
Data Structure and Storage Management by Dr. D. T. Ross 

Lecture 1 M. I.I. 

Introduction 

I do not bel ieve it is worthwhile for me or anybody else to provide 
recipes for "data structures" with any claim for general utility, particularly 
at this stage of our knowledge. Instead, I want to stimulate your minds with 
some ideas which al low data structures to be considered in general, in a 
se nsible fashion. I sha ll start this stimu lation with the dogmatic assertion 
that there is no suc h th i ng as a data structure by i tse If, even though such 
things are discussed and written about in the literature. To me a data 
structure is only part of the more general idea of a model, and without 
this broader interpretation data structures as such are--;:;Qt meaningful. There 
is a lso no single data structure usefu l for many purposes, a lthough the genera l 
ideas of data structures can be manipulated in many ways. The key point is 
that the data structure is a very important part of a mode I and the data structure 
form must be se lected to suit that model. In this first lecture I wish to discuss 
the question "What are data structures about?" In the next lecture I want to 
ta lk about storage allocation which is at the central core of data structures, 
and finally, in my last lecture, I want to take a high-level view of a very 
general kind of data structure ca.lled "abstract strings", and see how they fit into 
the general pic.ture . 

Much of material in these lectures is based on an experimental course called 
"Software Engineering" which I have given once at M . I.I. Its general concept 
is to give software a firm basis and a lso to do things; so that students end up 
having the idea of building a model, and can also make use of the general and 
powerful concepts they learn e lsewhere in the Computer Science courses. 
However the M . I .T. course is done in a differe nt order from the lecture I will 
give here because there we start with lectures on AED- 'O language {Algol 
Extended for Design}. This language, which is an extens ion of A lgoT 60 {to 
inc lude such ideas as pointers, variab le length character strings, optional number 
of parameters ' in a procedure ca ll , store a procedure name in a data structure} 
is used as a vehic Ie to express : the ideas of the course. We have found most 
students {even those with considerab le computer experience} have difficulty wi th 
the concepts of a pointer . Experience gained using AED- O' enab les the students 
to grasp the more genera l concepts later. As yet I have not deve loped a 
rigorous mathematical treatment of a ll the ideas since they are st i ll too flex ib le. 
Starting with the genera li ties {as I must do here} leads to problems of compre­
hension, since the experience is lacking. 

Modelling in Genera l 

This wi II enable us to see Data Structures in their proper setting. We 
define a PLEX {from PLEXUS meaning an interconnected network} as a comp lete 
model of something {either abstract or concrete} which must have 

a} Data 

b} Structure 

c} Algorithms 



I 

2. 

What we want to do is talk about modelling in general, and far this 
we need the full set a}, b}, and c} abave, and not just talk about the 
structures in isolation as is so often done using figures such as cr.-=;.-> . 
We will see that we can change the data structure part of a model without 
changing the model itself . We willnow ·define terms used in giving a 
representation of the thing be ing modelled. 

Ideal (Idealised Model or ideal plex) 

Mechanize an. Ideal by choosing a mechanical form or partitioning of the parts 
of the mode I . 

Implementation of the plex. Finer and finer partitioning of different mechaniza­
tions leads to a detai led level we refer to as an implementation . 

The programming language fits in as a way of expressing the various 
model s. To be able to choose different mechanisations we want to separate 
data and structure from the algorithm part of the model . A data structure 
is composed of elements with components which rna y be thought of as records 
with fields. An Ideal component is represented by iread' and 'store' procedures. 

J ~ 
V I e.g. (i) value:= read (component name) 

(ii) store (componentname, new val ue). 

At this level the structure of the data is unimportant; we may think of the 
procedures representing somehow a "box" containing a "va lue" . An Ideal e lement 
is a collection of ideal components, and we have "create" and "destroy" 
procedures for these ideal elements. To desc ribe an ideal element we need to 
know what storage boxes (components) make it up, also we need to know the mode 
or type of value for each component. An element type is a cartesian product of 
components. An Ideal Plex describes models which can be bui It from ideal 
elements, and we have procedures "growth" and "mouse", which are a critical 
part of the total model for they generate and manipulate specific data structures. 
The "growth" algorithm is the set of rules for building structure with the proper 
re loti onsh i ps amongst its parts. Thus it corresponds to the pars ing a Igorithm, the 
grammar for a given plex type, if you will. 

The "mouse" algorithm knows how to step through a data structure in an 
orderly fashion, i.e. it linearises the data structure. The key thing about a 
mouse is that it allows you to describe the rules for an operation in atomic 
fashion in such a way that the operation is induced to a higher level automatic­
ally, regardless of the complexity of detail. 

N.B. There are several mice possible for a complex data structure, e.g. for 
the algebraic statement A : = B+C; two possible mice are : 

i} 

this mouse gives the semantic 
parse showing evaluation sequencE 



i i} 

/ 

/ 

L:: 
/ / '@!.? /' '\-\ . I / 
_ /7 

3. 

this is the syntactic mouse 
e .g. to print in algebroic notation. 

\ 

Once defined the sets of procedures {read-store, create-destroy, and growth­
mouse} constitute a generic definition of a type of PLEX of which there may 
be many specific instances . {Notice that the mouse with the destroy procedure 
as operation rule is the inverse of the growth algorithm} . 

As an example of the way a growth algorithm grows a data struc ture , 
consider several state variables So, 5, , -- 5.-- 5 .. 

I n 

iy , , 
~ . , .' 
,~ 
\ , .! 
/ -(\ 

All the connections are considered to be points {even if they a re not they can 
be made to be} . Each 5. "holds" an element in a given state of completion. 
Whenever a new connecti'on is made {depending upon the contents of the total 
sets of 5.'s}, the modified element must be moved to a new state variable, 
thereby dhanging the total state {all 5. 's}, so that another connection can be 
made. Whenever activity stops, a ne0 element is created for 5 , so gro.vth 

o continues. 

To show that data, structure, and algorithm all are important, but may 
take different forms, conside r these examples 

, 
\ 

\ \ _. 
, . ' . 
\ 

j- .' •..• 

j
" 

Y.::., 
-,-.­.. \ , . . 

. ,._ .... 
. - . 

This data structure alone is not sufficient for a PLEX. It could be anything -
for example, the top 2 books on the best seller list, as well as a line in two 
dimensions . If we add a definition of a metric length {1 , } = .,(;""+Y" , now 
we have a PLEX, since it inc ludes interpretation. The data structure form also 



4. 

moy take radically different forms. Return ing to the example of a tree given 
before, a typical node is shown . "Precedence" infDrmation (the so l id and dashed 

./' 

~
/ 

,~ 

,j ' ., 
. \ 

arrows) takes 30 bits (on 7094) in this form, 
but the octal stream mechanization takes no 
bits at all, because you can store information 
in the a lgorithm rather than in the data 
structure. However, whi le the 30 bits 

, ~ transform. to 0 bits, a new "context· code" 
which was 0 bits must now occupy 3 bits in the octa l stream form. Thus we see 
aspects of the mode l chang ing between data structure and a lgorithm domains as 
we change mechanization. The precedence form is a good mechanization for 
changing as al l the pointers are there, whilst the octal stream form is linearised 
and hence is easy to put out on disks and is re locatable etc . etc. These 
different characteristics of radically different mechanical forms of the same ideal 
mode l are the primary reason why it is not wise to speak of data structure alone, 
but on ly as part of a total plex model . It is also important that the programming 
language used to express plexes allows mechanizations to be c hanged easi ly to 
suit various circumstances. 



