32

Teaching Compiler Design = Outline of a suggested course

Professor N. Wirth

Zurich.

These notes outline an approach to a course in compiler design through the
study of a series of models which exhibit the essential features of current compilers.
In such a course, we should be able to teach people to develop systematically new
compilers. The primary objective of a system designer should be to retain an overall
view of his proposed system, developing a model of the hard core of his compiler
to which the details may be added later. No attempt at mathematical rigour will
be made in this short outline.

The pre-requisite knowledge expected of a student attending this course could
be provided by :

(i) an introductory course on basic programming
(approximdtely 60 hours).

(i) courses in data-structures, advanced programming
techniques, analysis of algorithms, and machine
organisation (total of approximately 90 hours).

(iii) a course on automata and formal languages (30 hours).

It will also be assumed that a student will have a working knowledge of set
theory, logic and combinatorics.

The first idea that we should introduce is that of a language as a set of
strings (and a string as a sequence of symbols). Here we introduce the basic
notions of set theory, and consider sets A, B, C, ... whose elements are strings.
We then define set union and set product (using conventional set notation), as

I_"alo((-AorchB.!.f ,

J:Cg B'cl €A and 3 EB\)
" ..f

Later we shall use the abbreviated r;otctjons
A = s , meaning A = . s/ "

(union) AUB
(product) A B

i P

il

and As , meaning iL cs !6\’EA -, for s being a single string.

A language can be defined through a system of set equations; and it is
very easy to show that if you allow recursive definitions you can, with a finite
set of equations, define an infinite set of strings and therefore an infinite
language. We say at this point that a set of equations using only the operations
of set union and set product define a type of language called "context-free".

33

The second notion to be introduced is that of a finite-state automaton
(or f.s.a.), which can generate or conversely accept strings which belong to
such sets. A f.s_a can assume a certain finite set of states, and its
operation consists of reading a symbol and, as a result, changing its state.
We can immediately make an analogy between the definition of a language
by a set of equations and an automaton. We write a transition rule for this
Fos . 0l

K P | Z

which means that if the automaton is in state X and reads symbol y it goes
into state Z.

To illustrate, take a simple example :

A O——|B P ———
Al |B Bx— 1 C
v PR | B.—iD
C 1 | B

Here we have a set of terminal symbols,

T — | :; O] -+ xt - ‘}. ’
- J
and a set of states,

M = ‘AR CH

We assume that the automaton starts in state A, and reads a finite sequence of
symbols, "accepting" this string if it finishes in state D (the final state).

We can now demonstrate our analogy by transliterating the rules for the
f.s.a. to :

B = A UAITUC UCI
C = B+UBx

D = B.

A

A (the empty string)

We can make the correspondence between the language definition and this simple
mechanism only if the equations have the form,

A =Bs UB s U..UB s

nn
where the B7 are sefs, and the 2 terminal symbols.
A third equivalent notation is a finite graph, whose nodes represent the

states or sets and whose directed paths are labelled with the input symbols for
the corresponding transitions. For our example, we have

Y

A 34

/
e Y

X 4 |

Y
)l,f
Y.

.
N

The concept of detérminism can now be introduced; we say that our automaton
is deterministic if for each state a given input symbol uniquely determines the
action to be taken.

With such an automaton, we have both a generator and an acceptor for the
language D (the notion of determinism is only essential for acceptors). At this
stage, we can also intfroduce the concept of regular expression.

As an acceptor, our automaton either reads the whole string and ends in state D -
in which case we say it "accepts" the string = or it reads the whole string, ending
in some other state - in which case it "rejects" the string = or it ends in state D
before reaching the end of the string - in which case it accepts a "head" of the
string. We are still far from having a compiler model; we have not even a
translator.,

We now develop our model into one that writes as well as reads, by associating
with each transition an output element. The rules for this expanded model are
written as,

Kps —eem wrem ok L

where - is some string (possibly empty) over a certain output alphabet.
(We continue to write Xy ——~" Z for the case X y— -4 Zi, |)

Consider the following example:

N e

=

- - —
i : e e ‘\) o

35

input symbols : O 1 + x .
output symbols: O 1

This deterministic model will produce as output a single symbol, O or 1,
depending on the form of the input string.

