
Challenges in Graphical User Interfaces 

Robert F. Sproull 

Sutherland. Sproull, and Associates, Inc. and 

Carnegie-Mellon University 

Abstract 

The principal advances in graphics over the last ten years have been economic-inexpensive raster 

displays have made good-quality interactive graphics affordable in computer terminals, and together 

with high-performance microprocessors have led to the "workstation" with an integral display. There 

have also been gains in graphics hardware, such as improved color displays, raster printers, and 

inexpensive input devices such as the mouse. 

The advance of graphical user interfaces has occurred on a more narrow front. The principal thread is 

work at the Xerox Palo Alto Research Center that has emerged in the Star and Smalltalk-80 products, 

and has been ably employed in Apple's LISA. Much of this work is restricted to "office applications." 

There remain numerous challenging problems in extending graphical user interfaces. How can pictures 

and text be routinely intermixed in documents? How can pictures be used as input to the computer as 

well as output? How can graphical interfaces to programming systems be extended to deal with more 

complex environments? How can lessons from communication and graphic design be incorporated into 

user-interface design? 



Challenges in Graphical User Interfaces 

Challenges 

This section describes several challenges in the design of graphical user interfaces. Although the first 

two items on the list concern graphics hardware, the list reflects the view that many of the current 

limitations in graphical user interfaces stem not from hardware constraints but from interactive software 

and tools for building software that are commonly available. Many of these limitations have been 

surmounted by one or more research projects, but remain obstacles in current practice. 

Exploiting raster imaging. Graphical user interfaces depend on the frame-buffer raster display to 

present arbitrary images on the screen. Although such displays first became practical ten years ago, their 

widespread use depends on the declining cost of semiconductor memory. Now, specialized memory 

parts (Texas Instruments' dual-ported video memory) and VLSI processors that cater for graphics 

applications promise even greater display perfonnance than is now achieved with conventional 

microprocessor systems. Accompanying the rise of raster displays are rasrcr printers using pin-matrix, 

ink-jet, or laser-scanned ciectrography. All of these raster devices share the important property that the 

imaging technique is insensitive to image content: any image can be approximated by a suitable pattern 

of raster dots. Thus raster technologies provide the designer of interactive programs with tremendous 

flexibility in the kind of imagery he can use. 

At present, some display controllers and most printer controllers limit the flexibility intrinsic in raster 

imaging. These limitations arise principally from economic considerations, such as the cost of a full 

frame buffer for a laser-scanned page image (at 300 pixelslinch, a 90-inch2 page requires about 1 MByte 

of memory), or the opportunity to design limited products that meet certain limited markets. With time, 

these limitations can be expected to disappear. 

High-resolution color displays. The hardware development that is likely to have the greatest impact on 

user interface design is the advent of a color display on which a user can comfortably view one or two 

pages of text in a document such as this one. While high-resolution color displays exist now, the spatial 

structures necessary to achieve color (e.g., shadow mask) interfere with the display of characters. 

Although pages such as this one are legible on these displays, editing or long periods of work are not 

comfortable. Along with new display and monitor technology must come increased memory 

bandwidths to refresh the displays, and increased processor performance to update the frame-buffer 

memory. 

Mixing pictures and text in documents routinely. Although some interactive systems allow graphics and 

text to be combined in a single document, these systems are not widely applied. Some of these systems 

are restricted to publishing applications, where graphics are required. Others are intended for the office 

worker, such as Star [9] and LISA, and are closed off from other applications. Some of these systems 

treat graphics as a second-class fOlm and may require the user to work extra hard to include a diagram 

or figure in a document. 

i\ prerequisite to a wider exploration of graphical interfaces is the routine use of text and graphics in 

computer systems. Computer systems today use the "text file" as the most important information 

structure the user sees. If that structure were extended to become the "text and graphics file," a great 

146 



Challenges in Graphical User Interfaces 

number of possibilities would open up, some of which are explored further below. 

Raising the status of graphics to become a natural mode in working with computer systems will have 

many benefits. Consider a computer program that looks like Figure 1. The drawing is clearly a 

"comment" which the compiler will ignore, since it is enclosed by the comment conventions of the 

programming language. Drawings such as this are part of a program's documentation, and ought to be 

part of the programs and specifications themselves, if only as comments. 

Graphical literals could appear in programs, as shown in Figure 2. The principal use for such literals 

would presumably be in "print" st.atements or other forms that generate output on a display or printer. 

Graphical literals would be a natural part of any serious attempt to provide graphical data types in a 

programming language. 