• 

5. 

Lecture 2 

Summary of previous lecture 

should like to start by going over the main points and definitions 
in yesterday's lecture. We defined the complete model as a PLEX which 
had to have a) Data b) Structure c) Algorithm. Plex definition specifies 
a generic type of mode I of some high-level entities (e .g. Symbol tables, 
I/O systems). The algorithm part describes the interpretation of : the data 
structure, and we customarily leave this interpretation fixed. Another part 
of the algorithm complements the data structure part of definition (e.g. 
algorithms "growth" and "mouse") . When we leave the algorithm part 
fixed we work with spec ific instances of grammatical data structures. The 
Ideal definition is a starting point in which we map all of the data and 
structural aspects of the definition into the algorithm domain. We also 
leave the interpretation parts of the algorithm aspect unchanged . 

A Component is the finest level of structure (a "box") holding a 
single datum (unspecified except as to type) and is characterized by read/store 
procedures . 

Out of these we build up to elements, which are cartesian products of 
the components, and are characterized by procedures create/destroy. Thence 
we reach Plex structure, characterized by procedures growth/mouse, which provide 
the basis for control of complexity in specific models . The growth algorithm 
grows the data structure according to the proper rules, and the mouse algorithm 
allows one to extract information from the data structure in a desirable order, 
no matter how complex the detai I of the specific data structure may be. 
These algorithms allow us to treat the entire data structu re as a whole but 
work with only a limited amount of local inforrration at anyone time. Because 
the algorithms growth and mouse are integral with generic definition they can 
induce local operations to the proper global operations on the entire complex 
data structure. 

Given these definitions our picture of information processing can I'ook 
like the figure below 

r~:EX :-
'-..! _____ ,-.J 

/ 

- -
I 

Two mice run round Plexes ' A and Band 
pick out (using read procedures) the right 
element to be operated on by the operator . 
The operator combines these results and 
feeds the growth algorithm. 

\ 

\ 

where Plex A 
and B are actual 
Data Structures 

The growth algorithm 
grows Plex C (using 
create and store 
procedures) . 



SEPARATE 
FACTORS " , .. ' 

6 , 

Plex Factor 

An important idea is to factor and compose generic plex definitions. 
In genera l, the treatment of encoding of type informa tion, for example, 
can be treated, as a separate 'p lex foctor ' that can be put together with 
many other things. Another instance is the storing and manipulation of 
names of things. We can compose these with other factors, such as co-ordinate: 
data, in different combinat ions . Taking the individual "create" procedures 
for each separate factor we define new e lements which are the cartesian product 
of all 4 components. When defining the new procedures, we also carry along 
the type constra ints for each of the se factors. 

. - -_ .. _---_ .. _- - '---, " COMPOSED 
type "---.. . 

type 
i 

1 __ ._ 

'. name 
x coord. rxcoord ~. -' 

t----- - - -

y coord. 

.------7 y coord. 
l . • _________ ._ . 

_._- ----- --
This is the major reason why we want to keep the specific imple­

mentation or mechanisation separate , but still have . the meaning carried 
across . 

Re-defining of implementation detai ls is often necessa ry when putting 
these "plex factors" together, e.g. in one structure type 1 may be a line, 
type 2 a point and in another structure type 1 may be a rea l number, type 2 
a boolean expression . if we put these structures together we wish to reso lve 
the type c lash automat ically. We do this by just re-defining the read/ store 
procedure and create/ destroy procedure bodies without re-defining all the 
a Igorithms that depend on them . 

An individual plex factor is represented by a set of programs; 
programming language is the notational vehicle for expressing these 
and making th ings work. Thus, an : 

a 
ideas 

integrated Package of routines is the physical representat ion of the plex factor. 
These procedures have a common set of declarations of such things as global 
variables and g lobal data structures , The individual procedures are not only 
for building and manipulating data structu re, but they also express the intent 
of the package . There are several kinds of routines in the package. 

Atomic routines. The choice of these is most important because if they are 
too complex the system becomes rigid. it is necessa ry for these atomic routines 
to combine easily with others. The full set "spans the space" (in the sense of 
basis vectors of a vector space) of the plex factor. 

Molecular procedures - these are procedures which could be written as 
combinations of the a tomic procedures, but we inc lude them for convenience 
as an integral part of the package. (The basis need not be minimal, and is 
more useful if it is not). 



7. 

Sub-atomic procedures - these allow you to go down into the actual imple­
mentation machinery, e.g . in our example to change the encoding of type. 
Every integrated package is therefore a representation of some plex factor, 
and it is important to have automatic means for modifying and combin ing the 
programs of pac kages to compose factors. 

Free storage system - we will take this as an example of an integrated 
package. The objective is :-to represent any piece of data structure by a 
piece of storage. Assume storage is word or byte oriented. 

A Bead is a number of contiguous words of storage and is a good 
implementation of an element since we can use the addressing mechanism of 
the machine to carry out read/store actions on components. When you are 
making a data structure you wi II have beads of different sizes e .g. 2 words, 
3 words etc. It is better to keep these different size beads separated. If 
you do not, you have what has been called a "heap", and this necessitates 
a sophisticated garbage col lection in order to use store which has been 
released after use. As we build our data structures we often need something 
equivalent to the scaffolding used in erecting a building . We must handle our 
st.d>rage such that we can throwaway this scaffolding wholesale when we are 
fin ished with it, without leaving physical storage peppered full of odd-sized 
holes. 

Storage Zones. In storage we have the following zones: 

Infinity zone (from which a II use r storage is de r ived) 

Header zone 

Extens i on zone 

These three make up the Divinity Zone, which is given storage by the 
operating system. 

We require the ability to chop up available store for different purposes 
and then fu rther sub-divide for sub-purposes. For example, the Infinity Zone 
may be divided up so that it is the "parent" of two zones, z 1 and z2. 
Initially only part of the Infinity Zone is allocated to z 1 and z2, so that the 
remainder can be parcelled out gradually depending upon which one needs more 
store and when. zl and z2 can be fu rther sub-divided as shown by the diagram 
overleaf. This :gives a nesting facility. 



8. 

ZONE HEADER INFINITY ZONE 

ZONE HDR 

To Parent 

'-;' 1 :---- - . . - - - - --1 'I" 
a _____ ' PA L~ 

r.-l- SON 
,~ 

To San r-;O-- - --~r ','To Brother EXT HDR , l ---
1 ~~T--~- _----- ----7~!- NXT HDR~~ ---IV, / mj 
- ---- __ I -------1 1 ------- , 

BDS ,_L START 0 :-i-------- )-, "- -[----1- '-1-' I-I 
------ ---~ 1 /"1, I I \ 

--- ----- 1 I I - '1-- ---- ----~--' -
I~_~~Z~_I 1 ____ 11 ___ /// , 

I EXTSIZE I r-------- -----' ! 
I I L I EXT HDR ~ . i--,---,--,------,--
1 .. _ _________ -' " NXT HDR I ,i i / / I I 

L~TART ~=;- - ---- --------l '-----'-1-"---'-1--'-­

I , 
L_j , 

In the zone header the pointers PA, SON and BRa are self-explanatory . EXT 
points to the "extension header" . BDS starts a chain of beads of store currently 
available in zl. In the extension header, EXT HDR , there are three pointers: 
(i) NXT HDR paints to the next extension header, EXT HDR,c 
(ii) START points to the beginning of the first address in the infinity zone allocated 

to that extensi on. 
(iii) NWDS specifies the number of wards in that extension . 

