Data Structure and Storage Management by Dr. D.T. Ross

Lecture 1 M.I.T.
Intreduction

| do not believe it is worthwhile for me or anybody else to provide
recipes for '"data structures" with any claim for general utility, particularly
at this stage of our knowledge. Instead, | want to stimulate your minds with
some ideas which allow data structures to be considered in general, in a
sensible fashion. | shall start this stimulation with the dogmatic assertion
that there is no such thing as a data structure by itself, even though such
things are discussed and written about in the literature. To me a data
structure is only part of the more general idea of a model, and without
this broader interpretation data structures as such are not meaningful. There
is also no single data structure useful for many purposes, although the general
ideas of data structures can be manipulated in many ways. The key point is
that the data structure is a very important part of a model and the data structure
form must be selected to suit that model. In this first lecture | wish to discuss
the question "What are data structures about?" In the next lecture | want to
talk about storage allocation which is at the central core of data structures,
and finally, in my last lecture, | want to take a high-level view of a very
general kind of data structure called "abstract strings", and see how they fit into
the general picture.

Much of material in these lectures is based on an experimental course called
"Software Engineering" which | have given once at M.l.T. Its general concept
is to give software a firm basis and also to do things; so that students end up
having the idea of building a model, and can also make use of the general and
powerful concepts they learn elsewhere in the Computer Science courses.
However the M.l.T. course is done in a different order from the lecture | will
give here because there we start with lectures on AED-0 language (Algol
Extended for Design). This language, which is an extension of Algol 60 (to
include such ideas as pointers, variable length character strings, optional number
of parameters: in a procedure call, store a procedure name in a data structure)
is used as a vehicle to express. the ideas of the course. We have found most
students (even those with considerable computer experience) have difficulty with
the concepts of a pointer. Experience gained using AED=-0 enables the students
to grasp the more general concepts later. As yet | have not developed a
rigorous mathematical treatment of all the ideas since they are still too flexible.
Starting with the generalities (as | must do here) leads to problems of compre-
hension, since the experience is lacking.

Modelling in General

This will enable us to see Data Structures in their proper setting. We
define a PLEX (from PLEXUS meaning an interconnected network) as a complete
model of something (either abstract or concrete) which must have

a) Data
b) Structure
c) Algorithms



What we want to do is talk about modelling in general, and for this
we need the full set a), b), and c) above, and not just talk about the
structures in isolation as is so often done using figures such as f_ 7 _—=> .
We will see that we can change the data structure part of a model without
changing the model itself. We will now -define terms used in giving «
representation of the thing being modelled.

Ideal (Idealised Model or ideal plex)

Mechanize an Ideal by choosing a mechanical form or partitioning of the parts

of the model.

Implementation of the plex. Finer and finer partitioning of different mechaniza-
tions leads to a detailed level we refer to as an implementation.

The programming language fits in as a way of expressing the various
models. To be able to choose different mechanisations we want to separate
data and structure from the algorithm part of the model. A data structure
is composed of elements with comEonents which may be thought of as records
with fields. An Ideal component is represented by 'read' and 'store' procedures.

| v \ e.g. (i) value:= read (component name)
e o |

(ii) store (componentname, new value).

At this level the structure of the data is unimportant; we may think of the
procedures representing somehow a "box" containing a "value". An Ideal element
is a collection of ideal components, and we have "create" and "destroy"
procedures for these ideal elements. To describe an ideal element we need to
know what storage boxes (components) make it up, also we need to know the mode
or type of value for each component. An element type is a cartesian product of
components. An ldeal Plex describes models which can be built from ideal
elements, and we have procedures "growth" and "mouse", which are a critical
part of the total model for they generate and manipulate specific data structures.
The "growth" algorithm is the set of rules for building structure with the proper
relationships amongst its parts. Thus it corresponds to the parsing algorithm, the
grammar for a given plex type, if you will.

The "mouse" algorithm knows how to step through a data structure in an
orderly fashion, i.e. it linearises the data structure. The key thing about a
mouse is that it allows you to describe the rules for an operation in atomic
fashion in such a way that the operation is induced to a higher level automatic-
ally, regardless of the complexity of detail.

N.B. There are several mice possible for a complex data structure, e.g. for
the algebraic statement A : = B+C; two possible mice are :

i) 2/
-_J

" this mouse gives the semantic

parse showing evaluation sequenc




e i this is the syntactic mouse
P ":v \ e.g. to print in algebraic notation.

Once defined the sets of procedures (read-store, create-destroy, and growth-
mouse) constitute a generic definition of a type of PLEX of which there may
be many specific instances. (Notice that the mouse with the destroy procedure
as operation rule is the inverse of the growth algorithm).

As an example of the way a growth algorithm grows a data structure,
consider several state variables So, §,,-- Si“ S'n'

‘-(; &) 5-. | S -J‘

o
} Y

Ny U 15 : 1 |

‘u/ by ; 7

e —~ f,:_‘ e
._-". l’n\w _,-? }“‘-‘_ .\\
/C; ST n o/

/|\

All the connections are considered to be points (even if they are not they can
be made to be). Each S "holds" an element in a given state of completion.
Whenever a new connection is made (depending upon the contents of the total
sets of S,'s), the modified element must be moved to a new state variable,
thereby changing the total state (all S.'s), so that another connection can be

made. Whenever activity stops, a new element is created for S o 5° grow th
continues.

To show that data, structure, and algorithm all are important, but may
take different forms, consider these examples :

- ——

T .
/" e ]:‘l ]ll)(-.
! 4 hepime i
g y ,.( 1
Ve A )
., (
;. -
L 5 "
Ve —— t .
ht‘ﬂﬁ' ~ f ' -— -
i [RTCTTRY A "‘
_{' : X t i
by i % |
o e / g e
b fit] g Lu= |
At ==

This data structure alone is not sufficient for a PLEX. It could be anything -
for example, the top 2 books on the best seller list, as well as a line in two
dimensions. If we add a definition of a metric length (1, ) = /x**y? , now
we have a PLEX, since it includes interpretation. The data structure form also



may take radically different forms. Returning to the example of a tree given

before, a typical node is shown. "Precedence" information (the solid and dashed
iy et arrows) takes 30 bits (on 7094) in this form,
/ but the octal stream mechanization takes no
g bits at all, because you can store information
‘ \_1 in the algorithm rather than in the data
94 - structure. However, while the 30 bits

2 transform: to 0 bits, a new "context code"
which was 0 bits must now occupy 3 bits in the octal stream form. Thus we see
aspects of the model changing between data structure and algorithm domains as
we change mechanization. The precedence form is a good mechanization for
changing as all the pointers are there, whilst the octal stream form is linearised
and hence is easy to put out on disks and is relocatable etc. etc. These
different characteristics of radically different mechanical forms of the same ideal
model are the primary reason why it is not wise to speak of data structure alone,
but only as part of a total plex model. It is also important that the programming
language used to express plexes allows mechanizations to be changed easily to
suit various circumstances.



