progran schemata ," IBM Research Report RC 3371 , May, 1971.
Also, SIAM Compu t ing Journal , Vol. 1, No.1, pp. 119-129 ,
March , 1972.

[95] Mi ller, R.E . , and J. Coc ke , " Configurab l e computers: A new
class of general purpose machines," IBM Research Report RC
3897. Invited paper presented at the Symposiun on
Theoretical Pr og r amming, Novosibirsk, USSR, August, 1972 .
In Lect ur e Notes in Computer SCience , Vol. 5,
"International Symposium on Theoretical Programming, "
Springer- Verlag , New York , 1974 , pp. 285-298.

[96] Mi ller, R.E. , "A comparison of some theoretical models of
par allel computation," IBM Resea rch Report RC - 4230. Also
IEEE Transactions on Computers , Vol. C-22 , No . 8, pp. 710-
717 , August , 1973.

[97] Mill er, R.E., and W.A. Br insfield , " Insertion of parallel
program sc hemata ," Proc. of the 7th Annual Princeton
Conference on I nformation Sciences and Systems , March,
1973.

[98] Mi ller , R.E., "Ei ght Lectures on Parallelism: I,
Co nfigurabl e Computers and the Data Flow Model
Transformation ; II, Computation Graphs and Petri Nets;
III-VII, Parallel Program Sc hemata ; VIII, Relationships
between Various Models of Parallelism and
Synchronisation." Presented at CI ME International
Ma thematical Summer Centre on "Theoretical Computer
Science, " June 9-111, 1975 , Bressanone, Italy. In
Pr oceed ings. pp. 5-63.

[99] Miller, R.E., "Re lationships among model s of parallelism
and synchronisation ," (Revis i on of RC- 5074) to appear in
Pr oceedi ngs of Symposiun on Petri Nets and Related
Methods , M.I.T., Cambridge , Mass , J uly 1-3, 1975.

[100]

[101]

Mil ler , R.E., and J.D. Rutledge, "Generating a data flow
model of a progran ," IBM Tech. Disclosure Bull. , Vol. 8,
pp. 1550-1553, 1966 .

Miranker, W.L., " A survey of parallelism in numerical
analysis ," SIAM Rev. , Vol. 13 , pp. 524 - 547 , October 1971.

188

[1 02]

[103]

[104]

: [105]

[106]

[107]

[108]

[109]

[11 0]

[1 11]

[11 2]

[11 3]

[114]

[115]

Misunas, D., "Petri nets and speed independent design,"
CACM, ~ No.8, August 1973, pp. 474-481.

Morris, D.; and Treleaven, P.C., "A stream processing
network," Sigplan Notices JQ... 3, (March 1975), 107-112 .

Munro, I. and M. Pater son,
parallel polynomial evaluation,"
12th Ann. Symp. Switching and
139. Also JCSS, Vol. 7, No.2,

"Optimal algorithms for
in Conf. Rec., 1971 IEEE
Automata Theory , pp. 132-
pp. 189-198.

Mrutha, J. C., "Highly parallel information processing
sys tems," Advances in Computers, pp. 1-116, 1966 .

Narinyan i, A.S., "Looking for an approach to a theory of
models for parallel computation, " Int'l Symp . on
Theoretical Programming, Novosibirsk, USSR, August 7-11,
1972. IN !,ecture Notes in Computer Science, Vol. 5,
Springer-Verlag, pp. 247-284.

Nash, B.O., "Reachability problems in vector
systems ," The American Mathematical Monthly, 80,
295, March-, -1973.

addi tion
3, 292-

Noe, J.D., "A Petri net model of the CDC 6400," Repo rt 71-
04-03, Computer Science Department, University of
Washington, (1971); also in Proc. of the ACM SIGOPS
Workshop on System Performance Evaluation, ACM, New York,
(1971) , pp. 362-368 .

Noe, J.D. and G.J. Nutt, "Macro E-nets for representation
of parallel systems ," in IEEE Trans. on Computers, Vol. C-
22 , No.8, (August 1973) pp. 718-727.