Another factor of the zone header specifies the beadsize (BDSIZE) of beads in 
zl (assumed to be all the same size) and the size of extensions (EXTSIZE) which 
should be requested, when current storage is exhausted . 



9,. 

The zone and extension headers are the machinery of the zone and 
we will now give some simple examples of the procedures used 

Example 1 

Procedure to define a new zone 

z := DEFZONE (INITSZ , EXTSZ, BDSZ, FHELP, ZONE) 

where z is the zone pointer, which references this kind of data structure 
created by the call on DEFZONE. 

I NITSZ is the initial size of store to be made available - it may be zero 

EXTSZ is the amount to be made available for extension each time 

BDSZ is the bead size 

FHELP is a user supplied procedure to help the basic free storage procedure 
overcome any insoluble problems 

ZONE is the parent zone 

This is the create procedure of the free-storage plex . 

Example 2 

Procedures to take and return bead B of size S from ZONE, Z . 

B =: FREE (S, Z) 

FRET (S, B, Z) 

In the body of FREE there is a piece of program which 
looks for storage in its own zone but if none is 
available it asks for storage from its parent and so on, 

N . B. The parent of the I NFl NITY zone is the operating system and thus at only 
one point does storage pass down from the operating system, 

FRET returns B to the BDS chain for satisfying a later FREE request. 



10. 

Lecture 3 

In this lecture I would I ike to d row together the ideos of the 
previous lectures to show that different types of data structure are often 
very c lose ly re lated. In order to do this I want to use :the example of an 
abstract string. The concept of an abstract string we wish to use is not 
the Algol definition of character string, but a string of arbitrary elements. 
They can be interconnected e lements when a single element may be 
simultaneously on any number of strings and indeed may initiate any 
number of furt her strings, ": . .Thi.ngs· grouped together in a string are 
"simi lar in kind" in some way. A string is an ordered set with behavioural 
propert ies as we ll . Lists , stacks, rings, queues, hash-coded tab les, etc. 
all are instances of strings. Each string has a ru le for descr ibing the set , 
e.g. 011 A's, e ither A or S, etc. and the other properties of the string. 

[ STR ING--r----- RULE 

FirJ\ next next 

u-D'-<J 
A string is modelled by e lements of the following kinds 

1. bead Next, Va lue 

2. string Type, First 

3. String type several "basic functions" giving 
the ru les for thot string type . 

bead 

Properties of elements. 

?9,--,:;. next 

,,,;;rue 
We need basic functions to te ll us how to obtain first, next, value, how 
to search, and how to copy. These funct ions are : 

FIRST F ) 

NEXT F 
i read-store pai r 

~ VA LUE F 

SEARCH F 

COPY F ) create-destroy pair 



11. 

These are the algarithms which give the behaviaur . High-level string 
manipulating functions calion the basic functions . For example, using 
the AED-O language, the string package procedure FIND, which fi nds 
a va lue on a string , and if there is no suc h va lue ca ll s the bead-va lued 
procedure beadpro, is as follows :-

DEFINE POINTER PROCEDURE FIND (VA L, STRING, BEAD PRO) 

WHERE INTEGER VA L; POINTER STR; 

POINTER PROCEDURE BEADPRO ; 

TO BE BEGIN GTCPT = RGTC (FIND . C, STR); 

FIND = DOlT (SRC HF (G TCPT), FIND . C, VAL, 

PRE V, STR, BEADPRO, GTCPT, RETURN ); 

END; 

DOlT is an extension of ALGOL 60 which takes the fir st parameter (in 
thi s case the searc h function SRCHF) as a func tion designator with the 
re maining parameters as the parameters of thi s function . DOlT (F, X, Y, Z); 
is the same as F(X ,Y,Z); RGTC stands for Read Generalised Type Component 
af the str ing STR to give access to the required set of basic function s . The 
string type is represented by a bead of the form : 

- ---- ---
G TC type __ -;> I FIRST F 

I -
I NEXT F ,~ 

I , 
i VA LUE F , 

: 
I SEARCH F , 
I 
i , 

COpy F 

, 
7 

"­/ 

> 
Where each component contains a pointer to one of the basic functions. 
Such a bead is created by another function (nat given here ) to define 
a new string type using a particular set of basic functions . 

So the action of the above procedure, which is to find a va lue 'on a string, 
is to call the RG TC procedure (which is supplied by the define and whi c h 
knows abaut the encoding of the STR types) and fram thi s we get a GTC 
pointer (G TCPT) . We look up the searc h procedure (SRCHF ) with 
re spect to this GTCPT and this search function gives the required aspect of 
the string behaviour . The search function is a sub-atomic type <i routine 
as are all basic functions . The arguments of DOlT and RGTC are there for 



12'. 

the following reasons: FIND . C is a para me ter which informs the procedures 
RGTC and SRCHF that they are being called by the FIND procedure . It is 
therefore the context of the call. It can be interpreted to point back 
through several layers of procedure ca lls, which is of course useful in 
error trac ing situations. VAL, STR, BEAD PRO are from the spec ification 
part. 

PREV is a globa l pointer variab le which couples the search function , to 
other basic functions and other high-level string functions. SRCHF wil l 
set it to point to the bead previous to the found bead (i.e. such that 
NEXT(PREV) = found bead}. 

GTCPT and RETUR N are very inte rest ing a rguments. 

They allow one to get more features in . The first one a llows the use of 
extra parameters with the type definition which may be added as a "ta il " 
to the GTC bead and used by the basic functions. The second one (RETURN) 
al lows one to put in an a rbitra ry number of additional a rguments with a loca l 
cal l (in this case the cal ion FIND), so that stil l furt he r specia l parameters 
can be made available to the bas ic functions, such as SRCHF. Here all of 
these e laborations are expressed in AED-,O as run-time features, but other 
parts of AED- ,O can be used to automat ically el iminate featu res that are not 
needed in a particular application. Thus the very abstract string concept with 
any number of basic functions is reduced to what you require and g ives an 
effic ient program in a very highly automated fashion. 

Examp le of a Stack as a type of string. STKBD (Stac k Defi n i ng Bead) 

GTC type ,.+._-._.-
; 

-I 
FIRST 

~,L _ __ t ;:T', ,1 __ . 
1--· 
I 

i VALUE F " 

SEARCH F,,'+----

i COpy F f) 

-'-' --------' . 

_N_E~_T_.<-f---J_,_~E~T "1---) 
-----l-, ---1--';' 

-:::::.. 
/ 

\. , 

.. . " 
/ 



The NEXT F for example could be 

B1 := NEXT (B, S, L)i 

which says get next bead after bead B with respect to string 
none exists go to label L. The test fo r stack empty wi II be 
of NEXT F and therefore can follow any desi red convention. 
for the other functions. 

S and if 
in the body 

Similarly 

At this stage questions were asked on what form a re the elements of 
a string if the element belongs to several strings , and also on the efficiency 
of implementation of the general concepts . While answering the questions 
the lecturer explained that the c rucial point of the whole approach was to 
have high- level techniques for handling enti re programs as though they 
themse Ives were objects . You have to modularise and factor your thoughts, 
express those thoughts in terms of these techniques, and then map from one 
mechanization to the other using facilities such as AED provides. 

t 

An example considered in the "Software Engineering" course at MIT 
was the ordered list. The examples given in APPENDIX A and APPENDIX B 
convey the ideas of alternate mechanizations of a single ordered list concept, 
and also illustrate the "massaging" of program expressions to achieve concise 
formulations . 

