
-I

102

A STUDY OF STACK ARCHITECl'URE

IN CONTroL ProGRAM DESIG:'!

by

Joseph H. Aust in, Jr.

November 14, 1968

Abstract

A rrodel of an event-driven multi- tas:dng control prcgra'1\
is examined to determine Ivhich inf onr2tion structures
are appropriate to control prcgram c183ign. These are
compared with the capabilities of the stack mechanism
of the Burroughs B6500. It is conCluded tha-c l1'any
requirements of the control prcgram are not: satisfied
by the stack concept. A rrore ge..l1eral information
structure and possible implem8ntation are proposed.

.,

1

103

A STUDY OF STACK AroITTEcrURE IN

CONTroL ProGRAM DESIGN

PARr I: IN'IroDlX:rION

This paper is concerned with pushdo.m stack architecture from the viewpoint of
the control program. First we will examine the basic von-Neumann machine and the
motivation for stack architecture. In Part II we will examine a rrodel of the control
program to discern what information and control structures are appropriate to it.
Part I II will conpare these with f eat ures available in the Burroughs stack machine.
Part IV will sugges t extens ions to machine architect ure to the control

I. Basic von-Neumann Machi ne l

The basic addres s ir..g struct ure of a von-NeUJT1anI1 conputer is given in Figure L 1 :

I merrory addres s reg I
I

Figure I . .l: von Neumann machine

This maci'ine has a sing l e a.ccu'llll ator \,hi ch i s implicitly addres£;ed .

n . f or the St2ck 1'!2.d1ine

lc"l early probl em with 'Chis mac.ll,ine or gan i zation ',vas the necessity for s avi!1g
w'1cl 1.oading the contents of th2 sir,; l.:) o.c cu.-nul at or . The problem could be so2.vE.d
by an 11 infinit.e ll number of accu.:-IUJ.2.tors i . thus results could
remai.n i n an accumul ator as long as needed . 1"11tSoretical s ·tudies rev25.1ed that. , for
operations o f COrrrrDn occurxence in scientifi c progr al1lning , such a,s eval uai?-on of
aritl-1l110tic , e>..pressions 1 c O:tL.?ilation of "Al gol - like " l anguages I and s ur)!:'ot:.tine c a.lls I
tile sc.lu:mce of r equiJ:8d ilcetm1ul ilt or save and r estore operations corresp::>nded t o
the F-:tttern of a pushdam stack . J.I.ccordingly , when Burr oughs Corporation designed
til" D5500 for efficient impl ementat ion of ALC'{)L , i t i nc luded a hard",are-simulated
"semi-i nf init e " se·t of accll'nuliltors organized as a pushdown stack.

accumulat'?:J
!\

\.-----

S ' \:
l imits -- - L-___ ---'

'-,.'-------'

I rrerrory addres s I
rremory __ -'I ,

Figure 1.2 : Stack machine

1 e.g ., the IBM 650. See reference (1).

104

In this machine, real (hardware) accumulators are augrrented by a vector of
core locations which serve as logical accumulators. An additional top-of-stack ('IDS)
register maintains the address of the core location corresponding to the juncture of
r eal and simulated accumulators. Each store or load on the accumulator causes an
irrplicit' pushdown or pop-up of the stack.

III. Errergence of the Control Program

o.lrrently tixre-sharing and cO!lputing systems are
gro",ing in popularity. Due to price/performance econanies of scale, these systans
are typically irrplerrented on large-scale corrputers , each with an elaborate control
pnxJrarn to enable many users to share system resources con=rently.

he shall now consider wheti1er stack architecture , of proven usefulness in executing
Algol-type programs, is sui table for the exe cuti.on of a heavily-used event-oriented
control program.

PARI' II: THE CONTroL ProGRAM

I. M:Xlel of the Control Program

1. Introduction

The control program is a software-implemented extension of corrputer
architecture. This extensicn includes definition of pseudo op-codes and simulation
of features not implemented in hard,vare , such as I/O handling a'1d interrupt servicing.
The rrajor function of interest in this paper is that of "multiplexing" the co.rnputer
system to achieve multiprogramming and dynamic on of resources.

