
Users' Models 

Robert F. Sproul! 

Sutherland, Sproull, and Associates, Inc. and 

Carnegie-Mellon University 

Abstract 

Users form mental models of how to interact with a computer, or with any machine. When a problem 

must be solved using the machine, the model is used to plan a series of steps that will achieve the goal. 

As the steps arc executed. the model becomes a basis for the user's expectations about the behavior of 

the machine. If something goes wrong, the model is used again for problem-solving to help recover. The 

model thus forms the basis for reasoning about the machine. 

Underlying every user interface is a user model designed by the appiication programmer-the model 

the programmer expects every user to grasp in order to operate the application. The model comprises a 

set of objects and operations on the objects. In a simple text editor, the objects may be characters, words, 

lines, and paragraphs: the operations may be insert, delete, copy, move, and so on. The model concerns 

only the conceptual aspects of the user interface, not the details of how information is displayed, of 

command-language design, of which buttons to push, or of error handling . 

.. Designers of interactive systems attempt to "design the user model," the model of the system that the 

designer wishes the user to form. Little is known about the design of user models. Precise imitation of 

real-world machines (simulation) is only rarely appropriate. Some designers devise models that are 

analogous to real-world machines with which the user is familiar, but that include extensions to exploit 

the flexibility of the computer. In some areas, especially in graphical applications, the user may have no 

experience with existing methods for solving the problem, and the user model must then be carefully 

designed aDd explained. In these cases, "intuitive" user models are favored, but how is intuition to be 

assessed, and can a single model be equally intuitive to all users? 

Rapporteurs: Mrs. M. Hindmarsh 
Mr. D.H. Mundy 

125 



Users'Models 

Introduction 

The model a user forms of an interactive system becomes the basis for a user's ability to usc the system 

purposefully, to achieve some goal. Based on his modeL a user will formulate and answer many 

questions: can the system accomplish a particular task, what major steps will be required, will the results 

be in a useful form, what information will be retained in the system for later usc, and so on. In 

computerized interactive systems. the user's mode! is especially useful in determining how a program or 

tool can be used as part of a solution to a problem that the tool alone cannot solve. 

It is important to distinguish the user's model from other parts of the user interface, including the 

command language and interactive devices such as displays and keyboards. Even the form in which the 

model is presented to the user on a display may not be vital to the user's model; for example, a clock 

could be displayed in a variety of ways, all of which are consistent with a user's view of how a clock 

should behavc, The parts of the user interface that go beyond the model arc important in the design of 

an interactive system, but do not figure as strongly in the user's formulating methods for using the 

system. 

Elements of a user's model 

A user's model can be characterized as a set of objects and some operations on the objects. 130th objects 

and operations may be viewed in the abstract, rather than as concrete representations, commands, 

keystrokes, and the like. For example, consider a modern electronic wristwatch. The user's model can be 

described as follows: 

The watch comprises three objects: the current time, an alarm time, and an elapsed-time 

chronometer. The current time is kept to the second, and includes the day of the month and the 

month of the year. The chronometer is recorded to 11100 second, the alarm time to a minute. 

Whenever the current time matches the alarm time and the alarm is activated, an alarm signal 

sounds. 

There are several operations on thes'2 objects. All three objects may be viewed; the nom1al state 

of the watch shows the current time continuously. The current time may be changed. The alarm 

time may be changed and the alarm may be activated or deactivated. When the alarm signal 

sounds, it may be turned off. The chronometer may be reset, started, or stopped. 

Although this description of the user's model omits all mention ofthe command language and of 

display mechanisms, a user can form a good idea of what the watch can be used for. There are, of 

course, situations where the u:;cr's model alone is not sufficiently informative. For example, can the 

time be rcad in the dark or at distances of ten feet? Or can the commands to start and stop the 

chronometer be invoked fast enough to lime a foot race? 