Lecture 2

Summary of previous lecture

| should like to start by going over the main points and definitions
in yesterday's lecture. We defined the complete model as a PLEX which
had to have a) Data b) Structure c) Algorithm. Plex definition specifies
a generic type of model of some high-level entities (e.g. Symbol tables,
I/O systems). The algorithm part describes the interpretation of:the data
structure, and we customarily leave this interpretation fixed. Another part
of the algorithm complements the data structure part of definition (e.g.
algorithms "growth" and "mouse"). When we leave the algorithm part
fixed we work with specific instances of grammatical data structures. The
Ideal definition is a starting point in which we map all of the data and
structural aspects of the definition into the algorithm domain. We also
leave the interpretation parts of the algorithm aspect unchanged.

A Component is the finest level of structure (a "box") holding a
single datum (unspecified except as to type) and is characterized by read/store
procedures.

Out of these we build up to elements, which are cartesian products of
the components, and are characterized by procedures create/destroy. Thence
we reach Plex structure, characterized by procedures growth/mouse, which provide
the basis for control of complexity in specific models. The growth algorithm
grows the data structure according to the proper rules, and the mouse algorithm
allows one to extract information from the data structure in a desirable order,
no matter how complex the detail of the specific data structure may be.
These algorithms allow us to treat the entire data structure as a whole but
work with only a limited amount of local information at any one time. Because
the algorithms growth and mouse are integral with generic definition they can
induce local operations to the proper global operations on the entire complex
data structure.

Given these definitions our picture of information processing can look
like the figure below :

i e r————iens

—— | i

—

’ 27N |

PLEX A I Operator } PLEX B =% PLEX C |

A (Operster) —

- " o . . 77" where Plex A

~ v

. o and B are actual
- e B \ Data Structures

i
|
!
' Y
Two mice run round Plexes'A and B and

pick out (using read procedures) the right

element to be operated on by the operator.

The operator combines these results and
feeds the growth algorithm.

The growth algorithm
grows Plex C (using
create and store
procedures) .



\

SEPARATE
FACTORS -

Plex Factor

An important idea is to factor and compose generic plex definitions.
In general, the treatment of encoding of type information, for example,
can be treated as a separate 'plex factor' that can be put together with
many other things. Another instance is the storing and manipulation of
names of things. We can compose these with other factors, such as co-ordinate:
data, in different combinations. Taking the individual "create" procedures
for each separate factor we define new elements which are the cartesian product
of all 4 components. When defining the new procedures, we also carry along
the type constraints for each of these factors.

oo | i COMPOSED
type - , "
> i type
name .
g x coord.
- it . /7y coord.
.y coord B o

This is the major reason why we want to keep the specific imple~
mentation or mechanisation separate, but still have. the meaning carried
across.

Re-defining of implementation details is often necessary when putting
these "plex factors" together, e.g. in one structure type 1 may be a line,
type 2 a point and in another structure type 1 may be a real number, type 2
a boolean expression. If we put these structures together we wish to resolve
the type clash automatically. We do this by just re-defining the read/store
procedure and create/destroy procedure bodies without re-defining all the
algorithms that depend on them.

An individual plex factor is representad by a set of programs; a
programming language is the notational vehicle for expressing these ideas

and making things work. Thus, an :

Integrated Package of routines is the physical representation of the plex factor.

These procedures have a common set of declarations of such things as global
variables and global data structures. The individual procedures are not only
for building and manipulating data structure, but they also express the intent
of the package. There are several kinds of routines in the package.

Atomic routines. The choice of these is most important because if they are

too complex the system becomes rigid. It is necessary for these atomic routines
to combine easily with others. The full set "spans the space" (in the sense of
basis vectors of a vector space) of the plex factor.

Molecular procedures - these are procedures which could be written as

combinations of the atomic procedures, but we include them for convenience
as an integral part of the package. (The basis need not be minimal, and is
more useful if it is not).



Sub-atomic procedures - these allow you to go down into the actual imple-
mentation machinery, e.g. in our example to change the encoding of type.
Every integrated package is therefore a representation of some plex factor,
and it is important to have automatic means for modifying and combining the
programs of packages to compose factors.

Free storage system - we will take this as an example of an integrated
package. The objective isito represent any piece of data structure by a
piece of storage. Assume storage is word or byte oriented.

A Bead is a number of contiguous words of storage and is a good
implementation of an element since we can use the addressing mechanism of
the machine to carry out recd/sfore actions on components. When you are
making a data structure you will have beads of different sizes e.g. 2 words,
3 words etc. It is better to keep these different size beads separated. |If
you do not, you have what has been called a "heap", and this necessitates
a sophisticated garbage collection in order to use store which has been
released after use. As we build our data structures we often need something
equivalent to the scaffolding used in erecting a building. We must handle our
storage such that we can throw away this scaffolding wholesale when we are
finished with it, without leaving physical storage peppered full of odd-sized
holes.

Storage Zones. In storage we have the following zones :

Infinity zone (from which all user storage is derived)
Header zone

Extension zone

These three make up the Divinity Zone, which is given storage by the
operating system.

We require the ability to chop up available store for different purposes
and then further sub-divide for sub-purposes. For example, the Infinity Zone
may be divided up so that it is the "parent" of two zones, zl and z2.

Initially only part of the Infinity Zone is allocated to z1 and z2, so that the
remainder can be parcelled out gradually depending upon which one needs more
store and when. z1 and z2 can be further sub-divided as shown by the diagram

overleaf. - This gives a nesting facility.



I

| INFINITY ZONE‘

¥ ' s
PAR/ / SON \ PAR
e N l'“i g
|2 BRO__. | 27 ‘
L s " it T
\\
PAfV / SON - ™. PAR
A= a2y
i il < - :
f E_ 1 BrRO 7 ]-__ el
ZONE HEADER " INFINITY ZONE
ZONE HDR ;
To Parent
a o]
@ PA |
[ »SON
To Son\'{ A

EXT HDR,

EXT e >t NXT HDR- e /
BDS ... START =7 STT T T
S S R P I ERIRAEENE
BDSIZE 2 !
S S—— - g
EXTSIZE | BT
IR Ly NXTHDR| NN
Bopaninud L e " / / i
START s !
—_._—-_—~l ['
J ¥

In the zone header the pointers PA, SON and BRO are self-explanatory. EXT

points to the "extension header". BDS starts a chain of beads of store currently

available in z1. In the extension header, EXT HDR , there are three pointers:

(i) NXT HDR points to the next extension header, EXT HDR, .