The problem ofintegrat.ing text and graphics routinely is not so much one of technical capability as it is 

of social pressure and diffusion. Much of the spread of computing technology occurs through the 

languages and systems that arc spread: Pascal and Unix are prime examples. Ifwe are to use graphics 

routinely in computer systems, we must tind ways to spread systems that offer useful graphical facilities, 

that provide a sound basis on which to build further applications, and that set good examples for others 

to follow and extend. 

procedure J\ddEntry (1: list, e: entry); 

(* 

*) 

var n,f: list; 

begin ... 

Figure 1. A drawing used as a comment. 

print(" 

~ 
") 

Figure 2. J\ drawing used as a literal. 

Interpreting drawings. We use drawings routinely in human communication, but in human-computer 

communications, we tend to use drawings only for computer output, not for input. Yet there are many 

applications where a drawing, prepared using some suitable" drawing conventions," could be 

interpreted or parsed to serve as a principal means of input to a computer program. 

A very few examples of this technique have appeared. Anderson devised a technique for parsing two­

dimensional mathematical expressions to recover their computational structure, which Lewis [7] 

embedded in a program for experimenting with fUllclions in complex analysis. Thacker [11] uses 

147 



Challenges in Graphical User Interfaces 

drawings such as the one in Figure 3 as the sale input to an electrical circuit computer-aided design 

system. The system ii1terprets the drawings to determine the identities and interconnections of circuit 

parts. 

There arc lower-level techniques that may be applied tll derive clean drawings from sloppier hand­

drawn input. On-line character recognition is one such technique. Herot [5] is able to turn certain kinds 

of rough sketches into finished drawings. 

Drawings used as the primary input to application programs have several advantages. The principal gain 

is that only a single interactive drawing program need be written, which can be used to prepare input for 

a wide variety of applications. The drawing program is insensitive to the drawing's interpretation, just as 

a text ediLOr is insensitive to a texL's interpretation. The user is probably well served by this 

arrangement, since he will need to learn to usc only one interactive system rather than nne for each 

application he uses. (It is presumably a simpler matter to learn Ule drawing conventions associated with 

different interpretations of drawings. since these conventions can often match a visual symbology that 

has already been developed, such as ways to draw circuit diagrams.) And finally, U1e drawings prepared 

iIi this way can be merged into text documents for documentation, CJn be printed on various output 

de\'ices, and so on without separate provi~ions in each application program. 

s- 0 

jlla S 

~ 
clk I S' 
MR 

jllb 

Figure 3. A drawing that can be interpreted to yield a circuit model. 

Fxtf?nding graphical inlC'!/acC's 10 1l1Ore complex applications. The graphical user interfaces of Star and 

LIS;\ address fJirly limited applications. Consider extending interfaces of this sort to address more 

complex situations. How, for example, would the objects and operations of a complete computer system 

such as Unix be presented through sllch an interface? The user-interface designer faces questions such 

as: 

How is a grJphic(l1 interface to be extended to deJI with a large number of data types? The 

I .lS/\ interface. in which the user identifies objects by pointing at them, associates a unique 

appiic .. niun progr,>In wiLh e:1ch fik: type (e.g .. a uocument b identified with the editor, a 

drawing with the illustrator): this (lpproach is prohably too restrictive in general. 

M:my times, applic\ltion progrJms arc invoked with other files as arguments. How are these 

objects gi\en to tile Jpplication? By copying thelJl Jnd moving the copies into some argument 



Challenges in Graphical User Interfaces 

containers associated with each application? 

Most user interfaces to computer systems have some sort of written command language that 

allows common command sequences to be written in "command files." In many cases, these 

command files allow new commands to be defined. What is the analog of the command file in a 

graphical user interrace? How arc "arguments" to a command fIle or a macro processor to be 

treated? How can one write "graphical programs" without substantial complexity? Is there any 

virtue in graphical command files? lfnot, how can conventional command files be made to 

work consistently with a graphical interface? 

While it is not hard to imagine a user interface that deals with these questions. would such an interface 

be valuable? It might be that the user's model of such an interface would be much more complex than 

for a conventional text-oriented interface. Can such interfaces be designed to be pr3ctical, or at best 

"cute"? 

COl/strain/s. Although many interactive drawing programs expect the user to build drawings literally, by 

commanding the system to construct each of the clements of the drawing, correct as to size and position, 

an alternative approach allows the user to specify the rules that will generate the proper drawing. Rules 

take the form of constraints, such as that two lines be parallel, that two lines intersect at a given angle, 

that a line have a certain length, and so all. Sketchpad [10] introduced constraints for this purpose, and 

solved the resulting constraint network using relaxation techniques. 

