
-' ,
32

Teaching Campile r Des ign - Outline of a sugges ted course

Professor N, Wi rth

Zurich,

These notes outline an approach to a course in compiler design th rough the
study of a series of models which exhibit the essential features of current compilers,
In such a course, we should be able to teach peop le to develop systematically new
compi lers, The primary objective of 0 system designe r should be to retoin an overall
view of his proposed system , developing a model of the hord core of his compi ler
to which the details may be added late r . No attempt at mathematical rigour will
be made in this short out line,

The pre-requisite knowledge expected of a student attending this course cou ld
be provided by :

(i) an introd uctory course on basic progromming
(approx imate ly 60 hours),

(ii) courses in data-st ructures , advanced prog ramming
techniques, analysi s of algorithms, and machine
organisation (total of approx imately 90 hours).

(i i i) a course on automata a nd forma I languages (30 hours).

It wil l a lso be assumed that a stude nt will have a work ing knowledge of set
theory, logic and combinatorics.

The first idea that we should in troduce is that of a language as a set of
strings (and a string as a sequence of symbol 's) , Here we introduce the basic
notions of set theory , and consider sets A, B, C, .,. whose elements a re str ings .
We the n def ine se t union and set product (using conventiona l set notat ion), as

(union)

(product)

A U B

A B

{,,, I ~ E A or c(E B J
{ c{ 8 cl E A and 3 E B)

Later we shal l use the abbreviated notations , .
A = s meaning A = (s ~

and As meaning (D S !CI' E A ; , ')
fo r s being a sing le string ,

A language can be defined th rough a system of set equations; and it is
very easy to show that if you allow recursive defin itions you can, w ith a fin ite
set of equations, define an infinite se t of str ing s and the refore an infinite
language. We say at th is point that a se t of equa ti ons us ing only the operations
of set un ion a nd set product define a type of language ca ll ed "context-free".

>:"i

33

The second notion to be introduced is that of a finite-state automaton
(or f.s .a .), which can generate or conversely accept strings which belong to
such sets. A f.s , a . can assume a certain finite set of sta tes , and its
operation consists of reading a symbol and, as a result, changing its state.
We can immediately make an analogy between the definition of a language
by a set of equations and an automaton. We write a transition rule for this
f.s.a. as,

x y .--. '-'- -.F
wh ich means that if the automaton is in state X and reads symbol y it goes
into state Z.

To illustrate, take a simple example:

A 0 ------1 B
A 1 - 1 B
(O -----I B
(1 I B

B + - ---1 (
B x I (
B . I D

Here we have a set of terminal symbols,

T = .1 !o
I

+ x , 'I
.;

and a set of states,
,.

N = A, B (D

We assume that the automaton sta rts in state A, and reads a finite sequence of
symbols , "accepting" this string if it finishes in s.tate D (the final state).

We can now demonstrate our analogy by transliterating the rules for the
f .s . a . ta :

B = A U A 1 U (

(= B+UBx

D = B

A = A (the empty string)

U (1

We can make the correspondence between the language definition and this simple
mechanism only if the equations have the fo rm,

A = B sUB., s._ U .. . U B s
I I ,.' n n

where the B. are sets, and the s. terminal symbo ls.
I I

A third equivalent notation is a finite graph, whose nodes represent the
states or sets and whose di rected paths a re labelled with the input symbols for
the corresponding transitions. For our example, we have

=

34

(: .

The concept of determinism con now be introduced; we say that our automaton
is deterministic if for each state a given input symbol uniquely determines the
acti on to be taken .

With such an automaton, we have both a generator and an occeptor for the
language D (the notion of determinism is only essential for acceptors). At this
stage, we can also introduce the concept of regular expression.

As an acceptor, our automaton either reads the whole string and ends in state D -
in which case we say it "accepts" the string - or it reads the whole string, ending
in some other state - in which case it "rejects" the string - or it ends in state D
before reaching the end of the string - in which case it accepts a "head" of the
string. We are still far from having a compiler model; we have not even a
translator.

We now develop our model into one that writes as well as reads, by associating
with each transition an output element . The rules for this expanded model are
written as,

Xy _ .-

where ,~ is some string (possibly empty) over a certain output alphabet.
(We continue to write Xy--- ', :C for the case X y _ . - ! Z!; ;).

Consider the following example: / ;--\
\ A i
\

input symbols: 0

output symbols: 0

+ x •

35

This deterministic model will produce as output a single symbol, 0 or 1,
depending on the form of the input str ing.