(ii) START points to the beginning of the first address in the infinity zone allocated
to that extension.

(iii) NWDS specifies the number of words in that extension.

Another factor of the zone header specifies the beadsize (BDSIZE) of beads in
z1 (assumed to be all the same size) and the size of extensions (EXTSIZE) which
should be requested, when current storage is exhausted.



The zone and extension headers are the machinery of the zone and
we will now give some simple examples of the procedures used :

Example 1
Procedure to define a new zone

z := DEFZONE (INITSZ, EXTSZ, BDSZ, FHELP, ZONE)

where z is the zone pointer, which references this kind of data structure
created by the call on DEFZONE.

INITSZ is the initial size of store to be made available = it may be zero
EXTSZ is the amount to be made available for extension each time
BDSZ is the bead size

FHELP is a user supplied procedure to help the basic free storage procedure
overcome any insoluble problems

ZONE is the parent zone

This is the create procedure of the free-storage plex.

Example 2

Procedures to take and return bead B of size S from ZONE, Z.

B =: FREE (S, 2) In the body of FREE there is a piece of program which

looks for storage in its own zone but if none is
PREF 48, B, Z) available it asks for storage from its parent and so on.

N.B. The parent of the INFINITY zone is the operating system and thus at only
one point does storage pass down from the operating system.

FRET returns B to the BDS chain for satisfying a later FREE request.



10.

Lecture 3

In this lecture | would like to draw together the ideas of the
previous lectures to show that different types of data structure are often
very closely related. In order to do this | want to use the example of an
abstract string. The concept of an abstract string we wish to use is not
the Algol definition of character string, but a string of arbitrary elements.
They can be interconnected elements when a single element may be
simultaneously on any number of strings and indeed may initiate any
number of further strings. ... .Things grouped together in a string are
"similar in kind" in some way. A string is an ordered set with behavioural
properties as well. Lists, stacks, rings, queues, hash-coded tables, etc.
all are instances of strings. Each string has a rule for describing the set,
e.g. all A's, either A or B, etc. and the other properties of the string.

[ SIRING B RULE

F irs{.t next  next

=30
A string is modelled by elements of the following kinds :

1. bead Next, Value

2. string Type, First

3. String type several "basic functions" giving

the rules for that string type.

Properties of elements.

bead =N ». next

N
'\ia(ue
We need basic functions to tell us how to obtain first, next, value, how
to search, and how to copy. These functions are :

FIRST F )

NEXT F ) read-store pair
VALUE F

SEARCH F

COPY F )

create-destroy pair



1.

These are the algorithms which give the behaviour. High-level string
manipulating functions call on the basic functions. For example, using
the AED-0 language, the string package procedure FIND, which finds
a value on a string, and if there is no such value calls the bead-valued
procedure beadpro, is as follows :-

DEFINE POINTER PROCEDURE FIND(VAL, STRING, BEADPRO)

WHERE INTEGER VAL ; POINTER STR ;

POINTER PROCEDURE BEADPRO ;
TO BE BEGIN GTCPT =RGTC (FIND.C, STR) ;

FIND = DOIT (SRCHF (GTCPT), FIND.C, VAL,
PREV, STR, BEADPRO, GTCPT, RETURN);

END ;
DOIT is an extension of ALGOL 60 which takes the first parameter (in
this case the search function SRCHF) as a function designator with the
remaining parameters as the parameters of this function. DOIT (F, X, Y, Z);
is the same as F(X,Y,Z); RGTC stands for Read Generalised Type Component

of the string STR to give access to the required set of basic functions. The
string type is represented by a bead of the form :

GTC t>’P"-----——>rF|RST : v
g NEXT F >
; VALUE F 5
SEARCH F = S
: COPY F >

Where each component contains a pointer to one of the basic functions.
Such a bead is created by another function (not given here) to define
a new string type using a particular set of basic functions.

So the action of the above procedure, which is to find a value on a string,
is to call the RGTC procedure (which is supplied by the define and which
knows about the encoding of the STR types) and from this we get a GTC
pointer (GTCPT). We look up the search procedure (SRCHF) with

respect to this GTCPT and this search function gives the required aspect of
the string behaviour. The search function is a sub-atomic type of routine
as are all basic functions. The arguments of DOIT and RGTC are there for



12,

the following reasons : FIND.C is a parameter which informs the procedures
RGTC and SRCHF that they are being called by the FIND procedure. It is
therefore the context of the call. It can be interpreted to point back

through several layers of procedure calls, which is of course useful in
error tracing situations. VAL, STR, BEADPRO are from the specification
part.

PREV is a global pointer variable which couples the search function to
other basic functions and other high-level string functions. SRCHF will
set it to point to the bead previous to the found bead (i.e. such that
NEXT(PREV)= found bead).

GTCPT and RETURN are very interesting arguments.

They allow one to get more features in. The first one allows the use of
extra parameters with the type definition which may be added as a "tail"

to the GTC bead and used by the basic functions. The second one (RETURN)
allows one to put in an arbitrary number of additional arguments with a local
call (in this case the call on FIND), so that still further special parameters
can be made available to the basic functions, such as SRCHF. Here all of
these elaborations are expressed in AED-0 as run-time features, but other
parts of AED-0 can be used to automatically eliminate features that are not
needed in a particular application. Thus the very abstract string concept with
any number of basic functions is reduced to what you require and gives an
efficient program in a very highly automated fashion.

Example of a Stack as a type of string. STKBD (Stack Defining Bead)

L. \' GTC fypePi = oo sens >J FIRSTF , S
| - |
| I
FIRST (3_..;___.. I_ z NEXT_FW_- S
| VALUE F = S
i BEARCH Fadoeten sy
COPY F = 3
== IR
|
MERT myoesemsy




13.

The NEXT F for example could be :
B1 := NEXT (B, S, L);

which says get next bead after bead B with respect to string S and if
none exists go to label L. The test for stack empty will be in the body
of NEXT F and therefore can follow any desired convention. Similarly
for the other functions.

At this stage questions were asked on what form are the elements of
a string if the element belongs to several strings, and also on the efficiency
of implementation of the general concepts. While answering the questions
the lecturer explained that the crucial point of the whole approach was to
have high-level techniques for handling entire programs as though they
themselves were objects. You have to modularise and factor your thoughts,
express those thoughts in terms of these techniques, and then map from one
mechanization to the other using facilities such as AED provides.

An example considered in the "Software Engineering" course at MIT
was the ordered list. The examples given in APPENDIX A and APPENDIX B
convey the ideas of alternate mechanizations of a single ordered list concept,
and also illustrate the "massaging" of program expressions to achieve concise
formulations.

Finally, in reply to a question, the difficulties of preparing and
grading examination for the "Software Engineering" course, which deals
with such general concepts, were discussed. A book based upon the
course is now in preparation and should appear in mid-1969.