One reason for distinguishing the user's model from the rest of the user interface is that there can often 

be entirely separate user interfaces to the same user model. Consider, as a fairly instructive example, the 

user's model of a bank account. The most important object in the model is the account balance, 

although cash and checks also fIgure in the usc of a bank account. The opcr:ltions arc those of deposit 



Users' Models 

and withdrawal, subject to the restriction that the account balance must be non-negative (though some 

banks allow balances to go negative). Some banks will offer several different user interfaces to accounts 

that lise this model. One such interface uses bank tellers to execute transactions; the customer visits the 

bank to perform each operation. Banks will also execute most transactions by mail. Many banks now 

have "automatic teller machines" that will do many of the tasks of the human teller. And some banks 

have "bank-by-phone" facilities that allow transactions to be commanded by telephone, sometimes by 

speaking with a teller. and sometimes by giving commands using the telephone's tone generator as an 

input device and computer-generated voice for feedback. The user's model of a bank account is the 

same for all of these interfaces. but each interface has distinct ways to express commands, to receive 

confirmation. to handle errors, and so on. 

Sometimes the user interface becomes sufficiently complex that in addition to a model of the 

application, a user must form a secondary model of the behavior of various objects in the interface, such 

as menus, windows, and icons. We will not discuss this problem further here. 

Describing the user's model 

Descriptions of a user's model are often an implicit part of the documentation of a computer program. 

These descriptions usually involve both structural and behaviorai components, both of which contribute 

the the user's understanding of the model. The structural and behavioral elements are closely related to 

the objects and operations in the model. 

Perhaps the simplest example of a structural component is the notion of file, or more frequently text file. 

a sequence of characters. The structural notion of a sequence makes it immediately clear what happens 

when characters are "inserted" or "deleted" from the sequence-the sequence lengthens or shortens to 

accommodate the insertion or deletion. Unfortunately, when such a text file is actually displayed to a 

user, it is broken into lines, which do not follow naturally from the notion of sequence: the line breaks 

are not part of the sequence. Then too, carriage-control or formatting characters can be inserted in the 

sequence, which cause seemingly hidden effects such as tabulation and line breaks. Thus the pure 

notion of sequence may be obscured somewhat by these enhancements. There arc alternatives to the 

sequence model: some text editors work on two-dimensional files, with a number ofrows of text, each 

of which contains a fixed number of characters. This model is more like that of paper in a typewriter 

and accommodates line breaks and tabulation easily, but the notions of "insert" and "delete" now 

become clouded by the interaction ofrows and characters: for example, inserting a character is a 

different operation than inserting a row. 

Although structural descriptions of models are useful, behavioral descriptions are far more common, 

perhaps because we habitually explain to someone how a machine operates or how to make it do certain 

tasks. For example, we explain that the automatic teller machine behaves "just like a teller," or that a 

certain document-preparation system behaves "just like a hot-metal typesetter." In these cases, we are 

appealing to the user's previous experience in operating similar devices. In the extreme case, of course, 

the computer system is a precise simulation of another machine, such as an airplane or automobile. 

Here the objective is to achieve identical behaviors, o ften with ve ry different internal structures than the 

original device. 

1 ? ' i 
I ~- i 



Users'Models 

Acquiring a model 

A user of an interactive system will build a model of the system by a variety of techniques. The entire 

model may be explained in documentation that the user reads. Or the user may be familiar with the 

model because he has used a similar system before or because the system simulates a device he has used. 

More often, the user builds a model by exploring the system, delving only into those aspects of the 

system that arc necessary for the tasks he performs. Or the user may sklrt out doing a few simple 

operations that arc achieved by following step-by-step instructions presented by the system itself. 

Users will acquire models by exploration even if other methods are available. For exploration to be 

effective, an interactive system must be designed with exploration in mind, e.g., so that a user is unlikely 

to invoke irreversible actions while exploring new commands. Exploration is attractive to the user 

because he or she needs to learn only enough about an interactive system to meet his or her needs. For 

example, if a text editor contains a complex pattern-matching mechanism as part of a search command, 

many users can defer learning about the matching mechanism until the need arises. (Of course, it is 

helpful if a straightforward search for a literal string is easily done, so the user need not learn about 

arbitrary searches in order to do a simple one.) As more of the system is explored, the user builds an 

increasingly complete model of it. 

Although attractive, acquiring models by exploration has some serious problems. They might be 

summarized by "a little knowledge is a dangerous thing:" the user may have built a consistent model 

based on early expioration that subsequent exploration proves wrong. This possibility is quite likely, 

since the user is apt to encounter the more sophisticated parts of the model late in exploration. 