Finally, in reply to a question, the diffi)culties of preparing and 
grading examination for the "Software Engineering" course, which deals 
with such general concepts, were discussed. A book based upon the 
course is now in preparation and should appear in mid-1969 . 



APPEt-l-l> 1)( A 
-~-SUBJEc; 

14 - - - -
Exa~ple of Discovering the Essence of a Problem 

The enclosed notes summarize my lecture on writing a program 
to make an ordered list. accepting integer values between 0 and 10.000. 
The strategy selected was to insert each new value at the appropriate place 
in a growing list of beads with NEXT and VAL components. Other strategies 
are. of course. possible. ,and depending upon other unstated conditions. 
some different sttategy might be preferable. But whatever strategy is 
selected. the same process of honing the expressions of the problem to 
achieve tpe most elegant formulation should be followed. Only when the 
redundancies and irrelevancl.es have been removed from each of two 
strategies cal\ those strategies properly be compar,ed. 

Each of your homework and computer assignments should be subjected 
to the same process ;, insofar as you are able. ' Developing skill in these 
techniques is an 'essential foundation upon which further true software 
engineering can be based. The process exemplified here is not necessarily 

, a time-waster and an expensive luxury. With practice. the discipline d 
evolution of clear thinking expressed in clean"and elegant programs can 
shorten the debugging process far more than slpppy work performed in a 
mad and ill-directed rush. ' ' 

' Later in the course . we will be working' with very powerful concepts, 
and approaches, As with any other instance of· increased leverage. these 
powerful techniques can turn into ugly monstrosities which do more harm 
than good. if they are not properly applied. At that time. the importance 
of the elegince and precision which can only come from skill in these basic ' 
manipulations will be quite apparent. 

Note in particular the final versions of this ordered list example -
one for the machine and one for other people. In order to allow me to 
understand your programs well enough to evaluate them and offer helpful 
suggestions. would you pleas,e emulate this format in work you h and in. . 
as well. I recommend highly that you make thes e n e at and complete versions 
before running .on the computer. for the discipline of adding detailed remarks 
to explain the program frequently will show you weak points or errors in' 
your curre,nt formulations. Ex cessive wordiness is not requried. Add 
pictures of yQur bead. structures and use crisp Englishas well as AED 
language constructs. Assignments will turn out short if you do them well. 



15 

We started with this simpler problem' already solved-

BEGIN ••• PROGRAM TO COLLECT VALUES II 
• INSER T MAIN 
POINTER LIST, P $, 
INTEGER I $, 
POINTER COMPONENT NEXT $, NEXT $=$ 0 $, 
INTEGER COMPONENT VAL $, VAL $=$ 1 $, 

i,OOP$ ISI(GIN(I), STOP') ••• READ NEW VALUE INTO I, STOP IF NOT 
INTEGER $, 

VAL(P=FREZ(2))=I ••. PUT IN NEW BEAD "HELD" BY P $, 
NEXT(P)=LIST •• • TACK OLD LIST ONTO NEW BEAD $, 
LIST=P . •• UPDATE LIST TO INCLUDE NEW BEAD $, 
GOTO LOOP •• • REPEAT $, ' 

' STOP$ FINISH( ) END FINI 

' Then starting with the major idea of scanning and splicing ­

BEGIN .•• FIRST TR Y TO MAKE AN ORDER ED LIST II 
• INSERT MAIN $, JJ~T~~es" ... ~.: 
POINTER LIST, P, Q, R $, p_,"'" 
INTEGER I $, 00 
POINTER COMPONENT NEXT $, NEXT $=$ 0 $, 
INTEGER COMPONENT VAL $, VAL $=$ 1 $, 

LOOP$ ISI(GIN(I), STOP) •.• SAME IDEA AS BEFORE $, 
VAL(P=FREZ(2))=I $, 
R =LIST '" INITIALIZE SCANNING VARIABLE $, 

SCAN$ IF VAL(R) LES I THEN BEGIN R=NEXT(Q=R) $, GOTO SCAN END 
.•• Q MARCHES ALONG BEHIND R UNTIL VAL(R) GEQ I $, 

NEXT(Q)=P ••• V AL(Q) < I.s VAL(R) SO STAR T SPLICE $, 
NEXT(P)=R . ; . FINISH SPLICING NEW BEAD IN $, 
GOTO LOOP ' ••• REPEAT $, 

STOP$ FINISH( ) END FINI 

Now we start asking questions. The above is fine for the general step n-to-
step n+ 1, but what about special cases? ' 

1. What happens if I GEQ V AL(R) for all R, (i. e. sc'an falls of 'theendj'?: 

'~ R=NEXT(1ast R)=O $, GOTO SCAN tests VAL(O)! 

So we need to fix it up. 

, Bet1}arway is-

SCAN$ IF VAL(R) LES I ~ AND ' 
~(R=NEXT(Q=R)) NEQ 0 THEN GOTO SCAN $, 

' 2. What happens now if VAL(LIST) GEQ I, (i. e. goes at beginning)? 

Ans'. NEXT(Q)=new P (ugh!) and LIST is unchanged! 

Better way is-

-1 -



16 

SCAN$ IF VAL(R) LES I AND 
(R=NEXT(Q=R)) NEQ' 0 THEN GOTO SCAN $, . 

IF R EQL LIST THEN LIST=P ••• PUT AT BEGINNING II 
ELSE NEXT(Q)=P $, 

3. What happens if LIST=O, (i. e. the very first time)? 

Ans IF VAL(R=LIST=O) bombs out again! 

Better way is-

IF (R=LIST) EQL 0 THEN GOTO FIRST $, 

SCAN$ ~ (same as before) 

IF R EQL LIST THEN FIRST $ LIST=P 
ELSE NEXT(Q)=P $, 

Here, since we already had the desired LIST=P we used it via GOTO 

FIRST. instead of putting in another. 

This e:X:hausts all conditions, so we· now have our first complete expression 

of the problem. (Note that the completest statement of a. problem often is .a 

method of solution. ) 

But this expression of the problem has built into it tJ:le history of our dis­

coveries . · There is probability zero that we discovered thin·gs in just the 

right sequence and resolved each new thing in exactly the ri.ght way. 

So we now proceed to seek improvements without noosing" or distorting . . ~ ... " , . .. , ... .. , 
the ·ideas'·of our complete understanding of the problem. 

Let's first collect our thoughts -

BEGIN ..• FIRST COMPLETE PROGRAM, COLLECTED II 
""",(Same Declarations)~ 

LOOP$ ISI(GIN(I) , STOP) $, 
VAL(P=FREZ(2))=I $, 
IF(R=LIST) EQL 0 THEN GOTO FIRST $, 

SCAN$ IF VAL(R ) LES I AND I ' 
. ' (R =NEXT (Q=R) ) NEQ 0 THEN GOTO SCAN $, 

IF R EQL LIST THEN FIRST ~ LIST=P 
! ELSE NEXT(Q)=P $, ' 

NEXT(P)=R $, 
G<;ho LOOP $, 

STOP$ FINISH( ) END FINI 
. . ... 

We notice that NEXT(Q)=P is the proPl'r disposal of the new bead for both , 
the normal and the at-end cases, and LIST=P is ,the. proper thing for the 

special empty list and at -beginning cases. 



17 

If we describe these cases precisely. we get one!IF expression that tells 

which way to dispose of P. 

The "at th·e beginning" arises when 1.) LIST is empty or 2.)the new value 

is LES the first listed value. so instead of GOTO FIRST we move the LIST=P 

up to the THEN slot of the first IF. 