APPENDIX A 14

#

— - — e
g— — p—— —_—

— — - —_—
— — — —

% SUBJECT: Example of Discovering the Essence of a Problem

The enclosed notes summarize my lecture on writing a program
to make an ordered list, accepting integer values between 0 and 10, 000,
The strategy selected was to insert each new value at the appropriate place
in a growing list of beads with NEXT and VAL components. Other strategies
are, of course, possible, and depending upon other unstated conditions,
some different strategy might be preferable. But whatever strategy is
selected, the same process of honing the expressions of the problem to
achieve the most elegant formulation should be followed. Only when the
redundancies and irrelevancies have been removed from each of two
strategies can those strategies properly be compared

Each of your homework and computer assignments should be subjected
to the same process, insofar as you are able.. Developing skill in these
techniques is an essential foundation upon which further true software
engineering can be based. The process exemplified here is not necessarily

‘a time-waster and an expensive luxury. With practice, the disciplined

evolution of clear thinking expressed in clean-and elegant programs can
shorten the debugging process far more than sloppy work performed in a
mad and ill-directed rush.

‘Later in the course, we will be working with vei-y'powerful concepts"

- and approaches, As with any other instance of increased leverage, these

powerful techniques can turn into ugly monstrosities which do more harm
than good, if they are not properly applied. At that time, the importance
of the elegance and precision which can only come from skill in these basic’
ma.nipulat:.ons will be qulte a.ppa.rent.

Note in part:tcnla,r the final versions of this ordered list example -
one for the machine and one for other people. In order to allow me to
understand your programs well enough to evaluate them and offer helpful
suggestions, would you please emulate this format in work you hand in,
as well. I recommend highly that you make these neat and complete versions
before running on the computer, for the discipline of adding detailed remarks
to explain the program frequently will show you weak points or errors in
your current formulations. Excessive wordiness is not requried. Add
pictures of your bead structures and use crisp English as well as AED
language constructs. Assignments will turn out short if you do them well,



15

We started with this simpler problem already solved-
BEGIN ... PROGRAM TO COLLECT VALUES //

LINSERT MAIN U: Www
POINTER LIST, P §, E vAL
INTEGER I §,

POINTER COMPONENT NEXT $, NEXT $=$ 0 $,
INTEGER COMPONENT VAL $, VAL $=$ 1 $,

LOOP$ ISI(GIN(I), STOP) ... READ NEW VALUE INTO I, STOP IF NOT
INTEGER $,
VAL(P=FREZ(2))=l ... PUT IN NEW BEAD "HELD'" BY P §,
NEXT(P)=LIST ... TACK OLD LIST ONTO NEW BEAD §,
LIST=P ... UPDATE LIST TO INCLUDE NEW BEAD $,
GOTO LOOP ... REPEAT $,

'STOP$ FINISH( ) END FINI

Then starting with the major idea of scanning and splicing~-
BEGIN ... FIRST TRY TO MAKE AN ORDERED LIST //

. INSERT MAIN $, m-r_-,@—“ R NewT
POINTER LIST,P,Q,R $, ;@f ik
INTEGER I $,

POINTER COMPONENT NEXT $, NEXT $=$0 $,
INTEGER COMPONENT VAL $, VAL $=$ 1 $,

LOOPS$ ISI(GIN(I), STOP) ... SAME IDEA AS BEFORE $,
VAL(P=FREZ(2))=I $, -
R=LIST ... INITIALIZE SCANNING VARIABLE $,

SCANS$ IF VAL(R) LES I THEN BEGIN R=NEXT(Q=R) $, GOTO SCAN END
... Q MARCHES ALONG BEHIND R UNTIL VAL(R) GEQ I $,
NEXT(Q)=P ... VAL(Q)< I < VAL(R) SO START SPLICE $, .
NEXT(P)=R ... FINISH SPLICING NEW BEAD IN $,
GOTO LOOP ... REPEAT §$,

STOP$ FINISH( ) END FINI

Now we start asking questions. The above is fine for the general step n-to=
step n+l, but what about special cases?

1. What happens if I GEQ VAL(R) for all R, (i. e. scan falls of the end)?.
‘Ans R=NEXT(last R)=0 §, GOTO SCAN tests VAL(0)!
So we need to fix it up.
Betber- ‘way is=

SCANS$ IF VAL(R) LES I B3¢ AND
FE(R=NEXT(Q= =K)) NEQ 0 THEN GOTO SCAN $,

‘2, What happens now if VAL(LIST) GEQ I, (i.e. goes at begmmng)? .
Ans, NEXT(Q)=new P (ugh!) and LIST is unchanged!

Better way is-

e



16

SCANS$ IF VAL(R) LES I AND
(R=NEXT(Q=R)) NEQ 0 THEN GOTO SCAN $,
IF R EQL LIST THEN LIST=P ... PUT AT BEGINNING //
ELSE NEXT(Q)=P $,
3. What happens if LIST=0, (i. e. the very first time?
Ans IF VAL(R=LIST=0) bombs out again!
Better way is~-

IF (R=LIST) EQL 0 THEN GOTO FIRST $,

SCAN$ A—rAANA- (same as before)

IF R EQL LIST THEN FIRST $ LIST=P
ELSE NEXT(Q)=P $,

Here, since we already had the desired LIST=P we used it via GOTO
FIRST instead of putting in another.

This exhausts all conditions, so we now have our first complete expression -
of the problem. (Note that the completest statement of a problem often is a
method of solution, ) ‘

But this expression of the problem has built into it the history of our dis-
cloveriea.' There is probability zero that we discovered things in just the
right sequence and resolved each new thing in exactly the right way.

So we now proceed to seek 1mprovements without Yloosing'" or dzstortmg
the “ideas of our complete understanding of the problem.

Let's first collect our thoughts=

BEGIN ... FIRST COMPLETE PROGRAM COLLECTED //
ann(Same Declarations)anss

LOOP$ ISI(GIN(I), STOP) $,
VAL(P=FREZ(2))=I $,
IF(R=LIST) EQL 0 THEN GOTO FIRST $,

SCAN$ IF VAL(R) LES I AND
; (R=NEXT(RQ=R)) NEQ 0 THEN GOTO SCAN $,
IF R EQL LIST THEN FIRST $ LIST=P
. ELSE NEXT(Q)=P $,
NEXT(P)-R $,
GOTO LOOP $,

STOP$ FINISH( ) END FINI

"We notice that NEXT(Q)=P is the proper disposal of the new bead for both
the normal and the at~end cases, and LIST=P is the proper thing for the
special empty list and at-beginning cases.