I found a particularly irksome example of the peril of exploration in word-processing software 

for a personal computer. To edit a file, the user was urged to "read in the file," edit it, and then 

"write it out," and users quite easily came to learn the editing commands by exploration, since 

changes were readily apparent on the screen. The user's model worked fine until one day the 

file got too large to fit in memory (more than 10 pages of typewritten text), causing a "memory 

full" error message. To edit large files, this software requires the user to operate on memory­

sized batches, reading them from the input file, editing them, and writing them onto an output 

file. This method requires an entirely different user model, introduces a number of new 

concepts (open file, input file, output file, batch) and a number of new confusions (What if I 

add text at the end of the batch shown on my screen? If! work on batches, in what order will 

the batches appear in the output file?). Exploration here launched the user into the tarpit of an 

entirely new model. 

The notion of file is often difficult for those unfamiliar with computers, and exploration does 

little to uncover the properties or behavior of files. Files are rarely explained or explained well 

in documentation, and never in on-line material--the user of a computer is assumed to be 

familiar with files. But files embody some quite subtle concepts, which have no close real-world 

analogies to aid comprehension. For example, the contents of a file may change even though its 

name does not. When I "edit" a file, am I editing a copy of the file or the file itself? What is the 

purpose of the file's name, and how shouid names be organized (especially if the file system is 

128 



Users' Models 

hierarchical)? Exploration of these notions is not often feasible, in part because a file is an 

object that can be explored only by performing operations on it, and the operations are usually 

distributed in many different application programs. 

A model can sometimes be very hard to acquire if the user's previous experience contradicts the model. 

For example, it is hard to teach a draftsman about a solid-modeling system, because all of his experience 

deals with plane sections of objects. The information necessary or desirable on a two-dimensional 

drawing is very different from that for a solid model. Another example is that ofa typesetter learning to 

use a document-formatting system based on "generic coding," in which text elements are labeled by 

content rather than format. For example, text wiII be labeled as "body" or "number 1 heading" rather 

than "10 on 12 point Times Roman," a conventional typesetting coding. The typesetter may become 

confused about the distinction between generic and concrete (or "machine") codes, or about why 

generic coding is being used. In systems that allow generic and concrete codes to be intermixed, the 

confusion is particularly severe: in effect, two different models of the document are being mixed. 

Designing user models 

The designer of an interactive system usually starts by "designing the user model," i.e., by developing 

the model of the system that he intends the user to form . This model will be presented in the 

documentation, in on-line help and error-handling facilities, and in the operation of the system itself. 

There are several problems that the design must address: 

Exploration. The user's model can be designed to encourage exploration. An important 

requirement is that the user be able to experiment without disastrous consequences, a property 

sometimes addressed by "undo" or "replay" facilities (these succeed only if the user is aware of 

the disaster soon enough to invoke the recovery). Menu-based systems probably encourage 

exploration, since the menus serve to identify the options available at every step of a dialog. 

Wide audience. How knowledgeable is the user? If the user interface is designed to be used by a 

wide audience, the concepts in the user's model must be understandable or even familiar to that 

audience. Hence, for example, Star uses the concept of "document" rather than "file", and "file 

folder" rather than "directory" in order to appeal to existing office objects and operations. A 

wide audience may also require more use of concrete, less abstract, concepts in the model; 

again, Star avoids the abstract notion of a file in favor of the more concrete concept of a 

document. However, as the sophistication of the population increases, users will increasingly 

have prior computing experience when learning a new user's model, and the intricacy and 

abstraction of the models can be expected to rise. 

Modification. It is usually important to design a user's model so that the system can be 

maintained and extended without requiring small distortions or major overhaul to the model. 

For example, if the notion of "printing options" is in the model from the start, adding a few 

new options is not difficult. 

There are also several approaches to the design of the user model: 

129 



Users' Models 

Simulation, extension, and restriction. Sometimes a user's model is designed to simulate some 

other real-world object: for example, a clock on the screen may behave just like a clock on the 

wall. More often, models are designed by analogy with a real-world object, where the analogy is 

intended to help the user learn the model but the model is allowed to go beyond the original. A 

word-processing program may be "like a typewriter," but it presumably is different from a 

typewriter in certain ways or it would actually be a typewriter. This can be troublesome to a 

user: just how much of the analogy holds? There is d:1I1ger in drawing too strong parallels 

where none exist. For example, the "automatic teller" is in fact a severely restricted form of the 

real teller; the one I use has only two denominations of currency, and therefore limits the 

amount of a withdrawal I can make. 