It is quite easy to show that both this and the previous automaton
accept the same language, which in regular ex pression form is given by

(0 U 1) ((+ U x) (0 U 1)) *

An examp le of an acceptable str ing is

0 + lx1 + 0

The acceptable str ings can be interpreted as expressions with the operators
denoting addition and multiplication modulo two. Our second automaton
gives this interpretation by vi rtue of the fact that fo r acceptable strings its
output is just the va lue we would obtain th rough this interpretation. To see
this, we note that wheneve r in state:B ,for example, the automaton has
accepted a string with associated va l u~ 0; simila r ly, in state C '+ it has
accepted a substring with value 1 followed by a + symbol. If in I the latter
sta te it reads a 1 then it goes into state B (1 + 1 = 2 mod 2 = 0), and into
state B on reading a 0 (1 + 0 = 1 mod 2f. Such an ;nQlysis can be applied
to all ~tates. - -

We now provide the additional notatian required to introduce the output
specifications into our set equations, which for ' the second automaton are:

A = ;:.

B =
I

A 1 U C + 1 U C. 0 U C , 1
o ,+ IX

C = 0+
C =

ox
C = ,+

B +
o

B x
o

B, +
I

C = B x
IX I

D = B a • [oj U B, • [1 J .

U .c ,+ 1 U C ix 0

In the last equation, the output strings a re enc losed in brackets immediately
after the corresponding term.

.j

Introducing some
respect ively and write

36

notat ional abbreviations, we wr ite
a combined rule for Band B. as,

o I

B. = A V. U C'
k

V
1 I I J

i = j + 1 mod 2, if k = +
i ' j x 1 mod 2, if k = x

where the second term is a union of te rms whose subscripts satisfy the given
constraints. The constraints express the interpretation we prev iously gave to
the states.

It is important to dist ingu ish between the use of the symbols 0, 1, +, x
where they occur as symbols in the trans ition rules a nd whe re they occur in
their normal arithmetic sense in the constra ints.

The final equations for our mode l have the concise form,

A =
B. = A V. U C

jk
V

1 \
j e

k
1 =

I I

C .. = B. 0
IJ I J" .,

D = B. ,Vi ' I

where V = 0, V
1 = 1 ,

0

e = +, e . = x .
0 I

We have now shown that a language can be accepted by a simp le mode l, and
in a sense be evaluated by a mode l w.hich is able to produce output and we observe
that what is usually called "semantics" appea rs embedded in the syntax. If we try
to do ordinary integer a r ithmetic in ,·his way, the set of states for a corresponding
"evaluating automaton" wou ld become infinite; howeve r , the same condensed
notat ion could be used.

Let us now in troduce, as an interlude, the notions of top-down and bottom-up
analysis. So fa r , our set equat'ions have formed a so-ca lled r ight- linear system,
each term consisting of a set symbol fo llowed by an input symbol . This we can call
a "source-or iented" notation, since the sets involved in a transition rule always
conta in as an element the port of the string which was al ready analysed.
Equivalently, we can bui ld up a so-called left-linear system whic h we can call
"goal-oriented", where in the sets wi ll denote that port of the str ing which rema ins
to be ana lysed.

The two systems, left and r ight-linear , for the fi rst example a re shown below

left- li near r ight- linear

A AI 0 B U 1 B A '\ . ,
B = +C U xC U D B = AOUA UCOUC l

C = OBUl B C = B + U B x

D = I~ D = B

37

As an examp le, let us analyse the str ing 1 + 0 x 1 . with respect to both left­
and right- I inear systems. With the right- I inear system, our ana lys is proceeds in
the following manner; we sta rt with set A (i .e. the empty string) and on
rece iving symbol 1 accept a string from set B

B

A/ " 1
/

j

Our next input is a +, giving a str ing from set C; proceed ing in this manner
from left to right, we finally construct, from the bottom-up the ana lysis re p­
resented by the diagram be low,

I .

With the left- linear or goal-or iented system, we again start w ith set A
and input symbol 1. From the equat ions the remai ning str ing must belong
to set B if it is to be accepted :

the next symbol + determines that the now remain ing str ing 0 x 1 . must
be in set C , and in this way the following ana lysis is constructed from the
top-down:

(Note that this example
does not observe the
conventiona l
x over +)

priority of

J

With a more complex language model, the distinction between top-down
and bottom-up analyses is obscured It is for this reason that we choose to
e lucidate these concepts with the aid of a finite-state mode l . Although we
can define with a finite-state model pe rfectly sensib le languages, in practice
more complex systems a re requi red (e.g to deal with such features as nested
structure) .