17

If we describe these cases precisely, we get onellF expression that tells
which way to dispose of P,

The "at the beginning' arises when 1) LIST is empty or 2.)the new value
is LES the first listed value, so instead of GOTO FIRST we move the LIST=P
up to the THEN slot of the first IF,

IF (R=LIST) EQL 0 OR VAL(LIST) GEQ I
THEN LIST=P
ELSE SCANS IF VAL(R) LES I AND
(R=NEXT(Q=R)) NEQ 0 THEN GOTO SCAN;"&?
ELSE NEXT(Q)=P $,

Now we notice that initially we have already tested VAL(R) GEQ I so we
undo the AND and GOTO SEEK. |

IF (R=LIST) EQL 0 OR VAL(R) GEQ I
THEN LIST=P ... NEW BEAD GOES AT BEGINNING //
ELSE BEGIN GOTO SEEK ... VAL(LIST) ALREADY TESTED $,
SCANS$ IF VAL(R) LES I THEN (see below)
SEEK$ IF(R=NEXT(Q=R)) NEQ 0
THEN GOTO SCAN §$,
NEXT(Q)=P ... VAL GEQ OR END REACI—IED !l
END $,
NEXT(P)=R ...SAME AS BEFORE $,
GOTO LOOP $,

That's better, but looks messy, Why can't we flip things around fo get rid of;
that strange GOTO SEEK?

We can! By using the execution sequence of AND which says that in X AND Y,
if X is FALSE, Y is never executed or tested because the AND expression is
already known to be FALSE,

So we reinstate the AND version, but with the order re\}érsed.

AR 3
IF (R=LIST) EQL 0 OR VAL(R) GEQ I =LIST, but R version

THEN LIST P would probably be in a
ELSE §==%X machine register,
/"—-‘-\
SCANS$ IF(R=NEXT(Q=R)) NEQ 0 AND VAL(R) LES I
THEN GOTO SCANX ELSE
NEXT(Q)=P
: X $!
NEXT(P)=R 3,
GOTO LOOP 8§,

STOPS$ FINISH( ) END FINI

This seems to be thebest we can do, since it protects against VAL(0) and
does the right thing as fast as possible in all cases,



18

A general idea which works in a surprisingly large number of cases (if you
can see how) is to completely eliminate the special initial cases by making the

. n=to-nt+l normal case work in all circumstances.

This is done by building in part of our ideas in the form of an initial data
structure so that the special cases obey the same rules as the general case,

In this example, we can eliminate the LIST=P diaposa.l of the new bead (and
in fact the P variable itself!) if we :

(1) Ensure that LIST is never empty
{2) Ensure that VAL(LIST) is LES any possible I value.

If these conditions are true, LIST=P will never be used!

So we create an initial bead with (in effect) = oo in it,

 VAL(LIST=FREZ(2))= -1 ... GIVEN THAT 0 <1< 10,000 $,

* LOOP$ ISI(GIN(I), STOP) ... WE'LL DEPEND ON I HOLDING THE NEW VALUE
WHILE WE FIND OUT WHERE TO PUTIT §, . -
R=LIST §$, '

‘SCAN$ IF(R=NEXT(Q=R)) NEQ 0 AND VAL(R) LES I
THEN GOTO SCAN $,
‘NEXT(Q=NEXT(Q)=FREZ(2))=R $, =
VAL(Q)=I... FINALLY DISPOSE OF NEW VALUE $.
GOTO LOOP §$,

.S'I‘OP$ FINISH( ) END FINI

Here we wait until we've found the right Q before getting the new bead and
put it in the right spot directly, Then Q can play the role of P which may be
dropped from the declarations, '

This all came from dropping out the LIST=P case.

Now we ask can we drop the NEQ 0 test (which really functions only at the
beginning and thus also is a special'case) ? w

Sure we can, if we can make the 'V‘AL(R) LES I test play the same role. L e.
make sure VAL (last R) is always GEQ lI. ie e.-hoc' j

So we add to the initialization another bead with ( essentially) + oo in it,

VAL (LIST=FREZ(2))= =1 $, ‘
VAL (NEXT(LIST)=FREZ(2)) = 1635... 1 %23 33,

'LOOP$ ISI(GIN(I), STOP) $,
R=LIST $,

- SCANS$ IF VAL(R=NEXT(Q=R)) LES I THEN GOTO SCAN $.
NEXT(Q= NEXT(Q)=FREZ(2))=R $, ‘

VAL(Q)=I $,

GOTO LOOP $,

STOP$ FINISH( ) END FINI



19

This seemed to me to be the shortest and fastest possible, BUT -=-~
After class it was pointed out to me that in focusing on the + co argument,
I had overlooked a fact that crept in when the LIST=P case was dropped out,

Namely, if you examine the above you see that we nozlonger ever test
VAL(LIST) but only VAL(NEXT(LIST)). Therefore, the -co is not needed
at all!

S0 ===

LIST=FREE(1) $,
VAL(NEXT(LIST)=FREZ(2))=1C35 $,

etc.
Which can in turn be nested to give-

The most elegant and compact veraion=-
: <8

BEGIN ... FULLY NESTED VERSION // &

. INSERT MAIN $, . LIST nar
POINTER LIST,Q,R $, <]y /13 =] vAL
INTEGER I $, E :

POINTER COMPONENT NEXT $, NEXT $=$ 0 $,
* INTEGER COMPONENT VAL $, VAL $=$ 1 $,
VAL(NEXT(LIST=FREZ(1))=FREZ(2))=1C35 $,

LOOPS$ ISI(GIN(I), STOP) $,
R=LIST §,

SCAN$ IF VAL(R=NEXT(Q=R)) LES I THEN GOTO SCAN $,
NEXT(Q=NEXT(Q)=FREZ(2))=R $,
VAL(Q)=I §$,
GOTO LOOP §,

STOP$ FINISH( ) END FINI

Whichx can mechanically be expanded for people to understand-

BEGIN ... FULLY EXPANDED VERSION //
(Same Decla.ra.tzons)
LIST=FREZ(l) ... GET A"LEFT BOUNDARY'" BEAD $,
NEXT(LIST):FREZ(Z) . ATTACH A "RIGHT BOUNDARY'" BEAD §,
VAL(NEXT(LIST))=IC35 vos MAKE VALUE OF RIGHT BOUNDARY

" INFINITE $,

LOOP$ ISI(GIN(I), STOP) ... READ AND TEST A VALUE. GOTO STOP IF
NOT INTEGER §$,
R=LIST ... INITIALIZE SCANNING VARIABLE TO START OF LIST $,

SCAN$ Q=R ... INSIDE SCAN LOOP, Q REMEMBERS PREVIOUS BEAD FOR
SPLICING $,
R=NEXT(Q) ... MOVE SCANNING VARIABLE TO CONSIDER NEW BEAD §,
IF VAL(R) LESITHEN GOTO SCAN... IF VALUE IN LIST SMALLER,
KEEP GOING $, '
NEXT(Q)=FREZ(2)... WHEN GET HERE VAL(Q)<Ig VAL(R) SO PUT NEW
BEAD AFTER Q $,

(continued on next page)



20

Q=NEXT(Q) ... NO LONGER NEED OLD Q, SO POINT TO NEW BEAD $,
NEXT(Q)=R ... TIE R BEAD AFTER NEW BEAD, COMPLE'IgNG THE
. , SPLICE $,
" VAL(Q)=I... FINALLY PUT IN THE VALUE THAT CAUSED THE
COMMOTION §,
GOTO LOOP ... NOW READY TO READ A NEW VALUE, SO GO BACK $

STOP$ FINISH( ) END FINI

For non-trivial problems (the most commbon variety!) this kind of churning
dan greatly deepen a person's understanding of the problem.