Tools or closed machines. There are two fundamentally different approaches to designing 

interactive systems: as fixed-function machines or as tools that work together with other tools to 

accomplish a range of tasks. We are used to machines with fixed functions: an oven, a 

calculator, and a watch are examples. The machine must have a command for everything it can 

do, and it is not designed to work with other machines. By contrast, tools arc intended to be 

used in combinations to achieve a range of results that might be unachievable by a single 

machine, or at the very least the single machine would be extremely complex. For example, a 

text editor is a tool that may be used in conjunction with one or more electroniC mail programs, 

document compilers, programming environments, and other applications. Generally, 

interactive systems tend to favor a tool approach. 

Gedanken experiments. Often, in designing a user's model, it is helpful to have a collection of 

concrete examples of chores that the program must do. For a document-prepar(l,tion system, the 

collection may include sample pages that the system must generate; it may include copy 

marked with formatting or editorial changes that must be made; it may include sample 

operations (e.g., renumber the sections of a chapter, or change the form of all bibliographic 

references). This collection is a concrete form of a requirements specification, which the 

designer can use to analyze alternative designs. 

The designers of Star have written an excellent article describing how the "desktop" model was 

fashioned as an extension of conventional office practices familiar to office workers [4]. They also give 

an example of the kind of problem that arises when a familiar model is extended with new concepts: 

what happens to an electronic document when it is printed on a laser printer? Does a printer transform a 

document from electronic to paper form (Le., does the electronic fonn disappear when the document is 

printed)? Or does a printer copy an electronic document onto paper? These questions arise only because 

the electronic document is not identical to a physical document, but merely a close analog. 

User models of drawings 

To illustrate some of the fundamental choices that a designer must make when constructing a user's 

model, we shall describe possible approaches to an interactive drawing program. "D1ere are two basic 

approaches to the user's model: a painting model, and a geometric model. These two models are 

compared and contrasted beiow; finally, a third model is presented which combines the fir'lt two. 



Users' Models 

Painting. In its pure form, this model provides analogs of brush, paint, and paper with which the user 

prepares a drawing. A graphical input device is used to steer the brush, a choice of different brush 

shapes is provided (e.g., round, square, straight, oblique), and paints of various colors are available. 

Wherever a brush deposits paint, the new paint obscures any paint previously deposited at the same 

spot. A particularly important paint color is "paper color," which may be brushed on to erase previously 

applied paint. This model behaves just like real-world painting. 

The model is usually embellished with a set of tools to case the creation of certain kinds of images. 

Some of these tools correspond to illustrators' tools in the real world, e.g., an air brush, or a "transfer 

sheet" of previously prepared images that can be transferred onto the paper (these include text 

characters, special symbols, textured patterns, etc.). Other aids are attempts to improve on real-world 

tools, e.g., a mechanism for moving the brush along a straight line between two points so as to draw a 

perfectly straight line, or a mechanism to fit a smooth curve through a set ofp0ints. These aids arc really 

geometric in nature, but they are cast as tools for controlling the brush trajectory in order to fit into the 

painting model. Tools for copying, cutting, and pasting parts of the image may also be provided; these 

usually depend on selecting a rectangular portion of the image to be acted upon, although more 

complex shapes are possible. In any case, selection identifies a region of the paper, not the objects that 

appear to be drawn on the paper (because the model has no concept of drawn objects, only of paint that 

has been laid down). Another common embellishment introduces transparent paints as well as opaque 

ones; as transparent paint is deposited, it mixes with any previously-applied paint. To give more 

flexibility, the user can be allowed to paint on more than one "overlay," and the overlays may be 

stacked one atop the other to achieve the final result. This technique is used in conventional animation 

to allow part of an image to be moved with respect to the rest; it offers the same flexibility in its 

computer analog. 