Patil, S.S. and Dennis , J.B . , "The description and
realisation of digital systems ," Computation Structur es
Group Memo 71, Project MAC, M.I.T. (October 1972); also
in Sixth Annual IEEE Computer Society Int'l Conference
Digest pf Papers, IEEE, (1972).

Pati l, S.S . , " Coordination of asynchronous events,"
Ph.D. dissertation, M.I.T., Cambridge. (Project MAC
Rep. TR-72 , September 1967).

Patil, S .S., " Closure properties of interconnections of
determinate systems ," in Rec. Proj ect MAC Conf. Concurrent
Syst. and Parallel --Comput . , -- New York:
Assoc . Comput. Mach., 1970, pp. 10-116.

Peterson, J.L . , "Petri Nets ," U. of Texas msc., July 1976.

Peterson, J.L ..
Ph.D. Thesis, Elec.
January, 1974.

"Modelling of Parallel
Eng . Department, Stanfo rd

Systems, "
University,

Peterson, J.L. , and T. H. Bredt, "A comparison of models of
parallel computation," Inform. Processing 74, Proceedings
IF IP Congress 1974, 466-470, August, 1974.

[11 6 J

[117 J

[118 J

[119 J

[1 20J

[12 1]

[1 22J

[123 J

[124J

[125 J

[126 J

[127 J

[128 J

[129 J

189

Petri, C.A. , "Comm unic atio n "i th au tom ata ," Suppl. 1 t o
Tech. Re p. RAD C-TR-65- 337 , Vol. 1, Griffiss Air Force
Base, Ne w Yo rk, 1966. (Translated f rom Komm un ikation mit
Automaten, Uni versity of Bonn, Bonn, Germany, 1962 .)

Ramamoorthy , C. V. and M.J. Go nzalez, " A survey o f
tec hniques for r ecognisab l e parallel processable streams
in compute r pr og rams ," in 1969 Fall Join t Comput. Conf. ,
AF l PS Co n. Proc. , Vol. 35 , Montvale, N. J.: AFIPS Press,
1969, pp. 1-15.

Reddi., S.S. and E.A. Feustel, "A r e structurable computer
system , " Report, Laborator y fo r Computer Science and
Engineering , Rice University , Houston, Texas, March 1975.

i n
and

Reigel, E.W., "Parallelism expo sur e
Pa rallel Processor Systems,
Applications, L.C. Hobbs et al . ,
Spar t an , 1970 , pp . 417-4 38.

and e xploitati on , "
Technologies,

Ed . Washington, D. C. :

Reiter , R., " Sched uling parall el computat i ons ,"
J. Assoc. Comput. Mach ., Vol. 15 , pp . 590-599 , 1968.

Riddle, W.E., "The modelling and analysis of
s ys t ems," Ph.D . The sis , Computer Science
Stan fo r d Universi ty , (March 1972) .

supervisory
De pa rtmen t,

Riddle, W. E. , " The equivalence of Pe tri nets and message
tran sm ission mod el s , " SRM 97 , The University of Newcastle
upon Tyne, (August 197 4).

Rodriguez , J . E., "A graph model for parallel computation,"
Ph . D. dissertation , M.LT., Cambridge, September 1967.
(Also M.l.T., ESL , and Project MAC Rep. ESL-R-398, MAC-TR-
64 , September 1969.)

Rohrbacher , D.L. , "Advanced computer organ isation study ,"
Rom e Air Devel . Co r p. Tech. Report RADC-TR-66, 7 (2 vols.)
AD 631 870, and 631 871 (April 1966).

Rose, C. \1. , " A system of represen tation for general
purpose digital computer systems ," Ph. D. dissertation,
Case Western Re se rve Univ ersi ty , Cleveland, Ohio,
September 1970 .

Rose , C. W., "LOGOS and the software engineer," in 1972
Fall J oin t Comput. Con ., lFlPS Conf . Pr oc, 41 . Montvale ,
N. J.: AFl PS Press , 1972 , pp. 31 1-323.