Sporadic progress in constraint-based systems has been made since then, although a growing number of 

applications seem to have a need for constraint-based solutions (e.g., VLSJ artwork layout). However, it 

now appears that many linear constraint networks can be solved very fast, perhaps even at interactive 

speeds [4], and non-linear constraints of the sort that crop up frequently in graphical applications are 

tractable [8]. 

Examples abound of systems that ought to be based on constraints. The popular "spread sheet" 

programs sueh as VisiCalc are in fact simple constrJint systems, in which numeric entries in a table are 

related to other entries by means of simple algebraic constraints. (Alas, some of these systems require 

the user to order entries in the table so that the constraints can be solved in a top-to-bottom pass over 

the table. None of the systems allows cycles in the constlaints.) Uusiness-graphics programs that build 

pie charts or bar graphs based on numeric input could profitlhly be expressed as constraint systems, in 

which certain geometric properties of the chart depend on numeric data, but other properties are 

unconstrained. so that the user may alter them. 

Now that techniques for solving constraint networks are better understood, the problem of designing a 

user interface to constraints rem;Jins the biggest challenge. The general notion of constraint is not an 

easy one for non-technical people to understand. Moreover, interacting with constraint-based systems 

sometimes Jcads to surprising results, for example when a drawing is improperly constrained it may 

change into something very far from the user's intentions. It seems cle;)r that lh(; user interface will need 

to allow mixing literal graphics alld constraints. 

149 



Challenges in Graphical User Interfaces 

Making better pictorial presentations. Many of the images that are presented to users could be made 

much more effective. While earlier technologies of glass teletypes and low-resolution displays prevented 

more pleasing images, current displays are less restrictive. We must now approach graphical 

presentation as a serious design problem, 

This task can be greatly aided by graphic designers, who have considerable experience with 

presentation, typography, document design, and so on. Much of their experience comes from dealing 

with the general public in non-technical settings, a viewpoint that is likely to help in the design of user 

interfaces. 

There are opportunities for building tools that make good graphical presentations easier to achieve. For 

example, the notion of separating the COil lent of a document, which the author must control, from its 

jonn, which a document designer might better control, is now becoming popular in the publishing 

industry, where it goes by the name of generic coding. i\. similar approach can be applied to illustration, 

where details of graphical execution arc defined by a graphical style, although the illustration as a whole 

is detined by the user [1]. 

Computer programs could offer advice or criticism of an illustration prepared by a user. Since many of 

the people who create illustrations with interactive illustration programs are not skilled illustrators, they 

can often use help in making effective illustrations. The drawing program could, for example, provide 

counsel on the selection of colors and the effect the selection will have on the way the illustration will be 

understood. Here is an area for experimentation with "expert systems," 

Spreading the art. The design of user interfaces would doubtless improve if designers could study other 

cases of problems and solutions in user interface design. Unfortunately, designers usually do not have 

sufficient access to other systems to carry out these studies. While movies or video tapes of interactive 

systems are a help, because they are demonstrations rather than analyses, they are not sufficient for a 

designer to learn much about an interactive program. The designer will have questions such as: 

Exactly what is the design for the user interface? It would be nice if we had succinct ways to 

describe a user interface. Such descriptions could be used as the basis for evaluating a 

performance model such as the keystroke model [2]. 

What are some of the strategies that the designer intends users to know about? For example, an 

editor with "cut" and "paste" commands may intend text to be moved by first cutting it and 

then pasting it. 

What are some scenarios of users operating the system? Here movies or video tapes may be 

useful. 

What do users rave or complain about? What do they find easy and hard? What postjacto 

analysis or reflection have the designers done? 

Perhaps it is too soon to expect a library of carefully documented user interface designs, in part because 

there is still a great deal of invention in user interfaces rather than methodical , incremental 

150 



Challenges in Grilphical User Interfaces 

improvements. However, it is probably not too soon to begin work on the noUtions and analysis 

techniques necessary to build such a library. 

Infrastructure 

Several of the challenges listed above deal with creating an infrastructure in which graphics are 

accommodated, used routinely, and even encouraged. At present. computing infrastructures in 

widespread use cater only for linear text. While many kinds of isolated graphics applications packages 

can be purchased, there arc no programming environments available that can be said to provide a 

comfortable base for programming applications that make heavy usc of graphics. Even Smalltalk [3] 

falls short in this area (chiefly because its "documents" do not contain graphics routinely), and graphics 

subroutine packages such as G KS [6] address only a tiny part of the problem, the need to generate 

Olltput on a display. 