There is no other way to dispose of the '"woods-for-the-trees' syndrome.
It is not just playing games and should not be abused into just another type
of coding~bum behavior.

- Instead it should be recognized as an essential component of truly competent
software engineering. '

No matter what the préblam. nor what your general scheme for attacking that
problem may be, if you think sloppy and work sloppy and have a sloppy expres=
sion of the problem it is impossible to achieve an elegant and powerful solution.

You never will be able to see every facet and aspect at the start. Practice
and train yourself to recognize the good, solid features of each attempt as
well a8 the weak points. Then maintain the good points [R=NEXT(Q=R) was
discovered on the veryI first step and still is present in the final version!] as

you successively resolve the weak points,

In this way you will develop a profes‘si‘onal skill which will allow you to evolver
an elegant solution to the most complex problems,

Even as simple a task as making an ordered list has, as we have seen, rlnany
rich layers to be worked through.

Study this example again and again =

Then go and do ye likewisell



APPENDIX B 21

" SUBJECT: Example of Mechanical Transformation from Beads
to Arrays.

These notes summarize my lecture on the essentially-mechanical

transformation of the ordered-list example tﬁm::tﬁﬂ:m)

(snn- HFFB-’NX ﬁ) from its original bead-oriented form to a form using arrays.

The compariaons made between beads and arrays may be au.mmarized
as followr '

BEADS o ' " ARRAYS
Object-oriented scheme . " Property-oriented scheme
Component name selects . Array name selects property
prOpeRty . A Index selects object
Pointer selects object 7 s
BO. Bl B2 P NEXT-‘V:AL,’
NEXT 0 [~ P77/ | NEXT(Bi)=NEXT({) 0
VAL } A1 VALBN=VALG) 1 V) ,(////

V/) = object 1 . 2

Cbmp_ila.t_ion Values

NEXT $=$ 0 (integer) ~ NEXT is LOG (pointer)
" VAL “$=$ 1 (integer)

i . - S - VAL is LOC (pointer)
Run-Time Values ><\

Bi is LOC (pointer),, - = i is index (integer) -

Compile Time

No.restriction on number of Fixed number of objects allocated
objects

wYs



22

6, 687-22 : March 21, 1968

Run Time

Dynamic storage allocation cost. No allocation cost, but must check
- range of index dynamically for
reliability.
Conserves ‘
Flexibility ‘ Run time
Costs ¢><
Run time " Flexibility

But have common referent s.. ucture: A(B) means "Property A of Object B"

We started with the following program for making an ordered list using the
bead method.

BEGIN ... FULLY EXPANDED VERSION //
\INSERT MAIN $,
- POINTER LIST, Q, R $,
INTEGER 16,
POINTER COMPONENT NEXT $, NEXT $=$0 $,
INTEGER COMPONENT VAL $, VAL $=$1 §,
LIST=FREZ(l)..., GET A "LEFT BOUNDARY" BEAD §,
NEXT(LIST)=FREZ(2) ... ATTACH A "RIGHT BOUNDARY" BEAD §,
VAL(NEXT(LIST))=1C35.,. MAKE VALUE OF RIGHT BOUNDARY
INFINITE &,

LOOPSISI(GIN(I), STOP) ... READ AND TEST A VALUE, GCTO STOP IF
NOT I'\)"I‘EGI:I‘ S

-R=LIST ... INITIALIZE SCANNING VARIABLE TO START OF LIST $

SCANS$ Q=R ... INSIDE SCAN LOOP, Q REMEMBERS PREVIOUS BEAD FOR
SPLICING $,
R= NEXT(R) «rs MOVE SCANNING VARIABLE TO CONSIDER NEW B
IF VAL(R) LES I THEN GOTO SCAN ... IF VALUE IN LIST SMAL
KEEP GOING $,

NEXT(Q)=FREZ(2) ... WHEN GET HERE VAL(Q)<I< VAL(R) SO PUT NEW

BEAD AFTER

Q=NEXT(Q) ... NO LONGER NEED OLD Q, SO POINT TO NEW BEAD &,

NEXT(Q)=R ... TIE R BEAD AFTER NEW BEAD, COMPLETING THE
SPLICE §,
VAL{Q)=I... FINALLY PUT IN THE VALUE THAT CAUSED THE
COMMOTION §,

GOTO LOOP ... NOW READY TO READ A NEW VALUE, SO GO BACX §,

STOPS$ FINISH( ) END FINI

We first perform an essentially mechanical transformation in which the
NEXT and VAL components become arraye, but the logic of the program is

essentially unchanged. The main points of concern are:



23

6. 687-22 | ~© March2l, 1968

1,) Changes in declarations
2.) Initialization

3.) Free storage usage.

Since obtaining a new N-word bead from free storage is equivalent to in-
creasing by one the maximum used index on N arrays, we could define an

array~ariented free storage procedure

DEFINE INTEGER PROCEDURE FREZ(N) WHERE INTEGER N
TOBE FREZ=MAXR=MAXR+!1 ... NOTE: N IS NOT RELEVANT $,

where MAXR is assumed to be suitably initialized at first,

FREZ merely returns the next available index value.

But since this procedure "body is so short, we will choose to edit it into
programs (with a maximum size check corresponding to the declared array

size) instead of leaving FREZ calls.
For the above program, the declaration changes are as follows:

1.) The pointer variables become integer index variables, along with I.
INTEGER I,Q, R, MAXR $, '
LIST disappears by the convention that LIST ds an index will always
ha’s}e the value 0, i, e., the list begins at the 0 position of the arrays.
2.) The component declarations become ar'ra.jr‘ declarations,
INTEGER ARRAY NEXT(200), VAL $,
Note that NEXT also is index-valued now. (The choice of 200 as
the size of the NEXT and VAL arrays is arbitrary.)

For the above program, the initialization changes are as follows: .