IF (R=LIST) EQL 0 OR VAL(LIST) GEQ I 
THEN LIST=P 
ELSE SCANS IF VAL(R) LES I AND 

(R=NEXT(Q=R» NEQ 0 THEN GOTO SCAN-g 
ELSE NEXT(Q)=P $. 

Now we notice ·that initially we have already tested VAL(R) GEQ I so we 

undo the AND and GOTO SEEK. 

IF (R=LIST) EQL 0 OR VAL(R) GEQ I 
THEN LIST=P ..• NEW BEAD GOES AT BEGINNING / / 
ELSE BEGIN GOTO SEEK ... VAL(LIST) ALREADY TESTED $. 

SCANS IF VAL(R) LES I THEN (see below) 
SEEK$ IF(R=NEXT(Q=R» NEQ 0 

THEN GOTO SCAN $. 
NEXT(Q)=P •.. VAL GEQ OR END REACHED / / 

END $. 
NEXT(P)=R ••. SAME AS BEFORE $. 
GOTO LOOP $. 

That's better. but looks messy. Why can't we flip things around to get rid ot 

that strange GOTO SEEK? 

We can! By using the execution sequence of AND which says that in X AND Y. 

if X is FALSE. Y is never executed or tested because the AND expression is 

already known to be FALSE. 
. . 

So we reinstate the AND version. but with the order reversed. 

IF (R=LIST) EQL 0 OR VALet) GEQ I z....;.... =LIST. but R version 
THEN LIST=P would probably be in a 
ELSE ~" """;)1 machine register. 

SCANS IF(R=NEXT(Q=R» NEQ 0 AND VAL(R) LES I 
THEN GOTO SCAN X ELSE 

NEXT(Q)=P 
:r;" --'r~ $. 

NEXT(p)=n. 
GOTO LOOP $. 

STOPS FINISH( ) END FINI 

This seems to be the best we can do. since it protects against VAL(O) and 

does the right thing as fast as possible in all cases. 

But-----



18 

A general idea which works in a surprisingly larg,e number of case. (if you 

can .ee how) is to completely eliminate the special initial ca.u, by making the 

n-to-ntl ,normal case work in all circumstances. 

This is done by building in part of our ideas in the form of an initial data 

structure so that the special cases obey the same rules as the general case. 

In this example. we can eliminate the LIST=P disposal of the new bead (and 

in fact the P variable itself!) if We 

(l) Ensure that LIST is never empty 
:(Z) Ensure that VAL(LIST) is LES any possible I value. 

If these condftions are true, LIST=P will never be used! 

So we create an, initial bead with (in effect) - 00 in it. 

VAL(LIST=FREZ(Z»= -1 ••• PIVEN THAT 0 oS I ~ 10; 000 $, 

. LOOP,$ ISI(GIN(I), STOP) ••• WE'LL DEPEND ON I HOLDING THE NEW VALUE 
WHILE WE FIND OUT WHERE TO PUT IT $, 

R=LIST $, 

,SCAN$ IF(R=NEXT(Q=R» NEQO AND VAL(R) LES I 
, . ' THEN GOTO SCAN $, ' 

NEXT(Q=NEXT(Q)=FREZ(Z»=R $, , 
VAL(Q)=I •.. FINALLY DISPOSE OF NEW VALUE $, 
GOTO LOOP $, . 

• STOP$ FINISH( ) END FINI . 

Here we wait until we've found the right Q before getting the new be.ad and 

put it in the right spot directly. ,Then"Q can play the role of P which may be. 

dropped from the declarations. 

This all c:une from dropping out the LIST'=P case. 

Now we ask can we drop the NEQ 0 .test (which really functions only at the 

beginning and thus ~ is a special ' case);? 

Sure we can, if we can make the VAL(R) LES I test play the same role • . I. e • 
. I ~ . 

make sure VAL (last R) is always GEp 'I, i. e. +'oo'.! 
, I. 

SO we add to the initialization anotheri bead with' (essentially) too in it. ," . . 

VAL (LIST=FREZ(2»= -I $, :i 
VAL (NEXT(LIST)=FREZ(Z)l=i IC35 ... 1 * Z35 $, 

1.00P$ ISI(GIN(I), STOP) $, 
R=LIST $; 

SCAN$ IF VAL(R=NEXT(Q=R» LES I THEN GOTO SCAN $, 
NEXT(Q=NEXT(Q)=FREZ(Z»=R $, 
V AL(O)=I $, " 
COTO LOOP $, 

STOP$ FINISH( ) END FINI 



19 

This seemed to me to be the shortest and fastest possible, BUT --­

After class it was pointed out to me that in focusing on the + 00 argument, 

I had overlooked a fact that crept in when the LIST=P case was dropped out. 

Namely, if you examine the above you see that we no "longer ~ test 

VAL(LIST) but only VAL(NEXT(LIST)). "Therefore, the -00 is not needed 

at all! 

So ---

LIST=FREE( 1) $, 
VAL(NEXT(LIST)=FREZ(2»=1 C35 $, 

etc. 

Which can in turn be nested to give -

The most elegant and compact version­

BEGIN •• • FULLY NESTED VERSION / / 
• INSER T MAIN $, ' L}ST ~C3--'>!:!:r..-,jr:::r-'Oj:==t-l~ 
POINTER LIST, Q, R $, 1-!., 
INTEGER I $, t:D. 
POINTER COMPONENT NEXT $, NEXT $=$ 0 $, 
INTEGER COMPONENT VAL $, VAL $=$ 1 $, 
VAL(NEXT(LIST=FREZ( 1»=FREZ(2))= 1 C35 $, 

LOOP$ ISI(GIN(I), STOP) $, 
R=LIST $, 

SCAN$ IF VAL(R=NEXT(Q'=R)) LES I THEN GOTO SCAN $, 
NEXT(Q=NEXT(Q)=FREZ(2))=R $, 
VAL(Q)=I $, 
GOTO LOOP $, 

STOP$ FINISH( ) END FINI 

Which:" can mechanically be expanded,for people to understand­

BEGIN ••• FULLY EXPANDED VERSION / / 
(Same Declarations) , 
LIST=FREZ(l) • . • GET A "LEFT BOUNDARY" BEAD $, 
NEXT(LIST)=FREZ(2) •.• ATTACH A "RIGHT BOUNDARY" BEAD $, 
VAL(NEXT(LIST))=lC35 ••• MAKE VALUE OF RIGHT BOUNDARY 

INFINITE $, 

LOOP$ ISI(GIN(I), STOP) ••• READ AND TEST A VALUE. GOTO STOP IF 
NOT INTEGER $, 

R=LIST ••. INITIALIZE SCANNING VARIABLE TO START OF LIST $, 

SCAN$Q=R ••• INSIDE SCAN LOOP, Q REMEMBERS PREVIOUS BEAD FOR 
SPLICING $, 

R=NEXT(Q) •. , MOVE SCANNING VARIABLE TO CONSIDER NEW BEAD $, 
IF VAL(R) LESITHEN GOTO SCAN •.. IF VALUE IN LIST SMALLER, 

KEEP GOING $, 
NEXT(Q)=FREZ(2) • •• WHEN GET HERE VAL(Q)<IS, VAL(R) SO PUT NEW 

, BEAD AFTE;:R Q $, 
(continued on next page) 



20 

Q=NEXT(Q) ••• NO LONGER NEED OLD Q. SO, POINT TO NEW BEAD $, 
NEXT(Q)=R ••• TIE R BEAD AFTER NEW BEAD, COMPLETING THE 

SPLICE $, 
' VAL(Q)=I ••• FINALLY PUT rn THE VALUE THAT CAUSED THE 

COMMOTION $, 
GOTO LOOP .•• NOW READY T.o READ A NEW VALUE, SO GO BACK $ 

STOP$ FINISH( ) END FINI 

For non-trivial problems (the most common variety! ) this kind of churning 

~im greatly deepen a person's understanding of the problem. 