Rose , C.W ., and F.T. Br adshaw, "The LOGOS representation
system," Case Western Reserve Un i versity, Cleveland, Ohio,
Rep. , Dc tober 1971.

Russell , E.C., "Automati c prog r am analysis ,"
Ph. D. dissertation, Un iver s ity of Californi a, Los Angeles,
1969.

Rutledge, J.D., "Paral l el processes I schemata and

"

190

[1 30)

[13 1)

[1 32)

:

[1 33)

[134)

[135)

[136)

[131)

[138)

[139)

[140)

[1 41)

[1 42)

transformations," IBM Res. Rep. RC 2912, June 1910.

Rutl edge, J. D., "Program schemata as automata, part I," in
Conf. Rec. 1910 IEEE 11th Annu. Symp. Switching and
AutomataTheory, p""i).7-24-.-- ._-

Schwartz, J. , "Large parallel computer,"
J. Assoc. Comput. Machine., pp . 25-32, January 1966 .

Senzig, D.N. and R.V . Smith, "Computer organisation for
array processing," in 1965 Fall Jo int Com put. Conf. , AF IPS
Conf . Proc., Vol. 21. Montvale, N.J.: AFIPS Press, 1965,
pp. 111-128 .

Shapiro , R. M.
algorithms "
Develop. Cen.,
1969.

and H. Saint, "The
Applied Data Res. ,
Tech. Rep. TR-69-313.

representation of
Inc. t

Vol. 2,
Rome Air

September

Shapiro, R.M. and H. Saint, "The representation of
algorithms as cyclic
Appl ications, Inc. ,
July 1911.

partial orderings ," Meta Information
NASA Final Rep., Contract NASW-2091,

Slutz, D.R . , "Flow graph schemata," in Rec. Project MAC
Conf. Concurrent Syst. and Parallel Computation. New
York: Assoc. Comput. Mach., 1910, pp. 129- 141.

Slutz, D.R. "The flowgraph schemata model of parallel
Cambridge, computation," Ph. D. dissertation, M. I. T. ,

September 1968.

Sonnenburg, C.R., "A configurable parallel computing
system, " Ph.D . Dissertation, UniverSity of Michigan, Ann
Arbor , October 1914.

Stone, H.S., "A pipeline
Parallel Processor
Applications. Spartan
pp. 235-249.

push-down stack computer, " in
and

1910,
Systems, Technologies,

Books, Washington, D.C.,

Syre, J. C., "From the single assignment software concept
to a new class of multiprocessor architectures," Report,
1915 Department d'Informatique, C. E.R.T . BP4025, 31055
Toul ouse Cedex, France.

Tjaden, G.S. and M.J. Flynn, "Detection and
execution of independent instruction,"

parallel
IEEE

_Tr ans. Comput. , Vol . C-19, pp . 889-895, October 1910.

Thurber, K.J., "Associative and Parallel Processors,"
Computing Surveys , Vol. 1, No.4, December 1915.

van Leeuwen, J., "A partial solution to the reachability
problem for vector-addition systems," Proceedings, 6th
Annual ACM Symposium on Theory of Computing, 303-309 , May,
1914.

[143J

[144J

[145 J

191

Vantilborgh , H. and A. van Lansweerde, " On an extension of
Dijkstr a 's sem a phore primi t ~ves," I n form a tio n Processi ng
Letters , 1 , 181-186, October 197 2.

Winograd, S. , " ParalleL i nteractiv e
Complexity of ' Computer Computatio ns,
J . W. Th a tcher, Ed. Ne w York: Plenum, 1972.

methods ,"
R.E. Miller

in
and

Yoeli, M. , "Petri nets and asynchronous con t rol ne t works ,"
Applied Analysis and Computer Sc ienc e Research Re por t CS-
73--07, Uni ver si ty o f Wa te rloo , Wa t erloo, OntariO , Canada ,
Apr il, 1973 .

..