1.) LIST=FREZ(l) disappears by the above convention that LIST= 0.
2.) NEXT(LIST)=FREZ(2) $, becomes
NEXT(0)=MAXR=1 $, '

because LIST=0 and the object with VAL =+ co has-index 1.

3.) VAL(NEXT(LIST))=1C35 $, becomes | |
VAL(1)=1C35-%,
because NEXT(0)=1 by the preﬁous statement.
The remainder of the program is unchanged, except for replacing LIST with

0 and the above expansion and test for FREZ, So the first, mechanically

produced array version is:



24

6. 687-22 - ' March 21, 1968

BEGIN'... FIRST ARRAY VERSION / /
. INSERT MAIN $,

INT EGER I,Q, R, MAXR §$, -

INTEGER ARRAY NEXT(200), VAL $,

NEXT(0)=MAXR=1 $, - -

VAL(1)=1C35 $,

LOOPS$ ISI(GIN(I), STOP) $,
i ) R=0 $’
SCANS$  Q=RS$,

R=NEXT(R) $,

IF VAL(R) LES I THEN GOTO SCAN $,
IF(MAXR=MAXR+1) GRT 200 THEN GOTO TROUBLE $,
NEXT(Q)=MAXR §, .
Q=NEXT(Q) $, .

NEXT(Q)=R $,
VAL(Q)=I $,

GOTO LOOP $,

TROUBLE$ GOUT(.C. /OUT OF STORAC—E/) $
STOP$ FINISH( ) END FINI-

'This program will execute faster than the bead version, even though its
strategy is the same, because of the much simpler FREZ mechanism. It
is rigid, in that it will accept no more than 200 values, and occupies the
same storage for one value as it does for 200, but supposedly that was an
_a.cceptable price-to pay for shorter running time. Butwe have done no

: honing, as yet, to see if that running time can be imppoved. . If we look at
the program, however, we see that since the strategy has been left un=-
changed by this first mechanical transformation, no: new changes suggest
themselves except to move the free storage IF expression up to follow LOOP,
so that if we do not STOP but do .. run out of storage, the program halts
as soon as possible. (Note that this has the effect of replacing FREZ(2) by
MAXR in the original bead version.)

- A techniéue which is always possible when transforming from a bead-~
oriented program to an array-oriented program is to take some pointer
component and treat it as the basis for the object-naming scheme, in which
cas2 the array representing that component may be eliminated entirely, In
other words, if we choose to number objects not in the sequence of creation
(as the above MAXR version of FREZ does), but in the "natural” sequencé
given by a component such as NEXT, then for the entire NEXT array we would
have

NEXT(i) = i+l

s0 we don't really need the NEXT arrav. .



25

6, 687-22 © March 21, 1968

If the order inherent in such a NEXT component is immaterial,

this '""natural' sequence can just as well be the FREZ creation sequence,

and this process of eliminating NEXT saves storage at no corresponding
cost of time.
If, however, the order inherent in NEXT is a part of the problem

model itself {as in the presént case of an ordered list), the saving in storage

must be paid for by an increase in running time,.

The fact that order is important says that FREZ must be affected.
In particular, consider a (horizontal) VAL array before a new object is

created:

0 1 2 l-al 4 5=MAXR
VAL | { e i f ’Eunused_j

Suppose the new value must be inserted between VAL(R-1) and VAL(R).
Then all values from VAL(R) on must be moved up one place to "make room"
for the new value, :

This may be done neatly in increasing order by introducing two

temporary variables to hold values:

P=R $:

. X=VALMPY S, ,
L$ P=P+l$, T O o o | s
Y=VAL(P) $, - S
VAL(P)=X 8, : .

IF PEQL MAXR THEN GOTO DO“\T"“ 2,
X=X 8,
GOTO LOOP g, DONE $

INTEGER P, R, X, ¥, MAXR §, : l 3 ‘r‘ 2:.;-
. | it N
1
)

But the same job is done even more neatly with no temporary storage, if it

is rnerely done backwards:

INTEGER P,R, MAXR $, . L N

P=MAXR $, | ....g..;, g
MOV'E$VAL(P) VAL(P-1) $, e
IF (P=P-1) GRT R THEN GOTO MOVE $, ' RSN

This may be used to write a general-purpose pair of procadureé to handle -

free storage for arrays when index order is important.



26
6. 687-22 March 21, 1968

INTEGER PROCEDURE AFREZ.,, IN OUTERMOST BLOCK §$,
DEFINE PROCEDURE SET. AFREZ (ALLOCATED SIZE,VAL) WHERE
INTEGER ALLOCATED, SIZE $, INTEGER ARRAY VAL
TOBE BEG"N *j\'T‘T‘GER MAXR §, MAXR=-1$,
DEFINE INTEGER PROCEDURE AFREZ(P) WHERE INTEG R P
TOBL, BEGIN INTEGER Q,R §,
IF(R=MAXR=(Q=MAXR)+1) GRT AL_.LOCATED. SIZE
THEN BEGIN GOUT (.C. /OUT OF STORAGE/) 8,
FINISH( ) END $,
MOVES VAL(R)=VAL(Q! S,
IF(Q=(R=Q)-1) CRT P THEN GOTO MOVE 3,
VAL(P)=0 $,
AFREZ=P
END
END 8§,

By declaring AFREZ globally, it may be cailed from any block. A call io
SET.AFREZ
SET, AFREZ(200, ANY. ARRAY) §,

will cause future AFLRIEZ calls

AFREZ(13) $, AFREZ(:47) $, etc.

to make the specified positions zero after moving the necessary valuss alrcady
prescnt in ANY., ARRAY out of the way. Note that AFREZ assumes its

argument spoecifies an already-occupicd index. Can you fix it so that this is
gither checked or causes no problem? {If you choose the '"causes no problem'
challenge, you must somechow augment the concept of this kind of array-handiing.
I. e., it is not clear that feeding random integers between 0 and 200 to AFREZ,
causing it to "make room", can peirform anything useful without 2 major

change of strategy and concept. Is there a "more general" AFREZ, or must

we just patch it to checlk the validity of P?)

We may make a2 "no-NEXT" version of the ordered list problem in
zn almost-mechanical fashion as follows, Again we must only werry about
declarations, initialization,and frec storage, with the new concern about use

of NEXT. The first change we encounter is to omit the declaration of NEXT:
INTEGER ARRAY VAL(200) 3,

Then the initialization changes: There now is no need for a left-boundary
object so
NEXT(0)=MAXR=1 &, becomes
MAXR=0 $,

0
and VAL(1)=1C3
Vv f\" ( =1

5 8, becomes
C $,



27 v :
6, 687-22 . ad ' ‘March 21, 1968

After reading in a new wvalue, the free storage index and c;‘l'.ieck.af MAXR,
which was moved up in the program, is ok, Then R=0 $, will properly refer

to the initialization object, so we next consider Q=R §,.