2. Primary Function

The primary function of the control i :5 allocation of resources in
response to events. Resources include control o f G'LJs '-:,"-'1nels , l1EllDry and
auxiliary storage, I/O devices and progr= . The a llccab,);l prccess is perforrred by
routines collectively known a s the contro l progrc:m or Sl1FJrvisor.

A model of the supervisor thus charac 'h'erized is "job chop." Requests
enter the syste.m, require one or more resource:.; , Gnd are u l tiroa t e ly serviced, freeing
the resources _ The basic operation of the Irodel is illl1s·tra ted bela ",: '

Request C

Request B

Request A
t.

1.

gmzTflI [//1
,a t

, ' f __ ___ JI/I//lVIVlj _ _ _
t t = t t

a fx iy a
time

legend:

. NOTE: t f for one request = ta for another
request for that resource.

177?/11
1\ \ \\\1

request waiting for resource
resource 'x' :L'I use
resource 'y' in use

2For excrrple, supervisor call routines for IBM systern/360 .

105

There are three significant events in this basic cycle: t . is the time of arrival
of a request , t is the tine the resource becorres t is the time the
request is servfced and the resource freed. The cycle nay be tepeated for other
resources.

3. Design Problems

The infomation and control requirerrents of the supervisor fall into three
broad cat egories.

A. Queuing Problem:

Whenever an asynchronous event (request) requires a resource that is =rently
in use by another r equest , the control program must assure that both requests are
serviced. It may:

a) pre-enpt the resource , saving (stacking) the status of the current user, or
b) queue the r equest until the resource becorres available.

B. Inventory Problem:

The control program must maintain a reoord of the status of all system resources
and lccate these records when a request or completion event occurs.

C. Control Problem:

The oontrol program must analyze each event to determine its logical s i gnif i canc
locate the appropriate requests and resources , and give control to the appropriate
routines . This l atter is typical of the a llocation problem ."hen the resource is a
program.

II. Logical Data Structures Required by the Control Program

1. Basic Data Structure

The basic logical data structure in control program design i s the set .
In general, it is vari able in size and may be ordered. Types of set organizations
are distinguished by where insertions and deletions are made.

2. Definiti ons

Types of sets and their typical uses are as follows :

stack: insertions and deletions made at the sarre end (LIFO).
use -- preserve status of a pre-erupted resource.

queue (unqualified): insertions at one end; deletions at the other (FIFO).
use -- hold a request until a r esource becorres available.

ordered queue: insertions anywhere on the basis of a key; deletions fran one end.
use: ('priority " queueing.

list: insertions and deleti ons anywhere on a key basis; variable size.
use -- maintain inventory of a variable resource.

table: sarre ordering list, but fixed size and fomat.
others (tree, plex, etc .) : additional properties indicate multi"'inerobership or nestin

structure .
use -- record of r esources that are merroers of !!'Ore than one set, or subsets of

a larger set .

106

NOI'E: The term "random" access or arrival will refer to an e:rent requirin; access
to a point other than one of the "ends" of these set structures, tho.gh these
events have a "non-random" statistical distribution.

3. Data Structures for Particular Supervisor Functions

The types of data structures suitable for the queuing and inventory proolems
depend on the relative order of the events representing the entry of a resource or
request into a set and those requiring later access to or removal of that element.
In general, one will 'want to order the set in a way which will maximize access efficiency
for all three events in the basic cycle. In sorre cases, the required structures can
be restricted by constraining the natural order of events, e.g., by unwanted
interrupts.

We can examine the irrpa-::t of access requirerrents on data s ·tructure by inves-
tigating partiollar cases.

Supervisor services can be divided into four main areas:

A. 3 Task concerned with creation deletion of tasks and allocation
of control of the CPUs.

B. Input-outpu t managerrent, concerned with the creation and deletion of I/O
requests and allocation of channels and devices.

C. Storage management, concerned with the allocation of main and auxiliary
storage t.O tasks and I/O operations.

D. 'I'lffier managerrent , concerned with multiplexing the interval timer.

A. Task Managerrent (see Figure 11.1)

The history of a task is characterized by (a) creation by a higher task, (b)
alternating periods of ready, active (control CPU), and waiting, and (c) eventual
terminati.on , notifying the higher-level task. The main problems of concern to the
infonration structures are task cJ:eation/termination and dispatchin; (allocating CPU
control) .

1. Creation and termination

We will consider the situation in a new (daughter) task is created by
an existing (mother) task. 'l'hen there ace two tasks corrpeting for the resources
originally controlled by the rrother task a lone . In particular, this is an irrplicit
reques t for control of the CPU . 'l'he rrother task may wish to transfer, share, or
r eserve to itself other resources (I/O devices, access to variables). The new task
may subsequently acquire additional resources of its own.

Resource inventory prd) l 3,-n : the inventory data structw;e must reflect
new disposition of resources , For this purpose resources fall J.nto two categorJ.es:

a) non-sharable resources : (e.g., card reader) may be kept or transferred.
The control program must r ecord which task owns the resource. , If the resource
is transferred, it must also record the disposition of the resource when the
task terminates, e. g., a stack of previous owners.
b) sharable resources: (e . g. , data in storage). The control program,must
record each task that has access to the resource, e.g., a tree of possible users.

3ay a task we mean a program module which may (logically) be executed in parallel with
other program modules, e.g., independent multi-programred joos.Ref. (lO)p.329.

107

DOS4 Task Scheduler (table organization) :

W supervisor
vi errur reoovery
A telc-processing
W spool
j'{ batch

o fixed mnnber of tasks
o predetermined priority
o dispatch algorithm scans table from top until

first ready task is found
o interrupt action finds entry by key transform

and changes status code

OS5 Task Scheduler (list organization) :

Task a

H •

'l'ask b Taskd

o variable mnnber of tasks
o dispatch alqorithm scans linked list for

highest priority ready program
o when a higher priority task becomes ready,

the active task is effectively "stacked"
in the list

o a TCB is created and inserted by priority for
a new task (dotted arrow)

\1l'N16 Dispatcher (ordered queue organization)

A
Du(fer

task

Line
r ead

write

jl
Disk
write

Status codes: A = ac tive

o fixed number of pre-defined tasks
o a chained list is maintained of ready tasks

only
o dispatch algorithm selects top task on

ready queue
o interrupt activity finds tasks at predetermine

fixed core locations

R = ready w = waiting

rigure II.l: Examples of Task Management

4e.isk 9;lerating a oontrol program for IBM SystenV360, ref. (6).
59;lerating control program for IBM SystenV360, ref. (7,8) •
6Queued Teleoomnunications Access Method, an IOCS for rerrote terminals on -IIM
-SysterrV360, ref. (5) . - -

108

Request element: task activity record.

A record of the existence and status of the task, which is also a request
for a CPU, is created with the task. data structure appropriate to this set
of requests i s influenced by frequency of creation. If the nurrber of tasks
is relatively stable (e.g. MFT), a table may be appropriate; if the nurrber of tasks
varies greatly, a variable length structure may be required.

2. Dispatching

concerns allocation of CPUs to ready tasks.
may be one or more CPUs in the system. If the nunber is small,

the inventory problem is negligible. If the nurrber is large, CPU allocation will
be similar to channel a llocation , discussed below.

Ready task set: The structure of the set of CPU request depends on the
dispatching algorithm (ta vs. til and the order tasks relinquish the CPU (tf vs. tal.
Typical cases of the former are:

DiSpatch algorithm

round robin
first in first out
priority
pre-emptive (LIFO)

Data structure

table or list (see creation/termination)
queue
ordered queue
stack

If there is only one CPU, the last task to receive control will be the
first to release it. Otherwise, t f will be unrelated to t , and an "active task
set" must be organized . a

Waiting task set: logical structure ,of the set of tasks waiting for an
event (or s et of active I/O programs) depends on the order the waits will be satisfie<
In general, this is "random" with respect to the order of enteri ng the wait state , but
could be constrained otherwise, e.g. , by selective disabling of I /O interrupts.

B. Input-output Management (see Figure II. 2)

model we are considering assumes I/O is performed by logically independent
channels, a resource s imilar to a CPU. Hence, I/O requests are similar to tasks.
Similarities have already been seen in connection with CPU inventory and waiting/
active tasks.

The history of an I/O operation is characterized by (a) receipt of an I/O
request, (b) allocation of a . device and channel, (c) completion of the request,
and (d) purging the request and notification of the requesting task. Items (a)
and (d) are similar to task creation/termination.

Resource inventory: Devices, and channels (and CPUs) must be assigned to
particular requests. If only a particular one may satisfy the request, the
selection is trivial. If there is a pool of similar resources, they may be organized
in any convenient order, since the particular choice makes no difference.

I/O requests: Request records are created by the requesting tasks. The
distinctive feature of their data organization is the requirement of multi-level
queuing, as illustrated below:

7!iultiprogramming with a Fixed number of :!,asks, one of the scheduling options

of IBM's Operating System.

109

Channels:
Chann

FI

l evel 3: devices
queued for channels -r£ Devices:.

level 2: tasks ·
queued for devices

level 1: requests
queued within tasks

-
Tasks: A ABC A A A B

Figure II. 2a : Multiple-level Queuing

!FREE" ms Channe 1 Scheduler
;-., punch request 1

punch I-" ,,.. Channel 0
reader e ... disk 1 -write
printer ----./ ' • punch request 2
disk 1 v print request
disk 2 :.
t ape 1 disk 1 r ead
tape 2

Channell

devices queued for channel I/O requests queued for devices

o level one and level two queues are merged in FIFO order
o each level two queue is a chained list with head at. device entJ:y
o each level one queue is a fixed table with an entJ:y for each device
o the channel scheduler scans the device entries in round-robin order

Figure II.2b: Exarrple of Input-Output Managerrent

Levell: requests from a task for a particular device. ordinarily these
requests must be queued FIFO. This requirerrent can be eliminated by forbidding
the user to issue two requests to the sane device at a time. and the queue can be
merged at level 2.

Level 2: all requests for a particular device: this queue arises f or sharable
devices , e.g. DASD, and i s typically organized to optimize access time, i.e., an
ordered queue.

Level 3: all requests for the sane channel: .at this l evel, the top entJ:y
on each device queue has the characteristics of a task -- ready if the device i s
free , active if the channel is allocated to it, and waiting if the channel is
released but the device is still busy. .

110

NOl'E: A distinct difference between I/O queuing and task queuing is that a
pre-enptive (LIFO) discipline cannot be used with -I/O. This is because the -
mechanical rrotion of I/O devices prevents their being "frozen" for later resU!l'e.

C. Storage Management (see FigureII.3)

Storage management problems are similar for both core and auxiliary stvrage.
Again the appropriate organization depends on the order of t f vs . t . - a

The simplest case is that of "automatic" storage, where requests for allocation
and release of storage follow the LIFO order of subrouting calls and returns.,
The stack is an ideal implementation for this case.

Another simple case is that in which large requests may be satisfied by
multiple non-contiguous extents, which is possible when access will always be
serial, e.g. sequential DASD datasets, stacks, queues , and chained lists. A
simple list organization of free storage is adequate in this case.

In the general case, the "best" storage allocation algorithm is an unsolved
problem. The usual approach is to reduce the problem to one of the simple cases
given above. Time-sharing nachines (e.g. 5/360 M:xl.el 67, GE 645) use address
translation hardware to make physical'ly discontiguous regions l cgically contiguous;
permitting a chained-list allocation algorithm. Other systems (GE 635) use a
stack allocation and relocate prcgrams in memory to fill in holes that develop in
the bottom of the stack.

D. Timer Management

The supervisor m::x1el assU!l'eS the simulation of many pseudo-timers using a
single hardwa1:e interval timer. This is realistic due to the unpredict able
requirements and difficulty of synchronizing many real t imers.

In this case requests are inherently oriented toward an ordered queue. Requests
are like tasks in that an asynchronous event is scheduled.

4. Data Structure for Program Control.

There are two main types of program organization appropri ate to the
internal control of the supervisor. They are distinguished by the order in
whi ch routines (programs) start and conplete. If the prcgram is considered to
be a resoUrce , the status information to be preserved includes the location counter
and data pertinent to the program.

A. Subroutine organization: transfer to and from programs is such that
routines are executed in a LIFO order. A stack organization is appropriate
for saving the status of temporaril y inactive routines.
B. Task Organization: transfer of control from one routine to another
depends on the sequence of external events, and nay be asynchronous .
Separate tasks nay lcgically run in parallel ; each requires an 'independent
activity record for saving its status.

If each task is composed of subroutines, this leads -to the requirement of
multiple independent stacks.

free·

job 3

job 2

supervisor

supervisor

111

Stack allocation (MFT-l) 8

Storage becomes ' trapped at the bottom
of the stack. Jobs ' 3 and 2 must finish
before idle storage fran jab lis. avaiJ,abl.

List organization of free cere (MVr) 9

Storage becerres fragrrented. Active
storage for job 2 divides a large
segment of free storage from jobs 1 and 3.

Figure II.3: ?xarrples of ·Storage Managerrent

8Early versions of MPI', also called "Sequential Partition Scheduler" and "Option 2,"
operated as illustrated here.

9Multiprogramning with a Variable number of Tasks, another scheduling oPtion of
IBM I S Operating System. - -

112

PARI' III: CON'f FOL PJDGIW1 FUNCTIONS ON A STACK MACHINE

I . Functions of the Stack

Recalling the basic design of the stack 'machine ,(B5500) discussed in
we can surrmarize the applicability of the main stack functions as '

1. Evaluation of Polish expressions: there is no peculiar applicability of
this function to supervisor prograrrming. '
2. Subroutine control: Figure III. 2 illustrates the operation of the stack
in a calling sequence. ' In this instance the stack serves as an extension of the
instruction counter, not the accumulator. The program status is embedded in
the stack (Mark Stack and ' Return Words) ; but , note that these entires are chained
together and do not rely on the TOS register for their stack organization. ,
3. Memory allocation: the stack :i.rrplements a LIFO storage allocation algorit.l-t.'ll
for automatic variables as required by the program.

II. ' Extended features in the B6500/7500

Figure 111.1 illustrates extensions to basic stack design to aid certain
control 'program requirements.

1. Task conb:u1. The extende d llBchine allows multiple stacks for multiple
tasks . The" stack vector arraya holds the address of each task's stack and ass ists
in merrory inventory and task sWitciling.

2. Shared refe.r:ence to variables: A "stack" of display registers references
each pararreter area accessible to the =rent routine. This is an implementation
of resource sharin'j (data) , andmaintaips one bJ::an:ch of t:he.task ,generation tree.

III. Additional Hardware Features

Features of the B5500 unrelated 'to the stack ined!anism but useful in ,control
program operations are the follaving:

1. Chained list search (Link List Look:;? This operation SC2I1S a chained
list of data items-'E>f the-form / key " link until it finds a key greater than •
or equal to a reference key, and then- creates a descriptor (pointer) for that element.
The link may be embedded in larger structures for a generalized chained structure.

2 . Table Scan (Flag Bit Search): This operation scans a vector u-l1'cil it finds a
word with a flag bit on. This adds efficiency to tab,le-oriented queuing and
searching.

IV. Canparison with. Systemj360

Figure 111.3 illustrates equivalent S/360 for same Burroughs B5500
operations. Figure III. 4 is a conparison of the UNO based on , the adjusted number
of main memory cycles required for equivalent operations. Note that whereas the
number of accesses rar data operands is coapaLaole, the S/360 programs require
many l1'Dre accesses for instruction fetching, particularly in "tight leap" operations.
Furthe=re, a significant part of S/360 "overhead" is due to testing for exceptional
conditions such as end of stack.

We would also expect progranmer efficiency and debugging to be superior on the
Burroughs machine due, to provision of function-oriented primitive operations rather
than requiring the prograrrrrer to write short instruction sequences to, perform operations
on set structures. On the oUler hand, the exanples illustrate t.l1at the S/360

,instruction set provides sufficient flexibility to implement any set ,structure we have
conSidered, whereas the Burroughs operations are l1'Dre

113

top of stack
Task A parameter (MS)

pararreters

Task B

MSCW ____ I

s tack 2

Stack vector
array

•

r--
MS
-

OiI
----l/
__ -J

stack 1

Supervisor

MSOiI

Stack 0

Registers in extended machine:

TOS: top of stack register (terrporary variable addressing)
MS: mark stack register (pararreter addressing and return)
Display registers: base registers for non-local variables

display regs.

Mark Stack Control Words: (HSOiI) preserve the calling sequence chain ·

Stack Vec tor Array: address of base of each independent stack

Figure III.l: B6500/7500 Extensions to Basic Stack Machine

B5500 Operation

Mark Stack:

Top Stack reg
Mark Stack reg

Store MSCW to mark end
of callers stack.

Operand Call
(or descriptor call) :

Store parameters for
called program.

Operand call to subroutine
descd ptor:

Save return address
and branch to subroutine .

Literal call:
Save space in stack for
local variables.

114

Before

, MSCW
'1-----1

TOS
MS

TOS
MS

Figure III.2: B5500 Calling Sequence

After

MSCW

115

B5500 Operation: Stack Pushd=

On the Burrou;Jhs stack machines, the top two (logical) positic.ns of the stack .
are implemented by a pair of hardware registers A and B. Thus, the TOS register,
\'Alich points to the top of the core-rrerrory portion of the stack, actually points to
the third word of the logical stack.

The basic stack pushd= operation is irrplicit i n every "operand call" operation
(equivalent to LOAD ACClMUIATOR) ; pushdown is equivalent to terrporarily storing
the contents of the accumulator prior t o loading.

The operation pr=eeds as follCMs:

1. The TOS register is incremented to point to the next higher position
(which is logically errpty) in the core-m:?J1'Ory portion of the stack.

2. The TOS r egi s t er i s =rpared with the l imits r egi s t ers, and an interrupt
==s when the stack mellory limits a re excef"ded .

3. The B-register contents are stored in the new rrerrory stack word, and the
A-register contents are shifted to the B-register. The A-register is then
ready to receive operands from merrory .

S/360 equivalent:

IJ\. TOS ,4
CR TOS,UL
BH error
ST B,O (TOS)
LR B,A

(let UL,LL = limit registers)

increment stack pointer
test merrory limit
if limit exceeded, cause interrupt
store B-reg in stack
IlOve A contents to B r egister

Figure III. 3a: Pushd= Operation

.1
I

116

(1) (2)

A reg: new item 2 a
B reg: list .item 1 c

Chained list : a

At end of scan; Reg A points to high list item.

Equivalent 360 program:

Registers: A,X B,Y .

(360 must use 2 registers to simulate Burroughs registers).

LA Y
loop LR X,Y

Ill! B,Y,O(X)
CR B,A
ilL loop

put start address in second half of B
rrove link up to 1'. reg .
move next list item to B reg
OOllpare keys of list item and new item
continue scan i f low comparison

Figure III.3b: Linked List Lookup

B5500 Operation: Flag bit search

(3)

2
3

This operation scans a table until it finds the first operand with a flag
bit set.

S/360 program:
Program begins with address of TABLE-4 in register A.

loop LA A,4
'I'M flag ,0 (A)
BNO loop

set address to next table entry
test table entry for flag bit
if bit off, repeat for entry

The program ends with the address of the flagged entry in register A.

Figure III. 3c : Flag Bit Search

c
b

I
.1

I

117

V. Conclusions

'l'his survey of control-program inforrration structures reveals a high incidence
of cases where data cannot or should not be accessed in a last-in-first-out order.
Hence we must conclude that stack organization, while effective for problems for
which it was originally designed, is irrelevant to many of ti1e basic processing
operations of fue control program.

Furtherrrore, even in those instances where LIFO data · structures are useful in
the control program, and particularly in multi-programming several taSlks which may
individually use a stack to advantage, the original ' concept of a single "semi-infinit
stack must be modified. What is required i s a separate stack for each task or data
structure. This can be accollJ?lished by a chained implementation of · separat.e stacks
or a chained tree structure of mul tiple-exten'c stacks.

Finally, we notice that control program efficiency can be iIlJ?roved by providing
specialized operations to process commonly occurring data structures , such as
chained lists and tabl es. This suggests that the success of the Burroughs c.es i gn
is due not alone to the stack concept per se , but to the efficient hardwar e
linplementation of all relevant data-structure operations.

INSTRUCTION OPERAND
OPERATION MACHINE ACCESSES ACCESSES

,
t
I

PushdOlll1 B5500 0* I
S/360 5** 1

Link List Lookup B5500 I 2n

S/360 4n+l 3n-I***

Flag Bit Search B5500 1 n
S/360 3n 2n-l***

n = number of items scanned
operation is implicit in other operation codes

**Two of fuese fetches are required to test for memory bounds
***The extra operand access is required for the branch address

I

I

Fi gure III. 4: CollJ?arison of B5500 and S/360 Operations

TOTAL ,
--"

1
6

2n+l
7n

n+l
5n-l

i
I

118

Pl\Rl' IV: POSSIBlli HARJ:WARE EXTENSICNS

I. Introduction

We seen t ha t the basic data stl:ucture appropriu·te to the control program is the
ordered set. We might inquire whether a generalized orde red-set ·mechantsm, on the
or der of the stack mechanism, would be possible.

II . Multiple Stacks, Multipl e Extents

\"e fi r s t postul ate the ava i l abili ty of a "stack" for each data stl:ucture we desire.
'l11is mechanism j lrrplef!'t'lltec1 in the B6500 . To avoid core fragn-entation problems, we
could a llocate these as d lained extents of a fixed size . The access mechanism (always
serial) would automatj cally "br anch" when it r e ached the end of an extent.

III. Queue Stl:ucture

Fi gure IV. I i llustrates the behavi or of data in a stack vs . that of data in a queue.
Note the following:

a) the stack has only one access point; the queue has two.
b) tile active areas of both s tructures vary J.n s ize, but the location of the active

area of the queue "c limbs" through 1n2110ry whil e the stack area stays "tied down."
Hence a hypothetica l que ue machine: would requi r e the following: ll

a) a n extra register to identify the bottom of the queue
b) a "wrap-around" mechanism so r equests for high addresses would be filled with

low addresses, e.g., multi-extent mechanism.

IV. Ordered Queue Implementation (see Figure IV.2)

A disadvantage of a ve::tor repr<e.sentation for an ordered queue is that items must
be moved for insertions and deletion[; . This need not be a handicap, however , since
a serial key scan (also required f or a c hained representation) could perform the move
"on the fly" by storing each operand one location higher or lowe r after making an
unsuccessful key corrparison. 'l'he duta f etched and stored (key + link for chained,
key + data or pointer for vector) would be the .,arne in each case.

V. Chained List Operations

The efficiency of using chained rep:re!""l,tations could be improved by including
operations like the Link List Lookup. The improved machine would have:

a) a special link-list format , key + li!l'<: , recognized by hardware
b) link-list op-codes, such as scan , insor t , delete. Of particular importance

here woul d be condition codes or interrupts to signal exceptional conditions,
such as end of list , null list, broken chain , etc.

(Note that a s imilar concept was invol ved in converting floating-point arithmetic
from subroutines to hardware.)

IOi.e., well-ordered under the operation of concatenation. This may be either
physical ocntiguity or logical (chained) linking.

11
'lhe G. 1; . circular list is an exarrple of this structure.

119

(1) (2) (3) (4)

Shaded area represents active entries.

Stack: one boundary moves both ways

(1) (2)

Queue: two boundaries move the
same way

Figure IV.L: Comparison of Stack and Queue Operation

J " "-
....... 6

5

5
'l

I
3
1

0

3 insert i tan
4

tar get register
sfer register

II
1/

JJ
17
V

Queue insert operation

2 delete item
5

7 /
7
6

Wl 4

3
, 2

I 1

Figure I V. 2: Possible Impl ementation of Order ed Queue Operations

120

PARI' V: CONCLUSIONS

The basic of stacks and their utility in a l gorithmic computation
are well knONn.l The question that must: be asked is whether this theoretical
suitability carries over into an environment Ivhich is inherently
highly parallel, and event-dri ven.

The examples of solving the control program problans suggest that the stack is
not the lIDst useful rrechanism. Particularly corrq;::elling is the fact that the Burroughs
architecture augrrents the stack mechanism with hardware that is oriented toward
other structures i n order to implement its awn control program. Accordingly, we may
conclude that the predominance of data structures other than stacks, particularly
ordered lists ,represents a basic requirerrent for supervisor ·programming, and is not
just a due to lack of stack hardware.

We may expect that, just as the stack organization emerged as the "natural"
structure for Algol-type programming, a n8N "natural" structure will emerge to sirrq;::lify
the problans of supervisor programming .

!'or a discussion of these properties, see a r ecent text on advanced computer
programming, such as Wegner, ref. (10).

I

121

REFERENCES

1. Brooks, F.P. and Ivers on, K.E . , Automatic Data Processing, John Wiley .and Sons ,
1963 , pp. 167-77.

2. Burroughs Corporation, "Burroughs B5500 Information Processing System Reference
Manual," 1964 .

3 . , "A Narrative Descript ion of the Burroughs B5500 Disk File
M3.ster Control Program," 1968.

4. Hauck, E.A. and Dent, B. A., "Burroughs' B6500/B7500 Stack l'C2chanism, " Proceedings
of the 1968 NIPS Spring Joint Comput er (vol. 32).

5. IBM Corporation , "IEI1 Systel1y360 Disk Operating Sys'ce.m, Q:let:.ed Te leco;TIffiunic.x:::j.or:s
Access Method Progr mn Logic Form Y30-5002, 1%8.

6. , "IBM Systelll/360 Disk Operating System, S'J','ervisor and Physical
and Logical Transients, " Form Y24- 5084-3, 1968.

7 . I IIIBM Sys ce;\V360 C;.er2.ting Systen, 22:d. Faciliti2s ,;;
Form C28 6535-2, 1968 .

8. I 1I1BM Systemj360 0f2x:2.ting 2.110. Data Managetrsnt
Services ," Form C28-6646- 0, 1% 7.

9. , " IBM Systenv'360 Pri:1ci.;Jles o f Operation," ;]'0= A22- 6821- 6,1967.

10. Wegner , P., Program'11ing LanCJuaCJes , Info:.::!·.",t:'..?n and l1achine OrCJanization.
McGraw-Hill, 1968. (In particular , PF . 51- 5:" 32')- 332 .)