;

192

ADD I TIONAL REFERENCES

[1] Anshel,
addition
(January

M. , "Decision problems for HNN groups and vector
systems ," Mathematics of Computation 30 No. 133
1976), pp. 154-156.

[2J Brinch Hansen, P., "A Comparison of Two Synchronisation
Concepts," ACTA Informatica 1 (1972), pp. 190-199.

[3J Brinch Hansen, P., " The Programming Language Concurrent
Pascal," IEEE Transactions on Software Engineering SE-1
(2), June 1975, pp. 199-207.

[4J Campbell, A.H. ,and A.N. Habermann, "The Specification of
Process Synchronisation by Path Expressions," Lecture
Notes in Computer Science 16, Springer Verlag, Heidelberg
(1974), pp. 89-1 02.

[5J Courtois, P.J., F. Heymans, D.L. Parnas.
control with "readers" and "writers" . CACM
668.

Concurrent
14(10) :667-

[6J Cremers, Armin and T.N. Hibbard, " An Algebraic Approach to
Concurrent Programming Control and Related Complexity
Problems, " Report, USC Computer Science Program, November,
1975.

[7J Crespi-Reghizzi, S. and D. Mandrioli, " A decidability
theorem for a class of vector-addition systems ,"
Information Processi ng Letters] No.3 (January 1975)
-Pp. 78 80.

[8J Ellis, C.A., "The Validation of Parallel Co-operating
Processes, " University of Coforado, Computer Science
Report CU-CS-065-75, April, 1975.

[9J Feldman, J .A., "Synchronising Distant Cooperating
Processes, " Department of Computer Science, University of
Rochester, Report TR26, October 1977.

[10J Gilbert, Philip and W.J. Chandler, "Interference Between
Communicating Parallel Processes," CACM 15, No.6 (June,
1972) 427-437. ----

[11 J Habermann,
Processes.

A. N. Synchronisation of Communicating
CACM 15(3): (March 1972) 171-176.

[12J Hoare, C.A.R., " Towards a Theory of Parallel Programming,"
in Operating Systems Techniques, ed. R.H. Perrot, Academic
Press, London (1971), pp. 61-71.

[13J Hoare, C.A.R., " Monitors: An Operating System Structuring
Concept," Comm. of the ACM 17 (10), October 1974, pp . 549-
557.

[14J Horning, J.J. and B. Randell, "Process Structuring" ACM
Computing Surveys 5 (March 1973), pp. 5-30.

193

[15) Howard , J.H., "Signalling in Monitors ," Proc. of the
Second International Conference on Software Engineering,
San Francisco, October 1976.

[1 6) Karp, R.A. and D.C. Luckham, "Verification of Fairness in
an Im plemen t ation of Monitors, " ibid.

[17) Keller, R. M., "Formal Verification of Parallel Prog rams ,"
CACM 19, 7 (July 1976) , pp . 37 1-384 .

[18)

[19)

Lampor t, L., "On Concurrent Reading and
CA-7409-0511, Massachusetts Computer
Sept ember 1974, revised March 1976.

Writing,"
Assoc ia tes ,

Report
Inc . ,

Lamport, L., "Time, Clocks and the Or dering
Distr i buted System," Report CA-7603-2 911,
Computer Associa te s, In c. , March 1976.
(July 1978) pp. 558-565 .

of Events in a
Massachusetts

Also CACM, ~

[20). Landweber, L.J. and E.L. Robertson, "Properties of
confl i ct free and persistent .Petr i nets", JACM 25 , (Jul y
1978) 352-364.

[21) Lauer, P.E. and R.H. Cam pbell, " Formal Semanti cs of High
level Primitives for Co-ordinating Concurrent Processes, "
ACTA Informatica 5 (1975), pp. 247-332.

[22) Lipton , R.J., " Sc hedulars as enforcers in Sync hronisation
Processes," Operating Systems Proceedings of an Int'l
Symposium held at Rocquencourt, Lectur e Notes in Computer
Science Vol. 16, Springer-Verlag, Heidelberg1 974, 237-
249.