Now, Q was used only to perform the splice in the bead strategy (and also
in the mechanically produced first array version which did not change the
strategy), so it can be omitted fx;om the declarations and from the program.
(This could be mechanically deduced from the fact that Q only plays an
essential role in NEXT manipulations, ) |

Therefore Q=R $§, becomes a ment_:al note to uée R in pla.<_:e of Q in what

follows. :
The next statement, R=NEXT(R) $, has three effects:

1.) In no-NEXT terms it becomes R=R+1 §,
2.) It causes us to alter the mental note to replace Q by R-1
3.) It forces us to reconsider the R=0 $, that we skipped over.

It must now become R=~1 §, since the -co object was left out.

The SCAN loop is satisfactory, but now we encounter the insert operation
with R set to the lowest value that must be moved. Instead of using AFREZ(R)
(which would index MAXR again) we write in the working statements them-=-
selves (expanded for clarity) after adding a new integer P to the declarations:
.~ P=MAXR ,.. START BACKWARD SCAN $,
COVE$ VAL(P)=VAL(P-1) ... MOVE EACH VALUE §,

P=P-1 ... COUNT DOWN &,

IFP GRT R THEN GOTO MOVE §,
Now R is available for storing the new value in I, Note that old R is now R+l. -

But let's see how the mechanical process confirms that I should be stored
in VAL(R). '

The previous program said

NEXT(Q)=MAXR $,
referring to the new.free index as MAXR. The above MOVE loop has made
R the new free index., We have a mental note that Q is really R~1 so
NEXT(Q)=(R~-1)+1=R is R=MAXR, cheécks ok. |

Next the previous program said

Q=NEXT(Q) $,



28

6. 687-22

"March 21, 1968

so we again change the mental note to say that now Q is really R, as above,

Then the previous pro;;r_a.m‘sa.ic_l
.~ NEXT(Q)R S,
Y LS NEXT(R):@;&R%MI, which checks.
So when the previous érog.fa.m said
VAL(Q)=I $,
our latest mental note that Q is really R says
VAL(R)=I $,

as we expected,

So the "no~-NEXT" version of the ordered-list program which again has been

produced by essentially mechanical means is:

BEGIN .., NO-NEXT VERSION //
JINSERT MAIN $,
INTECGER I, P, R, MAXR 8,
INTEGZR ARRAY VAL(200) $,
MAXR=0 $,
VAL{0)=1C35 $,

LOOPS ISI(GIN(I), STOP) $,

IF(MAXR=MAXR+1) GRT 200 THEN GOTO TROUBLE $,

" R=-1 §,
SCANS$ R=R+1 S, _
IF VAL(R) LES.I THEN GOTO SCAN $,
P=MAXR 8, : .
MU VES VALP)=VAL{P-1) $,
IF(P=P-1) GRT R THEN GOTO MOVE §,
VAL(R)=L &,
GOTO LOOP $,
TROUBLE$ GOUT(.C. /OUT OF STORAGE/) $,
STOP$ FINISH() END FINI '

Once again we must examine the program to see if further honing is possible.

In this case, since dropping out NEXT has changed the strategy somewhat,

we can make further progress to take advantage of the properties of arrays.

The relevant question to be asked is: Why count up for the scan and then

count down for the move?

ISCAN |

St Y

o
v




29
6. 687-22 7 March 21, 1‘?68

Sure enough, the SCAN and MOVE loops are complements of each other as
far as locating R'is concerned, so either one can do the work of the other.
(Just as VAL(MAXR) LES 1C35 does the same job as the old NEXT(R) EQL 0).

The SCAN loop has only to be aware of the order, but the MOVE loop nmust be

done as written in order to move the required values to "make room'!,
Therefore, the backwaxd MOYVE loop is the one to take as a basis.

So the newstrategy is to move backwards through the VAL array until a
value to be moved is .LEQ the new value in I, That value will not be moved,

the loop will stop, and I will be put in the vacant slot.

BEGIN
LJINSERT MAIN §,
INTEGER I,Q, R, MAXR §,
INTEGER ARRAY VAL(200) S,
MAXR=0 8§, J
VAL(0)=1C35 §,
LOOPS$ ISI(GIN(I), STOP) §,
IF(R=MAXR=(Q=MAXR)+1) GRT 200 THEN GOTO TROURBLE $,
SCANS$ VAL(R)=VAL(Q) $,
IF VAL(Q=(R=Q)-1) GRT I THEN GOTO SCAN §,
VAL{R)=I $, ‘
GOTO LOOP &,
TROUBLES$ GOUT(.C. /OUT OF STORAGE/)} §,
STOP$ FINISH( ) END FINI

This seems to be the best program for the revised strategy. Note that this
"no-NEXT'" version has the same rigidity as the previous array version,

takes half the data space, but requires more running time due to the need to
"make room' for new values. It takes less time than the previous mechanically
derived "no-NEXT" version, but the scan loop of both of these versions has
more operations than the scan based upon the bead strategy. Except for small
numbers of values (in which case the FREZ overhead is significant) the bead .
strategy is faster, the first array version being the fastest so far developed

here.

Notice also that this version is good for the ordered list problem as stated
here, but that it does not work well if duplicate input values are to be discarded
(as in symbol tables). The previous versions, which only exercise free storage

when an insertion is to be made are all applicable, however,



30
6, 687-22 ' March 21, 1968

If the frequency of duplicates is very high (as it is in the case of symbol
tables) then it is important to imprrové‘the scan speed, The previous "no-NEXT"
version will allow a logarithmic search to be applied between 0 and MAXR for

this purpose.

The resulting scheme may even be preferable to a hash-coding scheme, since

the list is always maintained in order.

The point of all this has not been to solve the ordered list example in aven
more ways, but to illustrate how the bead approach can be transformed into
the array approach by an essentially mechanical process, including the

elimination of a NEXT component.

The bead method, with its explicit calls in FREZ and FRET, shows precisely
when objects come into existence and when they are no longer nceded. The

corresponding information is diffused in the array scheme.

The bead approach, being object-oriented is the closest match to the abstract

mechanization-free concept of the problem. It yields the miost complete overt
expression of the problem, and theréby makes a good base for these essentially
mechanical transformations,

" Finally, the bead approach gives the most flexible debugging and running

environment, and the transformation to array form even for a -production

system may not be warranted,.



31

APPENDIX C

Suggested further reading:-

)s Douglas T. Ross. "The AED approach to generalized computer-
aided design." Proceedings A.C. M. National Meeting, 1967.
pp. 367-385.

2, Douglas T. Ross. "The AED Free Storage Package"
CACM 10, 8 (August '67) pp. 481-492