We now introduce the 2.9."J acce,gtgr (s.a.) which we describe by ru les
very similar to those of the f.s.a. We note that the principa l property of the
s.a. is its ability to store an ordered set of states on a stack, and thus we
have the effect of having many f.s .a's active at a given instant. There are
two types of transition rule, which we write,

type 1. y - --_ : Y where Y E T, Y E N

type 2. ~ -- --: Z where S E N* ,,l E N

T = set of terminal (or input) symbols
N = set of states

The effect of these rules on the s.a. is shown by the following diagrams,
input stack

type 1. before y 0(~ y ,Y

after 0{ i:; Y
type 2. before

input stack
~-----~ S-- S- --:i£

after ot. p Z

To each symbol y_ .:: T we have a corresponding type 1 rule y. \ Y ..
In the following we ma'ke no distinction between y. and Y., denotirig the st~te'
Y. by the symbol y. , Thus we ignore the fact tho! type l' rules exist and modify
type 2 rules to refe'r to input symbols on the stack. However the occurrence of
the symbol y. on the stack denotes the state Y.. We now give a simple example , ,
of a stac k acceptor :

~

()} We have T = :0 + x .
N

r
C. D) = ! Bf ,

where the stack initially contains only the state I = A and accepts an input str ing
only if by applying a finite sequence of the following transition rules it terminates
with state D as the only item on the stack. The type 1 rules are implicit as
described above. The type 2 rules a re as follows ,

o -- \ B
.1 I B
B _ I C
(C) - I B

C+B .. I C
Cx:B-- I C

C . - I D

39

The sequence of tra nsitions through which this machine passes in acc~pting
the string 0 + (1 x 1) + 0 is gi ven by the fo llowing table,

input stack rule applied

...
0 + (1 1) + O· .. type 1 x

+ (1 x 1) + O. 0 O - jB

+ (1 x 1) + O . B B--j C

+ (1 x 1) + O. C type

(1 x 1) + O . C+ type

1 x 1) + O . C+(type

x 1) + O . C+(1 1---i B

x 1) + O . C+(B B--jC

J) + 0 : C+(Cx type 1

) + O . C+(Cx1 1- r B

+ O . C+(CxB CxB-jC

) + O . C+(C type 1

+ O. C+(C) (C) -; B

+ O . C+B C+B-i C

+ O . C type]

O . C+ type

C+O O--rB

C+B C+B -I C

C type 1

?,~ C . C.--I D

" D , .

The corresponding system of set· equations which we obtain from the above
acceptor are :

B = 0 U 1 U (C)

C = BUC + BUCxB

D = C.

In a practical implementation we requi re a decision technique which selects
a unique transition rule at each stage (e .g. precedence syntax analysis) .
A sufficient condition for our S.a . to be determinist ic is that the state on top
of the stack and the current input symbol select a unique transition rule .

40 ·

This last example has demonstrated a language which cannot be
accepted by the f inite state model. The s.a . of the example is source
oriented; it is possible to descr ibe a goa I orien ted s. a. which accepts
the same language, alt'hough based on rules of a slightly different form.
By adding autput facilities to the s .a. we can descr ibe a stack
transducer to evaluate or translate the pa renthesised express ions of
this example. Suppose we wish to add the fam ilia r not ions of variab les
and of assignment through a language spec ificat ion of the type,

T = (O l +x(), • a b }
\.

N = { BCDEF }

B = o U 1 U a U b U (C)
.~ .

C = BUC+BUCxB

D = C Ua ,<- C Ub <,- C

E = D U E,D

F = E.

For output to be produced corresponding to the va lue of expressions from
this language we must carry along the current value of the variables by some
means . We do this by adding a value table T, and call the result ing mode"
a tab le acceptor.

If we replace a, b by W , W. , the t ransition rules correspond ing to
h O I

t e assignments in the above language are :

W. ' ... -.: B
I

W. ~ . C .. -~ D
I

The value-table T is used in the constraint conditions accompanying the
trans ition rules

Wi ' Bk , k:= Ti

W. /_Ck-!D, T. := k
I . I

where the assignment to W. is mi rrored by an assignment of the value of
the expression (expressed by the suff ix of C) to the tab le e lement T., and
the use of the va r iab le W. in an ex press ion is expressed by a trans'iti on to
B according to the entry i'n the tab le 1'..

I

Thus we have a mode l wh ich can eva luate languages which are not
contex t free.

.]

41

From now on, in the second part of the course, we are discussing
the construction of ac tual compilers. Two questions a re important here
how to make our analysis processes deterministic, and (more pr.agmat ically)
how to design languages not only from the user 's point of view but so as
to make thei r processors simple in structure.

In the case of finite state automata, we can show intuitively with
the aid of examples that an equivalent deterministic automaton can be derived
from a non-deterministic one - usually with the addition of extra rules.
Unfortunately this is not the case for stack automata; and we find al ready
that to obtain a dete rministic process we have to restrict our language in
some ways. However, these restr ictions a re usually avo,idable for those
features of programming languages we wou ld like to have.

Again, in the case of an f.s.a. we have an efficient mechanism for
the selection of applicable transition rules in the transition matrix. The
combination of one state with one input symbol identifies di rectly the
trans ition matrix element representing the new state. In the case of stack
automata, we can introduce at this point the idea of precedence grammars
ana lysis as an example of a n efficient table-lockup mechanism in a rather
similar way - the additional fea t ure being that we must not only select the
rule but also .<:lelineate how deep into the stack we must go to make the reduction.
In effect, several "states" c.cmbined w ith the input symbol determ ine the new state.
Although the precedence analysis technique does this efficiently, the price is paid
in further restr ictions on the language. However, the restrictions do in practice
not turn out to be essential ones. A syntax processing program will check a
given grammar, I isting any precedence confl icts .

If we tan use the precedence analysis algorithm to guarantee a dete r­
mi nistic process , then our remaining problem is the design of the evaluat ion
or translation sections.

Here anothe r program serves as a clerical aid, listing the productions
in one column of a table, so that the language designe r may enter in parallel
columns the computations to be carr ied out on the attributes (associated with
each symbol in the stack) for each production applied . Th is forces the designe r
to spec ify what the compiler has to do along with the syntax . We also obtain
a listing of all symbols and thei r att ributes; this enables e.g. an assistant to
check the correct use of attr ibutes

The compiler schema developed is shown overleaf :

'.

---7

The compi le r schema.

Syntax. analyse r
MAIN PROGRAM

42

Eva luate (transition rule),
(performs ac t ions on attributes)

SUBROUTINE

I
~

Table

The approach used is fi rst to write and debug the syntax analyser and
scanner. Then having designed a nd checked the language, the precedence tables
are constructed , each action is translated into a statement in the 'Evaluate'
procedure , and the compiler is now ready for testing. It is then necessa ry to
write a test program that w i!1 cause each transition rule to be used at least
once - if successfu l, the compile r is now debugged.' An exhaustive testing of
the compi ler is essential.

Into what a rea have we now pushed the difficulties of compi ler writing?
(We cannot ex pect the who le process to become tr iv ial ~) The answer is : into
the field of language design rather tha n compiler design . Ideally the same man
shou ld be concerned with both , developing g rammars which a re efficiently
parsable and which also allow thei r "meaning " to be attached naturally to the
prod uction rules (e.g. v ia the ' ind ices ' or 'a ttr ibutes' introduced above).
This task is not a tr ivial one, bul we have found I·hat the compiler schema
descr ibed forces the defin ition of a language in a systematic wa y. In many
cases, we have found thai our difficulties w ith concepts and ideas which were
init ia l ly unc lea r have been resolved under the pressure of th is systematic approach.
The sol utions found (not on ly for the compi l ing system but a lso for the desc r iption
of the language itse lf) have been altogether neate r and more satisfactory than
ant icipa ted. We could say that this schema is a very good teacher!

43

In the discuss ion per iod fo llowing Professor Wirth's ta lk, questions
concentra ted on particular aspeds of his ex isting systems and possible
extensions. Professor Wi rth mentioned that he was preparing a paper for
publication on this sub ject.

Refe rence accumu la ted from th is di scussion and Professor Wi rth' s
notes a re :

Conway , M . E. , "Design of Separable transi t ion - diagram compiler ",
Comm. ACM 6 (July 1963), p . 396.

Floyd, R.W ., "The Syntax of Programming lang uages - a Survey",
IEEE Trans. EC13, 4 (August 1964), pp. 346-353.

G insburg, S., "The Mathemat ica I Theory of Context - Free Languages",
McGraw Hill, 1965.

Kurk i-Suonio, R., "On some sets of Formal Grammars",
Anna les Academ iae Scient ia rum Fennicae A . I . 349.

Wi rth, N. a nd Hc:.are , C .A .R., "A Contr ibu t ion to the Deve lopment of
ALGOL" ,
Comm. ACM 9, 6 (June, 1966) , pp .413-

432.

van Wijngaarden, A . e t al., "ALGOL 68 ",
Tech. Rep . MR93 (Apr i I 1968) . Mathematisch
Centrum, Amsterdam.

Wi rth, N . and Weber , H., "EULER, a general isat ion of ALGO L and its
formal definition. Pa rt I",
Comm . ACM 9, 1 (January 1966) , p. 13.