It is quite easy to show that both this and the previous automaton
accept the same language, which in regular expression form is given by :

©@uU1n (+Ux (CuUI*

An example of an acceptable string is :
C+1x 1480 ,

The acceptable strings can be interpreted as expressions with the operators
denoting addition and multiplication modulo two. Qur second automaton
gives this interpretation by virtue of the fact that for acceptable strings its
output is just the value we would obtain through this interpretation. To see
this, we note that whenever in stateB ,for example, the automaton has
accepted a string with associated valus O; similarly, in state C ., it has
accepted a substring with value 1 followed by a + symbol. |If in'the latter
state it reads a 1 then it goes into state B (1 + 1 =2 mod 2 = O), and into
state B on reading a O (1 + O =1 mod 25’. Such an analysis can be applied
to all states. -

We now provide the additional notation required to introduce the output
specifications into our set equations, which for the second automaton are :

A = A

B = AOUC OuUC Qg€ 1L 1006 O
o o+ ox ox 1+ 1%

L

B = A1UC 1UyCc. QU .
[ot i+ 1%
Co+= Bo+
C = B =x
ox)
c|+= Bi *
C = B x
X 1)
D =8 ,[O] UB . [1].
o 1

In the last equation, the output strings are enclosed in brackets immediately
after the corresponding term.

36

Introducing some notational abbreviations, we write V , V for O, 1
respectively and write a combined rule for B and B as,

B,=AV.UC, V, i=j+1mod?2, if k=+
d = jx1mod2, if k=x

where the second term is a union of terms whose subscripts satisfy the given

constraints. The constraints express the interpretation we previously gave to
the states.

It is important to distinguish between the use of the symbols O, 1, +, x
where they occur as symbols in the transition rules and where they occur in
their normal arithmetic sense in the constraints.

The final equations for our model have the concise form,

A =

BizAViUCjle Jek1=
C..= B, ©,
1 LA .
D = B, . ’,_vi_,

where V. =0, V. =1,
o 1
e =+, 9|=x &

We have now shown that a language can be accepted by a simple model, and

in a sense be evaluated by a modelwhich is able to produce output and we observe
that what is usually called "semantics" appears embedded in the syntax. If we try
to do ordinary integer arithmetic in this way, the set of states for a corresponding
"evaluating automaton" would become infinite; however, the same condensed
notation could be used.

Let us now introduce, as an interlude, the notions of top-down and bottom-up
analysis. So far, our set equations have formed a so-called right=Tinear system,
each term consisting of a set symbol followed by an input symbol. This we can call
a "source-oriented" notation, since the sets involved in a transition rule always
contain as an element the part of the string which was already analysed.
Equivalently, we can build up a so-called left-linear system which we can call

"goal-oriented", wherein the sets will denote that part of the string which remains
to be analysed.

The two systems, left and right-linear, for the first example are shown below :

left=linear right=linear

A = OBUI1B A =k

B = +CUxCU.D B = AOUAITUCOUC
C = OBUI1B C = B+UBx

D = A D = B

As an example, let us analyse the string 1 + O x 1 . with respect to both left-
and right=linear systems. With the right-linear system, our analysis proceeds in
the following manner: we start with set A (i.e. the empty string) and on
receiving symbol 1 accept a string from set B :

/B
A \-1
4

v a

Our next input is a +, giving a string from set C; proceeding in this manner
from left to right, we finally construct, from the bottom-up the analysis rep-
resented by the diagram below,

\
B/ X

c/\o/
B\/\‘+ |
AN

4

/=
With the left-linear or goal-oriented system, we again start with set A

and input symbol 1. From the equations the remaining string must belong
to set B if it is to be accepted :

A
1/ N\ B
the next symbol + determines that the now remaining string O x 1. must

be in set C, and in this way the following analysis is constructed from the
top-down :

A
1 / \ B (Note that this example
/ \ does not observe the
+ C conventional priority of
/ \ x over +)
@) B
\ x./ \‘C
. / %

38

With a more complex language model, the distinction between top-down
and bottom-up analyses is obscured It is for this reason that we choose to
elucidate these concepts with the aid of a finite-state model. Although we
can define with a finite-state model perfectly sensible languages, in practice

more complex systems are required (e.g to deal with such features as nested
structure) .

We now introduce the stack acceptor (s.a.) which we describe by rules
very similar to those of the f.s.a. We note that the principal property of the
s.a. is its ability to store an ordered set of states on a stack, and thus we
have the effect of having many f.s.a's active at a given instant. There are
two types of transition rule, which we write,

type 1. Praccind T where y € T, Y & N
type 2. Y ——mon-— Z where E € N*ZEN
T = set of fermlnol (or input) symbols

N = set of states

The effect of these rules on the s.a. is shown by the following diagrams ,

input stack
type 1. before Yool B y Y
after o 1BY
[input . stack
type 2. before = g% E_—-——; 4
ofter ol B Z
To each symbol Y, © =~ T we have a corresponding type 1 rule y. __._;Y

In the following we make no distinction between y. and Y denohr%g the state'
Y by the symbol Y- Thus we ignore the fact that type 1 rules exist and modify
type 2 rules to refer to input symbols on the stack. However the occurrence of

the symbol y; on the stack denotes the state Y We now give a simple example
of a stack acceptor :

We have T

o1+x. ()]
N =B C Dj,

where the stack initially contains only the state I = X and accepts an input string
only if by applying a finite sequence of the following transition rules it terminates
with state D as the only item on the stack. The type 1 rules are implicit as
described above. The type 2 rules are as follows ,

O————|B
: [| B
| [
(C)e-—|B
C+B -o— C
CxBswe— 1 C
C o (D

39

The sequence of transitions through which this machine passes in accepting
the string 0 + (1 x 1) + 0 is given by the following table,

input stack rule applied
o+ {1 %1 +0 A type 1
+{1 % 1) + 0. (@) O—1B
+(1x1)+ 0. B B—C
4+ {1 e 1} + 10, C type |
(1 x1)+0. C+ type 1
1x 1)+ 0. CH type 1
1) + 0. CH(1 1.-—iB
1) + O. C+(B B—i
1) + 0. C+(Cx type 1
) + O, CH(Cx1 1—B
) + O. C+(CxB CxB—iC
) + Q. CHC type 1
+ Q. CHC) (C)-—iB
+ 0, C+B CHB—1C
* Q. c type 1
0. C# type 1
C+O O—-—B
C+B CHB..—1C
G type 1
3 C. C.——D
" D

P

The corresponding system of set equations which we obtain from the above
accepfor are :

In a practical implementation we require a decision technique which selects

B = OUI1U(Q
C= BUC+BUCXBE
D = C.

a unique fransition rule at each stage (e.g. precedence syntax analysis).

A sufficient condition for our s.a. to be deterministic is that the state on top

of the stack and the current input symbol select a unique transition rule.

40 -

This last example has demonstrated a language which cannot be
accepted by the finite state model. The s.a. of the example is source
oriented; it is possible to describe a goal oriented s.a. which accepts
the same language, although based on rules of a slightly different form.
By adding output facilities to the s.a. we can describe a stack
transducer to evaluate or translate the parenthesised expressions of
this example. Suppose we wish to add the familiar notions of variables
and of assignment through a language specification of the type,

rO]-i-x(uab}
{BCDEF\}

= OUl1UaUbU(Q
BUC+BUCKXB
= CUae=CUbe-C
= D UE,D

E.

M m g N ® Zz —
I I

For output to be produced corresponding to the value of expressions from

this language we must carry along the current value of the variables by some
means. We do this by adding a value table T, and call the resulting modet
a table acceptor.

If we replace a, b by W W, the transition rules corresponding to
the assignments in the above [cznguage are :

W, -l B

W, #=C=4D

The value-table T is used in the constraint conditions accompanying the
transition rules :

W, ' B k=T,

w. .'_'__Ck—-—gD, L = k

where the assignment to W. is mirrored by an assignment of the value of
the expression (expressed by the suffix of C) to the table element TI , and
the use of the variable W in an expression is expressed by a ftransition to
B according to the entry in the table T

Thus we have a model which can evaluate languages which are not
context free.

4]

From now on, in the second part of the course, we are discussing
the construction of actual compilers. Two questions are important here :
how to make our analysis processes deterministic, and (more pragmatically)
how to design languages not only from the user's point of view but so as
to make their processors simple in structure.

In the case of finite state automata, we can show intuitively with
the aid of examples that an equivalent deterministic automaton can be derived
from a non-deterministic one = usually with the addition of extra rules.
Unfortunately this is not the case for stack automata, and we find already
that to obtain a deterministic process we have to restrict our language in
some ways. However, these restrictions are usually avoidable for those
features of programming languages we would like to have.

Again, in the case of an f.s.a. we have an efficient mechanism for
the selection of applicable transition rules in the transition matrix. The
combination of one state with one input symbol identifies directly the
transition matrix element representing the new state. In the case of stack
auvtomata, we can introduce at this point the idea of precedence grammars
analysis as an example of an efficient table-lodkup mechanism in a rather
similar way - the additional feature being that we must not only select the
rule but also delineate how deep into the stack we must go to make the reduction.
in effect, several "states" combined with the input symbol determine the new state.
Although the precedence analysis technique does this efficiently, the price is paid
in further restrictions on the language. However, the restrictions do in practice
not turn out to be essential ones. A syntax processing program will check a
given grammar, listing any precedence conflicts.

If we tan use the precedence analysis algorithm to guarantee a deter-
ministic process, then our remaining problem is the design of the evaluation
or franslation sections.

Here another program serves as a clerical aid, listing the productions
in one column of a table, so that the language designer may enter in parallel
columns the computations to be carried out on the attributes (associated with
each symbol in the stack) for each production applied. This forces the designer
to specify what the compiler has to do along with the syntax. We also obtain
a listing of all symbols and their attributes; this enables e.g. an assistant to
check the correct use of attributes

The compiler schema developed is shown overleaf:

42

The compiler schema.

Evaluate (transition rule),
(performs actions on attributes)

FTIT.

SUBROUTINE
’?

- <

Syntax analyser |
[MAIN PROGRAM .
(O L R — Table
I v

Next symbol il i

sl SUBROUTINE i
L.
(scanner)

The approach used is first to write and debug the syntax analyser and
scanner. Then having designed and checked the language, the precedence tables
are constructed, each action is translated into a statement in the 'Evaluate’
procedure, and the compiler is now ready for testing. It is then necessary to
write a test program that will cause each transition rule to be used at least
once - if successful, the compiler is now debugged! An exhaustive testing of
the compiler is essential.

Into what area have we now pushed the difficulties of compiler writing?
(We cannot expect the whole process to become trivial') The answer is : into
the field of language design rather than compiler design. Ideally the same man
should be concerned with both, developing grammars which are efficiently
parsable and which also allow their "meaning" to be attached naturally to the
production rules (e.g. via the 'indices' or 'attributes' introduced above).
This task is not a trivial one, but we have found that the compiler schema
described forces the definition of a language in a systematic way. In many
cases, we have found that our difficulties with concepts and ideas which were
initially unclear have been resolved under the pressure of this systematic approach.
The solutions found (not only for the compiling system but also for the description
of the language itself) have been altogether neater and more satisfactory than
anticipated. We could say that this schema is a very good teacher!

43

In the discussion period following Professor Wirth's talk, questions
concenfrated on particular aspects of his existing systems and possible
extensions. Professor Wirth mentioned that he was preparing a paper for
publication on this subject.

Reference accumulated from this discussion and Professor Wirth's
notes are :

Conway, M.E., "Design of Separable transition - diagram compiler",
Comm. ACM 6 (July 1963), p. 396.

Floyd, R.W., "The Syntax of Programming languages - a Survey",
IEEE Trans. EC13, 4 (August 1964), pp. 346-353.

Ginsburg, S., "The Mathematical Theory of Context - Free Languages",
McGraw Hill, 1965.

Kurki=Suonio, R., "On some sets of Formal Grammars",
Annales Academice Scientiarum Fennicae A.l. 349.

Wirth, N. and Hoare, C.A.R., "A Contribution to the Development of
ALGOL",

Comm. ACM 9, é (June, 1966) , pp. 413-
432,

van Wijngaarden, A. et al., "ALGOL 68",
Tech. Rep. MR93 (April 1968). Mathematisch

Centrum, Amsterdam.

Wirth, N. and Weber, H., "EULER, a generalisation of ALGOL and its
formal definition. Part [",

Comm. ACM 9, 1 (January 1966), p.13.