There is no other way to dispose of the "woods-for-the-trees" syndrome, 

It is not just playing games and should not be abused into just another type 

of coding-bum behavior. 

Instead it should be recognised aa an e .... ential component of truly competent 

software engineering. 

No matter what the problem. ncr, what your general scheme for attacking that 

problem may be, if you think sloppy and work sloppy and have a sloppy expres­

siOli. of the problem it is impossible to achieve' an elegant and powerful solution. 

You never ,will be able to see every facet and aspect at the start. Practice 

, and train yourself to recognize the good, solid features of each attempt as 

well as the weak points. Then maintain the good points [R=NEXT(Q=R) was 

discovered on the very first step and still is present in the final version! 1 as 

you successively resolve the weak points. 

In this way you will develop a profes,sional skill which will allow you to evolve 

an elegant solution to the most complex problems. 

Even as simple a task as making an c;>rdered list has, as we have seen, many: 

rich layers to be worked through. 

Study this example again and again -

Then go and do ye likewiselt ' ' 



= 

21 

SUBJECT: Example of Mechanical Transformation from Beads ' 
to Arrays. 

/ 
These notes summarize my lecture on the essentially-mechanical 

tran8formatio~ of the ordered-.list example ,n /; riA I 1 G. NUtlch 5, 14G8) 

from its .original bead-oriented form .to a form using arrays. 

The comparisons made between beads and arrays may be sUmmarized . . 
as follows: 

BEADS 

Object-oriented scheme 

'Component name selects 
property ' 

Pointer. selects object . 

ARRAYS 

. Property -oriented ·scheme 

Array name sele~ts' property 

Index selects .object . 

" 

N EXT · VAL 

NEXT(Bi)=NEXT(ii 

VAL(Bi)=VAL(i) 

r2J = Object l ' 

o 
1 

2 

Compilat~on Values 

NEXT $=$ 0 (integer) 

VAL ':,$"$ l .(integer ) ·· · .• X. ., 

Run-Time Values 

Bi is · LOC(pointer) .. : 
.' 

Compile Timl' 

No .'restriction on number of 
obJec;:ts 

-1-

NEXl' is LOC (pointer) 

V.AL is LOC (pointer) 

~ is index (integer) 

Fixed .number of objects allocated 



22 

6.687-22 March 21, 1963 

Run Time 

Dynamic sto:::'age allocation cost. No allocation cost, but rr~ust ch(.>ci<. 
range of index dyna.rnically for 
reliability. 

Conserves 

Flexibility Run time 

Costs 

Rlm time, , Flexibility 

But have common referent S".'ucture: A(B) means "Property A of Object E" 

We started with the following program for making an ordered list using the 

bead method. ' 

BEGIN ... FULLY EXPANDED VERSION / / 
• INSER T MAIN $, 
POINTER LIST, Q, R $ , 
INTEGER 1$, 
POINTER COMPONENT NEXT $, NEXT $=$ 0 $ , 
INTEGER COMPONENT VAL $, VAL $=$ 1 $, 
LIST=FREZ(l) • .. GET A "LEFT BOUNDARY" BEAD $, 
NEXT(LIST)=FREZ(2) ••• ATTACH A "RIGHT BOUNDARY" BEAD $, 
V AL(NEXT(LIST))=l C35 ••. MAKE VALUE OF RIGHT BOUNDAR Y 

INFINITE $, 

LOOP$ISI(GIN(I), STOP) ••. READ AND TEST A VALUE. GOTO STOP IF 
NOT INTEGER $;, 

, R=LIST •• • INITIALIZE SCANNING VARIABLE TO START OF LIST $, 

SCANS Q=R •.. INSIDE SCAN LOOP, Q REMEMBERS PREVIOUS BEAD FOR 
SPLICING $, 

R=NEXT(R) ••• MOVE SCANNING VARIABLE TO CONSIDER NEVI BEi\D $, 
IF VAL(R) LES I T HEN GOTO SCAN •.• IF VALUE IN L IST SMALLER, 

, KEEP GOING $ , 
NEXT(Q)=FREZ(2) •• , WHEN GET HERE V AL(Q)<1 < V AL(R) SO PUT NEW 

, - BEAD AFTER Q $, 
Q=NEXT(Q) •.. NO LONGER NEED OLD Q, SO POINT TO NEW BE11D $, 
NEXT(Q)=R • .• TIE R BEAD AFTER NEW BEAD, COMPLETING THE 

SPLICE $, 
VAL(Q)=I ••• FINALLY PUT IN THE VALUE THAT CAUSED THE 

COMMOTION $, 
GOTO LOOP .•. NOW READY TO READ A NEW VALUE, SO GO BACK $, 

STOPS FINISH( ) END FINI 

We first 'perform an essentially mechanical transformation in which the 

NEXT and VAL components become arrays. but the logic of the progra."!l is 

essentially unchanged. The main points of concern c.re: 



.. 

23 

6.687 -22 March 21, 1968 

1.) Changes in declarations 

2.) Initialization 

3. ) Free storage usage. 

Since obtaining a new N -word bead from free storage is equivalent to in~ 

creasing by one the ma..ximurn used ·index on N arrays, we could define an 

array-oriented free stor2.ge procedure 

DEFINE INTEGER PROCEDURE FREZ(N) WHERE INTEGER N 

TOBE FREZ=MAXR=MAXR+l ••• NOTE: N. IS NOT RELEVANT $, 

where MAXR · is as surned to ·be suitably initialized at first • 

. FREZ merely retu·rn·s· the next available index value. 

But sinc·e this proced;'re ·body is so short, we will choose to edit it into 

programs (with a maximum size check corresponding to the declared array 

size) instead of leaving FREZ cans. 

For the above program, the declaration changes are as follows: 

1. ) The pointer variables become integer index variables, along with I. 

INTEGER I, Q, R, MAXR $, 

LIST disappears by the convention that LIST as an index will always 

have the value 0, i. e., the list begins at the 0 position of the a rrays . 

2. ) The component declarations. become ar·raY· d,eclarations. 

INTEGER ARRAY NEXT (200), VAL $, 

Note that NEXT also is index-valued now. (The choice of 200 as · 

the size of the NEXT and VAL arrays is arbitrary. ) 

For th~ above program, the initialization· changes are as follows: 

1. ) LIST=FREZ( 1) disappears by the above convention that LIST:? O. 

2. ) NEXT(LIST)=FREZ(2) $, becomes 

NEXT(O)=MAXR=l $ , 

beCause LIST"O and the object with VAL=+co has ·index 1. 

3. ) VAL(NEXT(LIST))=lC35 $, becomes 

VAQ1 )=lC35 .$, 

because NEXT(O)=l by the previous statement. 

T h e remainder of the program is unchanged, except for replacing LIST with 

o and the above expansion and test for FREZ. So the first, mechanically 

produced array version is: 



,-

24 

6.687-22 

BEGIN ' ••• FIRST ARRAY VERSION I I 
• INSER T MAIN $, ' 
INTEGER I, Q, R, MAXR$, 
INTEGER ARRAY NEXT(200), VAL $, 
NEXT(0)=MAXR=1 $, ' ' 
VAL(1)=1C35 $, 

LOOP$ , ISI(GIN(I), STOP) $, 
, R=O $, 

SCANS Q=R $, ' 
R=NEXT(R) $, 

March 21, 1968 

IF VAL(R) LES I THEN GOTO SCAN $, 
IF(MAXR~MAXR+1) GR'):' 200 THEN GOTO TROUBLE $. 
NEXT(Q)=MAXR $, ' 
Q=NEXT(Q) $, 
NEXT(Q)=R $, 
VAL(Q)=I $, ' 

' GOTO LOOP $" 

TROUBLE$ GOUT(. C. lOUT OF, STORAGE/) $, 

STOPS FINISH( ) END FINI ' 

'This prog"am will execute faster ' than. the ,bead ver'sion, ' even though its ' 

strategy is the same, becau~e of the much simpler FREZ mechan.ism. It 

is , rigid, in that it will accept no more than 200 values, and occupies the 

same storage for one value as it does for 200, but supposedly that was an. 

,',' acceptable price ,to pay for shorter' runrnng time. But we 'have done no 

honing, as yet, to see if that running time can be .impJ;\o,ved. If we look at 

the program. however, we see that since the strategy has been left un­

changed by this first mech'¥lical transformation, no, ne'v changes suggest 

themselves except to move the free storage IF expression up to follow LOOP, 

so that if we do not STOP',., but do '" run out of sto"age, the program halts 

as soon as possible. (Note that this has the effect of repl,acing FREZ(2) by 

MAXR in the original bead version.) 

, A technique 'which is always possible when transforming from a be;3.d­

oriented program to an array-oriented program is to t'ake some pointer 

component and treat it as the basis for the object-naming scheme, in which 

cas~ the array representing that component may be eliminated entirely. In 
, ' 

other words. if we choose 'to numb~r objects not in the sequence of creation 

(as the above MAXR version of FREZ does)" but in the "natural" sequence 

given by a component such as NEXT, then for the entire NEXT array we would 

have 
NEXT(i) = HI 

so we don't really need the NEXT array. 



25 

6.687 -22 March 21. 1968 

1£ the order inherent in such a NEXT component is immaterial. 

this "natural" sequence can just as well be the FREZ creation sequence. 

and this process pf eliminat~ng Nj;;XT saves storage at no co rresponding 

cost of time. 

If. however. the order inherent in NEXT is a part of the problem 

model it~el£ (as in the present case of 2.n ordered list). the saving in storage 

must be paid for by an incr~ase· in run.."ling time. 

The fact that order "is important says that FREZ must be affected. 

In particular. consider a (horizontal) VAL array before a new object is 

created: 

R-l R 
o 1 2 ,I, 3 , J. 5=MAX:B. 

VAL ~I ____ ~IL-____ ~I~ __ ~I __ ~-L ____ ~! ____ ~!~u=n~u=s=e=d~ 

Suppose the new value ,must b,e inserted bet·ween VAL(R -1) and V AL(R)." 

Then all value,s from VAL(R) on must be moved up one place to !'make' room" 

fo'r the new value. 

This may be, done neatly in increasing orde r by introducing two 

temporary variables to hold values: 

L$ 

INTEGER p. R; X, Y. MAXR $. 
P=R $. 
X=VAL(P) $. 
P=P+! $. 
Y=VAL(P) $, 
VAL(P)=X $, 
IF P ,EQL MAXR THEN GOTO DONE $. 
X=Y $. 
GOTO LOOP $ , DONE $ 

But the sa.'TIe 'job is done even more neatly with no temporary storage; if it 

is rnerely done backwards: 

INTEGER P, R. MAXR $. <1-1..,.'_-. 1 
P=MAXR $, -!-> --\-"> :"l~::::::' 

MOVE$VAL(P)=VAL(P-l) $. I i 
IF (P=P-l) GRT RTHEN GOTO MOVE $, ' 1...:-__ --' 

This 'may be used to write a general-purpose pair of procedures to !J.ancile 

t::l'ee storage for arrays when index prder is important. 



26 

6.687-22 March 21, 19 68 

INTEGER PROCEDURE AFREZ. . . . IN OUTERMOST BLOCK $, 
DEFINE ?ROCEDURt:: SET. AFREZ (ALLOCATED. SIZE, VAL) WHERE 

INTEGER AL!..OCATED;SIZE $, INTEGER ARRAY VAL 
TOBE BEGIN Il\TT EGER MAXR $, MAXR=-~l$, 

DE?INE :N'i:'EGER PROCEDURE AFREZ(P) WHERE INTEGER P 
TOBE BEGIN INTEGER 0, R $, 

IF(R=MAXR =(O=MAXR)':'l ) GR T ALLOCATED. SIZE 
THEN BEGIN GOUT (. C. l OUT OF STORAGE!) $, 

FINISH( ) END $, 
MOVE$ VAL(R)=V AL(O) ~; , 

END 
END ~; , 

IF(Q=(R=O) - l) GRT P THEl'{ GO TO MOVE $, 
VAL(P)=O $; 
AFREZ=P 

By declaring AFREZ globally, i t may be called from any bl ock. A c <'.11 "Co 

SET. AFREZ 

SET . A"REZ(200 , ANY. A~RAY) $, 

,vill cauSe future AF EEZ cal!s 

AFREZ(13) $, AFREZ(!47) $, etc. 

to rnakc ~he spcciiio<.~ positions zc:,o after moving the necessa ::y VctlU0s alr(;2.c.y­

pres c:~t in ANY. A?.RAY out of the VJ:'-Y. Note tl1at AFREZ assumes its 

argument sp ... ~ciiies ~!l a~. ::eacly -occ t~.?icc: :i"!.C.CX. Car.. you fix it so tha.t th:s i s 

ci"i;aBl' checked 0::;- C~;.lSC5 no ?roolern? c:::': y o u choose the "causes no F:.:oble:1''l. '1 

challenge , you must some!iow aU3:n0nt t:1e concl..~pt of this kind of 3.1"ray - hz.I:C,::'in!';: . 

1. 0 ., it is not c~ca~ th3.t ~ee <:linr, r'l-"1.c!om in~e 6crs between 0 anci. 200 to AF]~:~Z, 

c ausing it to Ilmake !."oom ll
, C2.n pe:..-fo rn1. ;:;.nyth£ng useful wi;.:hout a major 

chang e of strateg y .:1r.d concept . Ie there a !Irnore general" AFREZ , or mr!.st 

VIC just pfttch it to chec~( the vali d:i.i:y of P?) 

\Ve may mn...Ke a tlno -~EXTlI ve:"sion of the orde red list problem in 

<':.11 almost -mechanica~ fasaion as ~o:"lows. Ag2.in we must only wor'l'y about 

declarations, initiali7.at::"on, ane. free s'toI'a~e , with the new concern about use 

of NEXT. The first cha.'1ge we encou.."1t~r is to omit the dec l aration of NEXT: 

INTEGER ARRAY V AL(200) $, 

Then the initialization cha!1.g:es: There now is no need for a l eft -boundary 

object so 

NEXT(O)=MAXR=l ~) '.J eco~.y;.ec 
!v1AX.R=O $, 

a!1t~ VAL{l}=lC35 $, 0eco~~s 
VAI..(O)= 1 C35 $ , 



27 
6.687-2? 'March 21, 1968 

After reading in a new value, thefree storage index ancl Clieck of IVJ.AXR, 

which was moved up in the program; is ok. Then R,"O $, will properly refer 

to the initialization object, so we next consider Q=R $,. 

Now, Q was used only to perform the splice in the bead 'strategy (and also 

in the mechanically Produced fi~st array version which di'd riot change the 

strategy), so it can be omitted from the declarations and from the progl"am. 

(This could be mechanically deduced from the fact that, Q only plays an 

essential role in NEXT manipulations.) 

Therefore Q=R $, becomes a mental note to USe R in place of Q in what 

follows. 

The next statement, R=NEXT(R) $, has three ,effects: 

1.) !n no-NEXT terms it becomes R=R+l $, 
2.) It causes us to alter the mental note to replace Q by R-I ' 

3.) It forces us to reconsider the R=O $, that' we skipped ove". 

It must now beco;ne R=-I $, since the - co o'pject was l eft out. 

The SCAN loop is satisfactory, but now we encounter the insert ope>;ation 

with R set to the lowest value that must be moved. Instead of using AFREZ(R) 

(which would index MAXR agai."l) we .write in tha working stat,ements them­

selves (expanded for clarity) after adding a new integer P to the, declarations: 

P = MAXR ••• STAR T EACKW ARD SCAl." $, 
'"'WE$ VAL(P)=VAL(P-l) ••• MOVE EACH VALUE'S, 

P=F-l •.• COUNT DOWN $" 
IFF GRT R THEN GO TO MOVE $, 

Now R is available for storing tl;le new value in I. Note that old R is, now R+1. 

But let's see how the mechanical process confirms that I should be stored 

in VAL(R). 

The previous program ~aid 

NEXT(Q)=MAXR $, 

referring to the n,ew,free index as MAXR. The above MOVE loop has n"lade 

R the new free index. We have a mental note that Q is really E-I so 

NEXT(Q)=(R~I)+l=R is R=MAXR, checks ok. 

Next the previous progra..'7l said' 

Q=NEXT(Q) $, ' 



28 

6.687-22 March 21, 1968 

so we again change tho menta l note to say that 'now Q is really R, as a1;>ove. 

Then the previous program said 

NEXT(Q)=R $, 
" , 

i. e . , NEXT(R)=old R=R+l, which checks; 

So when the ,previous program said 

VAL(Q)=I $, " 

our latest mental note that Q is really R says 

VAL(R)=I $, 

as we expected. 

So the tlno-NEXT" version of the ordered-list program which aga~.n has been 

produced by essentially mechanical means is: 

BEGIN •• , NO-NEXT VERSION / I 
;-INSER T MAIN $, 
INTEGER I, P, R,MAXR $, 
INT EG:SR ARRAY VAL(200) $, 
MAXR=O $ , 
VAL(r)= lC35 $, 

LOOP$ 1S1(GIN(I), STOP) $, 
IF(MAXR=MAXR+l) GRT 200 THEN GOTO TROUBLE $, 
Cl.=-l $ , 

SCANS R=R+l $ , 
IF V AL(R ) LES ,I THEN GOTO SCAN $, 
P=MAXR $, 

M U 'E$ VAL(P)=VAL(P- l) $ , 
IF(P=P-l) GRT R THEN GOTO MOVE $, 
VAL( R)=1 $ , 
GOTO LOOP $, 

TROUBLE$ qoUT(. C. IOUT'OF STORAGE/) $, 
STOPS FINISl-I() END FINI 

Once agair~ we must exc.mine the progra.rtl: to see if further honing is pos sible. 

In this case, since droP?ing out NEXT has changed the strategy somewhat; 

we can ma)<e further progress to ta.1<e advantage of the properties of arrays. 

The relevant question to be asked is: Why count up for the scan and then 

,count down for the move? 

R 
ISCAN I 
j ~ ... v 

P 
I MOVE· v t".: l 



29 

6. 687 -22 March 21. 1968 

Sure enough. the SCAN and MOVE loops are complement" of each other 2.S 

far ?s locating R:io concerned, so e~ther one can do the work of the other. 

(Just as VAL(MAXR) LES I C35 do"ls the same jOQ as the oJ.d NEXT(R) EQL 0). 

The SCAN loop has only to be aware of the order. but the MOVE loop must be 

done as written in order to move the r equired values to I1 m~ke room". 

Therefore. the backwa.rd MOVE loop is the one to take as a basis . 

So the neW s t r ategy is to move backwards 'through the VAL , a rray lmtil a 

va.lue to be moved is .. LEQ the new value in I. That value will not be moved.. 

the loop will stop. ,and I will be put in the vacant s lot. 

BEGIN 
• INSER T MAIN $ . 
INTEGER I. Q. R. MAXR $, 
INTEGER ARRAY VAL(200) $, 
MAXR=O $. ' 
VAL(0)=IC3S $, 

LOOP$ ISI(GIN(I), STOP) $, 
IF(R=MAXR=(Q=MAXR)+I) GRT 200 THEN GOTO TROUBLE $, 

SCANS VAL(R)=VAL(Q) $ , 
IF VAL(Q=(R=Q)-l) GRT I THEN GOTO SCAN $, 
V A L (R) =I $, 
GOTO LOOP $, 

TROUBLE$ GO UT(. C. lO UT OF STORAGE/) $, 
STOPS FINISH( ) ]i;ND FINI 

This seems to be the best progr<>.In for the revised strategy. Note that this 

"no-NEXT" version has the same dgidity as the previous array version, 

t akes half the data space , but requires more run.'1ingtime due to the need to 

"make roorn ll for new values. I~ takes less time than the previous nh~cha.nically 

derived "no-NEXT" version, but the scan loop of both of these versions has 

more operations than the scan based upon the bead strategy. Except for small 

numbers of values (in which cas e the FREZ overhead is significant) the bead 

strategy is faster, the first array version being the fastes t s o far developed 

here. 

Notice also that this ~ersion is g ood for the ordered list problem as stated 

here, but that it does not work well if duplicate input values are to b e discarded 

(as in symbol tables). The previous versions, which only exercise ' free storage 

when an insertion is to be made are all applicable, however. 



30 

6. 687-22 March 21, 1968. 

If the frequency of duplicates is very high (as it is in the case of symbol 

tabl es) then it is il:nportant to improve · the scan speed. T:,e previous "no-NEXT" 

version will 2.11ow a logarithmic search to be applied between 0 and MAXR for 

this purpose. 

The resulting scheme m2.y ';ven be preferable to a: hash-coding scheme, since 

the list is always maintained in order . . 

The point of all this has not been to solve the ordered list exc.mple· i n ~v,'n 

more ways, but to illustrate how t~e bead approach can pe transformed into 

the array approach by an essenti2.11y mechanical process, including the 

elimination of a NEXT component •. 

The bead method, with its· explicit calls in FREZ and FRET., shows precisely 

when objects come into existence and when they are ·no longer needed. The 

corresponding ~n:forma.tion is diffused in the array scheme. 

The bead approach, being object-o.riented is the closest match to the abst!"act 

mechanization-free concept of, t?-e problem. It yields the most complete .£..vert 

expression of the problem, and thereby makes a good b2.se for these essenti<:lly 

m~chanical transformations~ 

Finally, the b ead approach gives the most fl exible debugging and running 

environment, and the transfor.mation .. 'to uloray form even for a ·production 

system may not be warranted • . 



31 

APPENDIX C 

Suggested further reading:-

1. Douglas T. Ross . "The AED approach to generalized computer­
aided design." Proceedings A.C. M. National Meeting, 1967. 
pp. 367-385. 

2. Douglas T. Ross. "The AED Free Storage Package" 
CACM.!E, 8 (August '67) pp. 481-492 