[23) Lipton , Richard J., "On Synchronisation Primitive
Systems ," Ph.D. Thesis, Carnegie- Mellon University, 19733
and Research Report 1122, Yale University, Department of
Computer Sc i e nce, Oc tober 197 3.

[24] Logrippo, L., "Renamings and Econom y of Memory in Program
Schemat a," JACM 25 (January 1978) pp. 10-22.

[25) Meyer , S.C. , "An analysis of two mod el s for parallel

[26]

[27)

computati ons ," Ph.D . The sis, Department of Electrical
Engineering, Rice Universi t y, Houston , Texas (1974) .

Miller, R.E., "Theo retic al Studies of Synchronous and
Para l le l Process ing ," Proceedings of the 1977 Conference
on Information Sciences and Systems , John Hopki ns
University, Mar c h 1977, pp. 333-339 .

Miller, R. E., "Mathemat i cal
computation," Proceed ings 1st
Foundations of Computer Science,
Amagi Homes t ead, Japa n, 23 pp .

studies of parall el
IBM Sym p. on Mathematical
October 20-22, 1976 , IBM

[28) Miller, R.E. and C.K. Yap, " On Formul at i ng Simultane ity
for Studying Parall e lism and Synchronisation," Proc eedings
of the Tenth Annual ACM Symposium on Theory of Computing,

:

194

May, 1978, pp. 105-113.

[29] Miller, R.E. and C. K. Yap, "Formal Specification and
Analysis of Loosely Connected Processes," IBM Research
Report RC-6716, September, 1977.

[30] Osterweil, J.P. and G.J. Nutt, " Modelling Process-Resource
Activity," University of Colorado Computer Science Report
CU-CS-D84-75, November 1975.

[3 1] Parent, Michel , " Presentation of the Control Graph
Models ," Operating Systems Proceedings of an Int'l
Symposiun held at Rocquencourt, Lecture Notes in Computer
Science Vol . 16, Springer-Verlag, Heidelberg 1974,
pp . 279-292 .

l3 1] Peterson, J.L., " Petr i nets," ACM Computing
9(September 1977) 223-252.

Surveys

[33] Peterson, G.L. and M.J. Fischer, " Economical Solutions for
the Critical Section Problem in a Distributed System,
extended abstract. " Proceedings of the Ninth Annual ACM
Symposiun on Theory of Computing, May 1977, 91-97.

[34] Rackoff , C., "The covering and boundedness problems of
vector addition systems ," to appear in Theoretical
Computer Science J., 1977.

[35] Rivest , R.L. and V.R . Pratt, "The Mutual Exclusion Problem
for Unreliable Processes: Preliminary Report."
Proceedings of the 17th Annual IEEE Symposiun on
Foundations of Computer Sceince, Oc tober, 1976, 1-8.

l36] Sacerdote, G.S. and R.L. Tenney, "The decidability of the
reachabili ty problem for vector addition systems," to
appear Proceedings ACM Theory of Computing Symposiun , May
1977. -

[37] Sayward , F.G., " Research Issues in Synchronisation
Primitives for Operating Systems Languages," in Research
Divisions in Software Technology P. Wagner (ed) MIT Press,
1977.

l38] Schmid, H.A., " On t he Efficient Implementation of
Conditional Critical Reg i ons and the Construction of
Monitors ," ACTA Informatica 6 (1976), pp. 227-249 .

l39] Schneider, E. A., "Synchronisation of Finite State Shared
Resources," Department of Computer Science, Carnegie
Mellon University, Ph.D. Thesis, March 1976.

[40] Yap, C.K., "On Abstract
Synchronisation Systems."

Synchronisation Problems and
Unpublished manuscript, 1976.

[41] Zave, Pamela , " On the Formal Definition of Processes."
Proceedings of International Conference on Parallel
Processing, 1976.

195

[42J Zave, Pamela and D.R . Fitzwater, "Specification of
Asynchronous Interactions Using Primitive Functions . "
Technical Report, Department of Computer Science,
University of Maryland, 1977.

:

