102

A STUDY OF STACK ARCHITECTURE
IN CONTROL PROGRAM DESIGN

by
Joseph H. Austin, Jr.

November 14, 1968

Abstract

A model of an event-driven multi-tasiking control pregram
is examined to determine which infomration structures
are appropriate to control program design. These are
compared with the capabilities of the stack mechanism
of the Burroughs B6500. It is concluded that many
requirements of the control program are not satisfied
by the stack concept. A more general information
structure and possible implementation are proposed.

103

A STUDY OF STACK ARCHITECTURE IN
CONTROL PROGRAM DESIGN

PART I: INTRODUCTTION

This paper is concerned with pushdcmn stack architecture from the viewpoint of
the control program. First we will examine the basic von-Neumann machine and the
motivation for stack architecture. In Part IT we will examine a model of the control
program to discern what information and control structures are appropriate to it.

Part III will compare these with features available in the Burroughs stack machine.
Part IV will suggest extensions to machine architecture to simplify the control prograr

I. Basic von-Neumann Mach:i.nel

The basic addressing structure of a von-Neumann computer is given in Figure)

accumulator

remory address reg

1_,4 ‘[

MEmory

AN

Fiqure I.l: von Neumann machine

This mac'ine has a single accuwlator which is implicitly addressed.
Il. Motivation for the Steck Machine

An arly problem with this machine organization was the necessity for saving
and tcading the contents of the sirgle accumulator. The problem could be solved
by ,,g.pviclj.rg an "infinite" number of accumulators;-thus intermediate results could
remain in an accumulator as long as neaded. Theoretical studies reveaaled that, for
cperations of common occurrence in scientific programming, such as evalvation of
arithmstic. expressions, conpilation of "Algol-like" languages, and subroutine calls,
the scquence of required accumulator save and restore operations corresponded to
the pattermn of a pushdcwn stack. Accordingly, when Burroughs Corporation designed
the B5500 for efficient implementation of ALGOL, it included a hacdware-simulated
"seni-infinite" set of accumulators organized as a pushdown stack.

- Laccunulator_]
F.’L'ub' ,’\ A
_ ! > "’_/L memory address
_Zw__l_v_
1 7| stack
‘,,/ memory Memory L,
limits
"-\?

Figure I.2: Stack machine

le.g. , the IBM 650. See reference (l).

104

In this machine, real (hardware) accumulators are augmented by a vector of
core locations which serve as logical accumulators. An additional top-of-stack (TOS)
register maintains the address of the core location corresponding to the juncture of
real and simulated accumulators. Each store or load on the accumulator causes an
implicit pushdown or pop-up of the stack.

III. Emergence of the Control Program

Currently time-sharing and comunications-oriented computing systems are
growing in popularity. Due to price/performance economies of scale, these systems
are typically implemented on large-scale computers, each with an elaborate control
program to enable many users to share system resources concurrently.

We shall now consider whether stack architecture, of proven usefulness in executing
Algol-type programs, is suitable for the execution of a heavily-used event-oriented
control program.

PART II: THE CONTROL PROGRAM

I. Model of the Control Program
1. Introduction

The control program is a software-implemented extension of Ehe computer
architecture. This extensicn includes definition of pseudo op-codes” and simulation
of features not implemented in hardware, such as I/O handling and interrupt servicing.
The major function of interest in this paper is that of "multiplexing" the computer
system to achieve multiprogramming and dynamic reallocation of resources.

2. Primary Function

The primary function of the control progrim is allocation of resources in
prog

response to events. Resources include control of CPUs end ~hannels, mamory and

auxiliary storage, I/O0 devices and programs. The allccation process 1s performed by

routines collectively known as the contxrol progrem or sup2rvisor.

A model of the supervisor thus characterized is the "job shop." Reguests
enter the system, require one or more resources, and are ultimately serviced, freeing
the resources. The basic operation of the model is illustrated below:

Request C LU,

< ik ,
: L L
Request B \l'_i___________________t];g/ "
' { £
Request A ______ NPT ZF7 77 A s e = DAANANXNNE
=i t B = ks t
% a fx ly a
time
legend: .- request waiting for resource
.NOTE: t. for one request = t_ for another [ZZ777] resource 'x' ia use
réquest for that resource. m resource 'y' in use

%‘or exarmple, supervisor call routines for IBM System/360.

105

There are three significant events in this basic cycle: t, is the time of arrival
of a request, t_ is the time the resource becomes availablé, t. is the time the
request is serviced and the resource freed. The cycle may be fepeated for other
resources. .

3. Design Problems

The information and control requirements of the supervisor f&ll into three
broad categories.

A. Queuing Problem:

Whenever an asynchronous event (request) requires a resource that is currently
in use by another request, the control program must assure that both requests are
serviced. It may:

a) pre-empt the resource, saving (stacking) the status of the current user, or
b) queue the request until the resource becomes available.

B. Inventory Problem:

The control program must maintain a record of the status of all system resources
and locate these records when a request or completion event occurs.

C. Control Problem:

The control program must analyze each event to determine its logical significanc
locate the appropriate requests and resources, and give control to the appropriate
routines. This latter is typical of the allocation problem when the resource is a

program.

II. Iogical Data Structures Required by the Control Program
1. Basic Data Structure

The basic logical data structure in control program design is the set.
In general, it is variable in size and may be ordered. Types of set organizations
are distinguished by where insertions and deletions are made.

2. Definitions
Types of sets and their typical uses are as follows:

stack: insertions and deletions made at the same end (LIFO).
use —— preserve status of a pre-empted resource.

queve (unqualified): insertions at one end; deletions at the other (FIFO).
use -- hold a request until a resource becomes available.

ordered queue: insertions anywhere on the basis of a key; deletions from one end.
use: ‘“priority" queueing.

list: insertions and deletions anywhere on a key basis; variable size.

use -- maintain inventory of a variable resource.

table: same ordering p-operties list, but fixed size and format.

others (tree, plex, etc.): additional properties indicate multi-membership or nestin

structure.
use -- record of resources that are members of more than one set, or subsets of

a larger set.

106

NOTE: The term "random" access or arrival will refer to an event requiring access
to a point other than one of the "ends" of these set structures, even though these
events have a "non-random" statistical distribution.

3. Data Structures for Particular Supervisor Functions

The types of data structures suitable for the queuing and inventory problems
depend on the relative order of the events representing the entry of a resource or
request into a set and those requiring later access to or removal of that element.

In general, one will want to order the set in a way which will maximize access efficiency
for all three events in the basic cycle. In some cases, the required structures can

be restricted by constraining the natural order of events, e.g., by disabling unwanted
interrupts.

We can examine the impact of access requirements on data structure by inves-
tigating particular cases.

Supervisor services can be divided into four main areas:

A. 'I‘ask3 management, concerned with creation and deletion of tasks and allocation
of control of the CPUs.

B. Input-Output management, concerned with the creation and deletion of I/0
requests and allocation of channels and devices.

C. Storage management, concerned with the allocation of main and auxiliary
storage to tasks and I/0 operations.

D. Timer management, concerned with multiplexing the interval timer.

A. Task Management (see Figure II.l)

The history of a task is characterized by (a) creation by a higher task, (b)
alternating pericds of ready, active (control CPU), and waiting, and (c) eventual
termination, notifying the higher-level task. The main problems of concern to the
information structures are task creation/termination and dispatching (allocating CPU
control) .

1. Creation and termination

We will consider the situation in which a new (daughter) task is created by
an existing (mother) task. Then there are two tasks competing for the resources
originally controlled by the mother task alone. In particular, this is an implicit
request for control of the CPU. The mother task may wish to transfer, share, or
reserve to itself other resources (I/0 devices, access to variables). The new task
may subsequently acquire additional resources of its own.

Resource inventory prchlzm: the inventory data structure must reflect Fhe
new disposition of resources. For this purpose resources fall into two categories:

a) non-sharable resources: (e.g., card reader) may be kept or transferred.
The control program must record which task owns the resource. . If the resource
is transferred, it must also record the disposition of the resource when the
task terminates, e.g., a stack of previous owners.

i t
b) sharable resources: (e.g., data in storage). The control program Ius
record each task that has access to the resource, e.g., a tree of possible users.

3By a task we mean a program module which may (logically) be executed in parallel with
other program modules, e.g., independent multi-programmed jobs. ‘Ref. (10)p.329.

4

107

DOS™ Task Scheduler (table organization):

sm:_)_(}_gyi sor

° fixed number of tasks

W
" Vi

error recovery ° predetermined priority
A | tele-processing ° dispatch algorithm scans table from top until
W | spoot first ready task is found
R | batch ° interrupt action finds entry by key transform

and changes status code

0S™ Task Scheduler (list organization) :

_WJ k > il ° variable number of tasks
Task a 1 Task ¢ ° dispatch algorithm scans linked list for
» highest priority ready program
¢ ° when a higher priority task becomes ready,
R ° R the active task is effectively "stacked"
el B in the list
Task 4 ° a TCB is created and inserted by priority for

a new task (dotted arrow)

Qfl‘z‘\.“lEJ Dispatcher (ordered queue organization)

A |
Bul fer
task

Status codes:

° fixed number of pre-defined tasks

° a chained list is maintained of ready tasks
only

° dispatch algorithm selects top task on
ready queue
® interrupt activity finds tasks at predetermine
© fixed core locations

A = active R = ready W = waiting

Figure II.l: Examples of Task Management

4]3_isk Operating System, a control program for IBM System/360, ref.(6).
5gperating System/360, . coitrol program for IBM System/360, ref. (7,8).

6Queueci Telecommunications Access Method, an IOCS for remote terminals on:IEM
“system/360, ref.(5).

108

Request element: task activity record.

A record of the existence and status of the task, which is also a request
for a CPU, is created with the task. The data structure appropriate to this set
of requests is influenced by th? frequency of creation. If the number of tasks
is relatively stable (e.g. MFT), a table may be appropriate; if the number of tasks
varies greatly, a variable length structure may be required.

2. Dispatching

This concerns allocation of CPUs to ready tasks.

There may be one or more CPUs in the system. If the number is small,
the inventory problem is negligible. If the number is large, CPU allocation will
be similar to channel allocation, discussed below.

Ready task set: The structure of the set of CPU request depends on the
dispatching algorithm (ta VS. ti) and the order tasks relinquish the CPU (tf VS. ta).

Typical cases of the former are:

Dispatch algorithm Data Structure

round robin table or list (see creation/termination)
first in first out queue

priority ordered gqueue

pre—emptive (LIFO) stack

If there is only one CPU, the last task to receive control will be the
first to release it. Otherwise, tf will be unrelated to ta’ and an "active task
set" must be organized. »

Waiting task set: The logical structure of the set of tasks walting for an
event (or set of active I/O programs) depends on the order the waits will be satisfie
In general, this is "random" with respect to the order of entering the wait state, bui
could be constrained otherwise, e.g., by selective disabling of I/0 interrupts.

B. Input-Output Management (see Figure II.2)

The model we are considering assumes I/0 is performed by logically independent
channels, a resource similar to a CPU. Hence, I/0 requests are similar to tasks.
Similarities have already been seen in connection with CPU inventory and waiting/
active tasks.

The history of an I/0 operation is characterized by (a) receipt of an I/O
request, (b) allocation of a device and channel, (c) completion of the request,
and (d) purging the request and notification of the requesting task. Items (a)
and (d) are similar to task creation/texmination.

Resource inventory: Devices, and chamnels (and CPUs) must be assigned to
particular requests. If only a particular one may satisfy the request, the _
selection is trivial. If there is a pool of similar resources, they may be organized
in any convenient order, since the particular choice makes no difference.

I/0 requests: Request records are created by the requesting tasks. ?he
distinctive feature of their data organization is the requirement of multi-level
queuing, as illustrated below:

7Multiprogramming with a Fixed number of Tasks, one of the scheduling options

of IBM's Operating System.

109

Channels: [1 I

level 3: devices
queued for channels

Devices:

level 2: tasks- 1
queued for devices -

> =
[]
w
E

Jl T

{jﬂ.

level 1l: requests
queued within tasks

—_——

——

& B.® & A A B

i

Tasks:

Figure II.2a: Multiple-level Queuing

FREE
DOS Channel Scheduler
7"“‘- punch request 1
Channel 0 punch S, ;
| reader fp disk 1 write
printer e), punch request 2
Channel 1 disk 1 ¢ print request
disk 2 AN,
tape 1 disk 1 read
tape 2 N
devices queued for channel I/0 requests queued for devices

° level one and level two queues are merged in FIFU order

each level two queue is a chained list with head at device entry
each level one queue is a fixed table with an entry for each device
the channel scheduler scans the device entries in round-robin order

o 0o o

Figure II.2b: Example of Input-Output Management

Level 1l: requests from a task for a particular device: ordinarily these
requests must be queued FIFO. This requirement can be eliminated by forbidding
the user to issue two requests to the same device at a time, and the queue can be

merged at level 2.

Level 2: all requests for a particular device: this queue arises for sharable
devices, e.g. DASD, and is typically organized to optimize access time, i.e., an
ordered queue. -

. Level 3: all requests for the same channel: at this level, the top entry
on each device queue has the characteristics of a task —— ready if the device is
free, active if the channel is allocated to it, and waiting if the channel is
released but the device is still busy.

110

NOTE: A distinct difference between I/0 queuing and task queuing is that a
pre-enptive (LIFO) discipline cannot be used with I/0. This is because the
mechanical motion of I/O devices prevents their being "frozen" for later resume.

C. Storage Management (see Figure II.3)

Storage management problems are similar for both core and auxiliary storage.

Again the appropriate organization depends on the order of te vs. £,

The simplest case is that of "automatic" storage, where requests for allocation
and release of storage follow the LIFO order of subrouting calls and returns.
The stack is an ideal implementation for this case.

Another simple case is that in which large requests may be satisfied by
multiple non-contiguous extents, which is possible when access will always be
serial, e.g. sequential DASD datasets, stacks, queues, and chained lists. A
simple list organization of free storage is adequate in this case.

In the general case, the "best" storage allocation algorithm is an unsolved
problem. The usual approach is to reduce the problem to one of the simple cases
given above. Time-sharing machines (e.g. S/360 Model 67, GE 645) use address
translation hardware to make physically discontiguous regions logically contiguous,
permitting a chained-list allocation algorithm. Other systems (GE 635) use a
stack allocation and relocate programs in memory to fill in holes that develop in
the bottom of the stack.

D. Timer Management

The supervisor model assumes the simulation of many pseudo-timers using a
single hardware interval timer. This is realistic due to the unpredictable
requirements and difficulty of synchronizing many real timers.

In this case requests are inherently oriented toward an ordered gueue. Requests
are like tasks in that an asynchronous event is scheduled.

4. Data Structure for Program Control.

There are two main types of program organization appropriate to the
internal control of the supervisor. They are distinguished by the orxder in
which routines (programs) start and complete. If the program is considered to
be a resource, the status information to be preserved includes the location counter
and data pertinent to the program.

A. Subroutine organization: transfer to and from programs is such thai‘:
routines are executed in a LIFO order. A stack organization is appropriate
for saving the status of temporarily inactive routines.

B. Task Organization: transfer of control from one routine to another
depends on the sequence of external events, and may be asynchronous.
Separate tasks may logically run in parallel; each requires an independent
activity record for saving its status.

If each task is composed of subroutines, this leads to the requirement of
multiple independent stacks.

111

Stack allocation (MFT-1)8

free
{\ ree Storage becomes trapped at the bottom
\1, job 3 of the stack. Jobs 3 and 2 must finish
before idle storage from job 1 is availabl
job 2
AL LT 77
job 1 (f:LnJ.}hed) /
supervisor
L
(>| » P List organization of free core (MVT)9

ob 4 Storage becomes fragmented. Active

storage for job 2 divides a large
/ / / segment of free storage from jobs 1 and 3.
3 (flm.shed / ‘

job 2

/ 7777
7717770

supervisor

f\

\/

Figure II.3: Examples of Storage Management

8

Early versions of MFT, also called "Sequential Partition Scheduler" and "Option 2,"
operated as illustrated here.

Mult:.programnlng with a Variable number of Tasks, another scheduling option of-
IBM's Operating System.

112

PART IIIL: CONTROIL, PROGRAM FUNCTIONS ON A STACK MACHINE

I. Functions of the Stack

. Recalling the basic design of the stack machine (B5500) discussed in Part I,
we can summarize the applicability of the main stack functions as follows.

1. BEvaluation of Polish expressions: there is no peculiar applicability of
this function to supervisor programming.

2. Subroutine control: Figure III.2 illustrates the operation of the stack

in a calling sequence. In this instance the stack serves as an extension of the
instruction counter, not the accumulator. The program status is embedded in
the stack (Mark Stack and Return Words); but note that these entires are chained
together and do not rely on the TOS register for their stack organization.

3. Memory allocation: the stack implements a LIFO storage allocation algorithm
for automatic variables as required by the program.

II. Extended features in the B6500/7500

Figure III.l illustrates extensions to the basic stack design to aid certain
control program requirements.

1. Task control. The extended machine allows multiple stacks for multiple
tasks. The "stack vector array" holds the address of each task's stack and assists
. in memory inventory and task switching.

2. Shared reference to variables: A "stack" of display registers references
each parameter area accessible to the current routine. This is an implementation
of resource sharing (data) and maintains one bramch of the task. generation tree.

III. Additional Hardware Features

Features of the B5500 unrelated to the stack mechanism but useful in control
program operations are the following:

l. Chained list search (Link List Loockup): This operation scens a chained
list of data items-of the form / key.{ link /[until it finds a key greater than

or equal to a reference key, and then creates a deseriptor (pointer) for that element.
The link may be enbedded in larger structures for a generalized chained structure.

2. Table Scan (Flag Bit Search): This operation scans a vector until it finds a
word with a flag bit on. This adds efficiency to table-oriented queuing and
searching.

IV. Comparison with. System/360

Figure III.3 illustrates equivalent S/360 programs for some Burroughs B5500
operations. Figure III.4 is a comparison of the two based on. the adjusted number
of main memory cycles required for equivalent operations. Note that whereas the
number of accesses for data operands is comparable, the S/360 programs require
many more accesses for instruction fetching, particularly in "tight loop" operations.
Furthermore, a significant part of S/360 "owverhead" is due to testing for exceptional
conditions such as end of stack. :

We would also expect programmer efficiency and debugging to be superior on the
Burroughs machine due. to provision of function-oriented primitive operations rather .
than requiring the programmer to write short instruction sequences to perform operations
on set structures. On the other hand, the examples illustrate that the S/360
instruction set provides sufficient flexibility to implement any set structure we have
considered, whereas the Burroughs operations are more restrictive.

Task B

stack 2

s

T

/4

113

Task A

parameters

L+ MSCW

“A

/ :
—

top of stack

parameter (MS)

Y P

MSCW

e

stack 1

Supervisor

Stack vector
array

Registers in extended machine:

TOS:

g

2
N

top of stack register (temporary variable addressing)

MS: mark stack register (parameter addressing and return)

Display registers:

base registers for non-local variables

display regs. .

Mark Stack Control Words: (MSCW) preserve the calling sequence chain-

Stack Vector Array:

address of base of each independent stack

Figure III.l: B6500/7500 Extensions to Basic Stack Machine

B5500 Operation

Top Stack reg
Mark Stack reg

Mark Stack:

Store MSCW to mark end
of callers stack.

Operand Call
(or descriptor call):

Store parameters for
called program.

Operand call to subroutine
descriptor:

Save return address
and branch to subroutine.

Literal call:

Save space in stack for
local variables.

Figure IIIL.2:

114

Before

MSCIW

parms

MSCW

(
=
¢

«. TOS
MS
TOS
MS
o T0S
MS

B5500 Calling Sequence

After
'-

i E_
MSCW
FSCW &

@
NSCW o
K

e

1V

115

B5500 Operation: Stack Pushdown

On the Burroughs stack machines, the top two (logical) positicns of the stack
are implemented by a pair of hardware registers A and B. Thus, the TOS register,
which points to the top of the core-memory portion of the stack, actually points to
the third word of the logical stack.

The basic stack pushdown operation is implicit in every "operand call" operation
(equivalent to LOAD ACCUMULATOR) ; pushdown is equivalent to temporarily storing
the contents of the accumulator prior to loading.

The operation proceeds as follows:

1. The TOS register is incremented to point to the next higher position
(which is logically empty) in the core-memory portion of the stack.

2. The TOS register is compared with the limits registers, and an interrupt
occurs when the stack memory limits are exceeded.

3. The B-register contents are stored in the new memory stack word, and the
A-register contents are shifted to the B-register. The A—regn.ster is then
ready to receive operands from memory.

S5/360 equivalent: (let UL,LL = limit registers)

IA TOS,4 increment stack pointer

CR TOS,UL test memory limit

BH error if limit exceeded, cause interrupt

ST B,O0(TOS) store B-reg in stack

LR B,A move A contents to B register

Figure III.3a: Pushdown Operation

116

(1 (2) (3)

A reg: new item

B reg: list item

Chained list: a

At end of scan; Reg A points to high list item.

Equivalent 360 program:
) A %
Registers: A,X B,Y B Y

(360 must use 2 registers to simulate Burroughs registers).

IA ¥ put start address in second half of B reg
loop LR X,Y move link up to A reg

IM B,Y,0(X) move next list item to B reg

CR B,A compare keys of list item and new item

BL loop continue scan if low comparison

Figure III.3b: Linked List Lookup

B5500 Operation: Flag bit search
This operation scans a table until it finds the first operand with a flag
bit set.

Equivalent S/360 program:
Program begins with address of TABLE-4 in register A.

loop 1A A,4 set address to next table entry
™ £flag,0(A) test table entry for flag bit
BNO loop if bit off, repeat for next entry

The program ends with the address of the flagged entry in register A.

Figure III.3c: Flag Bit Search

117

V. Conclusions

This survey of control-program information structures reveals a high incidence
of cases where data cannot or should not be accessed in a last-in-first-out order.
Hence we must conclude that stack organlzatlon , while effective for problans for
which it was originally designed, is irrelevant to many of the basic processing
operations of the control program.

Furthermore, even in those instances where LIFO data structures are useful in
the control program, and particularly in multi-programming several tasks which may
individually use a stack to advantage , the original concept of a .;J.ngle "seInJ.uJ.an.nJ.t
stack must be modified. What is required is a separate stack for each task or.data
structure. This can be accomplished by a chained implementatién of separate stacks
or a chained tree structure of multiple-extent stacks.

Finally, we notice that control program efficiency can be improved by providing
specialized operations to process commonly occurring data structures, such as
chained lists and tables. This suggests that the success of the Burroughs cdasign
is due not alone to the stack concept per se, but to the efficient hardware
implementation of all relevant data-structure operations.

INSTRUCTION OPERAND
OPERATION MACHINE ACCESSES ACCESSES TOTAL
;
Pushdown B5500 0% L i
5/360 St 1 6
Link List Lookup B5500 1 2n : 2n+1
S/360 dn+l 3n=1%*% n
Flag Bit- Search B5500 1 n n+l-
S/360 3n 2n-1%%% 5n-1

n = number of items scanned

*This operation is implicit in other operation codes

**Two of these fetches are required to test for memory bounds
***The extra operand access is required for the branch address

Figure III.4: Comparison of B5500 and S/360 Operations

118

PARI' I'V: POSSIBLE HARDWARE EXTENSICNS

I. Introduction

We hgve seen that the basic data structure appropriate to the control program is the
ordered™” set. We might inquire whether a generalized ordered-set mechanism, on the
order of the stack mechanism, would be possible.

IT. Multiple Stacks, Multiple Extents

We first postulate the availability of a "stack" for each data structure we desire.
This mechanism i implemented in the B6500. To avoid core fragmentation problems, we
could allocate these as chained extents of a fixed size. The access mechanism (always
serial) would automatically "branch" when it reached the end of an extent.

IITI. Queue Structure

Figure IV.1l illustrates the behavior of data in a stack vs. that of data in a queue.
Note the following:

a) the stack has only one access point; the queue has two.
b) the active areas of both structures vary in size, but the location of the active
area of the queue "climbs" through memory while the stack area stays "tied down."

Hence a hypothetical queue machine would require the following:ll

a) an extra register to identify the bottom of the queue
b) a "wrap-around" mechanism so requests for high addresses would be filled with
low addresses, e.g., multi-extent mechanism.

IV. Ordered Queue Implementation (see I'igure IV.2)

A disadvantage of a vector representation for an ordered queue is that items must
be moved for insertions and deletions. This need not be a handicap, however, since
a serial key scan (also required for a chained representation) could perform the move
"on the fly" by storing each operand cne location higher or lower after making an
unsuccessful key comparison. The data fetched and stored (key + link for chained,
key + data or pointer for wvector) would be the :ame in each case.

V. Chained List Operations

The efficiency of using chained repre:.uitations could be improved by including
operations like the Link List Lookup. The improved machine would have:

a) a special link-list format, key + link, recognized by hardware

b) link-list op-codes, such as scan, inscrt, delete. Of particular importance
here would be condition codes or interrupts to signal exceptional conditions,
such as end of list, null list, broken chain, etc.

(Note that a similar concept was involved in converting floating-point arithmetic
from subroutines to hardware.)

loi.e. , well-ordered under the operation of concatenation. This may be either
physical contiguity or logical (chained) linking.

1L !
The G.:. circular list is an example of this structure.

119

(1) (2) (3) (4) 7% (1) (2) 7?%3) ' A
2y 7 7777
nE-) Vs
ZRZRZRZ R M W

Shaded area represents active entries.

Stack: one boundary moves both ways Queue: two boundaries move the
same way

Figure IV.l: Comparison of Stack and Queue Operation

3 insert item target register 2 delete item
4 - transfer register 5
\ L
4 A
d 777777777
5
\\ .
) 6
5 \:
4 V‘\." 4 /‘t
3 v > /4
) y
1
1
0
Queuve insert operation Queuve delete operation

Figure IV.2: Possible Implementation of Ordered Queue Operations

120

PART' V: CONCLUSIONS

The basic prozperties of stacks and their utility in algorithmic camputation
are well known.lZ The question that must be asked is whether this theoretical
suitability carries over into an environment which is inherently multi-tasking,
highly parallel, and event-driven.

The examples of solving the control program problems suggest that the stack is
not the most useful mechanism. Particularly cempelling is the fact that the Burroughs
architecture augments the stack mechanism with hardware that is oriented toward
other structures in order to implement its own control program. Accordingly, we may
conclude that the predominance of data structures other than stacks, particularly
ordered lists,represents a basic requirement for supervisor programming, and is not
just a make-shift due to lack of stack hardware.

We may expect that, just as the stack organization emerged as the "natural"
structure for Algol-type programming, a new "natural" structure will emerge to simplify
the problems of supervisor programming.

For a discussion of these properties, see a recent text on advanced computer
programming, such as Wegner, ref. (10).

9.
10.

121

REFERENCES

Brooks, F.P. and Iverson, K.E., Automatic Data Processing, John Wiley and Sons,
1963, pp. 167-77.

Burroughs Corporation, "Burroughs B5500 Information Processing System Reference
Manual," 1964.

, "A Narrative Description of the Burrouchs B5500 Disk File
Master Control Program," 1968.

Hauck, E.A. and Dent, B.A., "Burroughs' B6500/B7500 Stack M=zchanism," Proceedings
of the 1968 AFIPS Spring Joint Computer Conference, (vol. 32).

IBM Corporation, "IEM System/360 Disk Operating Svstem, Queved Teleccomrmmnicaiions
Access Method Program Logic Manval," Form ¥30-5002, 1268.

, "IBM System/360 Disk Operating System, ESuicervisor and Physical
and Logical Transients," Form Y24-5084-3, 1968.

; "IBM Systeny/360 Cperating System, Concepts and Facilitiss,”
Form C28-6535-2, 1968.

, "IBM System/360 Ogerating &Svstem, Sucervisor end Data Management
Services," Form C28-6646-0, 1967.

, "IBM System/360 Principles of Operation," Form A22-6821-6,1967.

Wegner, P., Programming Languages, Infoumatio:

McGraw-Hill, 1968. (In particular, pg.