The user interface is only the surface 

Although graphical user interfaces have a great deal of appeal and may lead to ways to make interactive 

systems easy to learn and to usc, the user interface is probably not the the most important ingredient of 

a successful interactive program. Rather, the underlying application and the concepts it provides arc the 

principal determinants of how well the program meets the user's needs. A poor user interface can spoil a 

fine application, but a wonderful user interface is unlikely to broaden the scope of a narrowly-defined 

application. 

Perhaps the best example of this phenomenon comes from computer-aided design, and is deeply rooted 

in the history of computer graphics. Sutherland's Sketchpad program was hailed as a major 

breakthrough in CAD; predictions were made that an interactive drawing program of this sort would 

revolutionize engineering. Indeed, interactive drafting systems were among the first graphical CAD 

applications. But interactive graphics has been more slowly applied to design, because the engineer is 

less concerned with a drawing than with a model of a mechanical structure that can be subjected to 

various analyses, of which picture formation is only one. The engineer is concerned with mass, surface 

area, streng.th, vibration modes, manufacturability, and so on, all of which require calculations that 

Sketchpad's internal model could not support. Thus, to engineers, the technology of solid modeling is 

more important than that of graphical user interfaces. 

On the other hand, the hope that created the euphoria around Sketchpad twenty years ago is still strong 

today: graphical expression can and should be integrated into our habitual ways of interacting with 

computers. 

References 

[1] RJ. Beach and M. Stone, "Graphical Style--Towarn $ High Quality Illustrations," Computer 
Graphics, 17(3): 127 -135, July 1983. 

[2] S. Card, T. Moran, and A. Newell, "The Keystroke-Level Model for User Performance Time with 
Interactive Systems," CACM, 23(7):396-410, July 1980. 

[3] A. Goldberg and D. Robson, Smalltalk-80, The Language and its Implementation, Addison-Wesley, 
Reading, Mass. 1983. 

151 



Chalknges in Graphical User Interfaces 

[4] 1.A. Gosling. "Algebraic Constraints," Technical Report, Computer Science Department, Carnegie­
Mellon University, 1983. 

[5] c.F. Herot, "Graphical input through machine recognition of sketches," Compuler Graphics, 
10(2):97 -102, Summer 1976. 

[6] International Standards Organization, Graphical Kernel System (GKS)-·Ful1clional Description, ISO 
DP 7942, November 1982. 

[7] H.R. Lewis. "ShapeShifter: An Interactive Program for Experimenting with Complex-Plane 
Transformations," Proc. ACM National Conference, 1968, p. 717. 

[8] R. Light and D. Gossard. "Modification of geometric models through variational geometry," 
COll1puter Aided Design, January 1982, p. 209. 

[9] D.C. Smith, E. Harslcm, C. lrby, and R. Kimball, "The Star User Interface: An Overview," Proc. 
National Computer Cunference, June 1982, pp. 7 -10. 

[10] I.E. Sutherland, "Sketchpad: A Man-Machine Graphical Communication System," MIT Lincoln 
Laboratories Technical Report 296, May 1965. Abridged version in .<';pring Join{ Compuler Conference 
1963, Spartan Books, Baltimore, Md. 

[11] c.P. Thacker, "SIL-A Simple J1Justrator for CAD," in S.S.L. Chang, cd., Fundamentals Handbook 
of Electrical and Computer Engineering, Vol. 3, Wiley, New York, 1983, p. 477. 



DISCUSSION 

Professor G. A. Rose asked about the interaction between image 
processing and interactive graphics and modelling. In reply, 
Dr. Sproull discussed the different approaches of the two techniques . 
He expressed his belief that a better understanding of image 
processing would result in the avoidance of making the kind of errors 
that had been made in the design of flight simulators. 

Professor G. F. Coulouris wanted to know what kind of software 
environment was required, with particular reference to the PERQ. 
Dr . Sproull briefly described the CEDAR system produced at Xerox - a 
graphics system for the fast updating of images and text, with some 
window management. He thought that the design of such a system would 
not be a major undertaking. What was essential to the software 
environment was, he thought, a large personal computer with virtual 
memory . 

Dr. K.S. Page drew the audience's attention to a proposal at 
Reading to combine graphic design and typography. An attempt had been 
made, unsuccessfully, to raise money for a joint Computing Science 
and Cybernetics one year project. Dr. Page intimated that the 
proposal would be re-submitted; this received Dr. Sproull's 
enthusiastic support. 

153 