The principal strengths of the painting model are that everyone is familiar with it and that it allows 

arbitrary images to be constructed by sufficiently precise application of paint. The model has a number 

of drawbacks, however: 

Practical limitations on implementations detract seriously from the model. The problem is that 

the only representation known for paint-on-paper is a raster array of color values, a bulky 

representation at best. Economics and performance often combine to restrict the resolution that 

this array provides, e.g., to 1024 by lO24 points, not enough for high quality work. Lines look 

jagged, text is coarse. Moreover, operations like scaling and rotation require digital signal­

processing algorithms that are slow and introduce errors that are, in many cases, obnoxious to 

the viewer. If the raster must be scaled in order to be presented on another display or printer, 

these errors can appear frequently. (The gray square in Figure 1d appears perfectly unifonn on 

the display, but scaling it to printer resolution introduces visible errors.) 

Although structure may be apparent in the drawing, the painting program cannot use it. The 

notions ofline, box, curve, or circle do not exist in the model. Thus if we want to crase the 

horizontal line in Figure] a, we paint a new line with paper-colored paint, obtaining Figure lb. 

But we usually want to obtain Figure 1c, which requires us to repaint at least part of the vertical 

line. Lack of structure also prevents moving "joints" between lines and expecting the lines that 

131 



Users' Models 

are attached to follow (Figures 19 and 111). Structure is also absent in text strings, so editing 

Figure Ii to obtain Figure 1j requires erasing the "s" by painting over it, cutting out "or" and 

pasting it in further to the left. I f other imagery lies under the text, moving the "or" will also 

move the image, probably an undesirable result. 

+ (a) 

dosor 

(i) 

I 
I 

(b) 

Figure l. 

I 
(c) 

(h) 

door 

Geometry. The geometric model describes a drawing as a collection of geometric objects: lines, curves, 

arcs, circles, polygons, polygons "filled" with a solid color, and text characters (behaviorally identical to 

filled polygons). Each object may have a different solid color or texture. Lines may have different 

widths and different end-point treatments (squared-off or rounded). Objects may be connected to one 

another, e.g., lines and curves at endpoints, adjacent text characters in a string. 

The geometric model requires introducing the notion of priority to resolve the ambiguity that arises 

when two filled objects overlap (Figure Ie and If). Figure Ie is achieved by giving the triangle higher 

priority than the square, while Figure lfrequires the reverse. 

The principal strength of the geometric model is its structural information: the entities that a user wants 

to manipulate in a drawing are objects in the model; they can be selected and modified. For example, a 

line can be deleted (Le., a single step will transform Figure 1a into Ic). Common geometric 

transformations can be applied to objects quickly: translation, rotation, scaling, skewing. Objects can be 

grouped together to form "symbols" and manipulated as such: copied, moved, deleted, scaled, rotated, 

etc. The geometric primitives are relatively device-independent, so that in practice the fidelity of a 

drawing is limited only by the resolution of the device used to present it, not by the precision of the 

representation of the drawing. 

The principal weakness of the geometric model is that it docs not accommodate pictures, whether 

132 



Users' Models 

derived from scanned images or drawn interactively. This is a serious limitation, because many 

applications require an occasional usc of pictorial material (e.g., for a cover page). A related problem is 

that sometimes area selection is preferable to selection of geometric objects, although suitable geometric 

clipping algorithms can provide such a facility. 

A hybrid model. It is possible to construct a hybrid model, in which both geometric and pictorial 

material is accommodated. The basic idea is to alter the geometric model to allow a geometric object's 

color to be a solid color, a texture, or a picture [5]. The pictures can be created with the painting model 

and the geometric objects with the geometric model. 

SelecLing a model. Each of these models presents the user with a ve:)' different view of how to make an 

illustraLiofl. Even without defining the command language or presentation ofjn;ages on the screen, we 

can compare the models and try to assess their suitability for a particular application . We can consider 

embellishments to a model that may be necessary to meet particular needs of an application, and we can 

determine whether the embellishments fit with the rest of the model. We can even write the first chapter 

of the user's manual, where the basic concepts of the application are explained. 

In many cases, the nature of the application will determine the most appropriate model. Computer­

aided design (CAD) applications use geometric models: the users are familiar with geOl)1etry and the 

images used in these systems do not require pictorial material. By contrast, graphic arts applications 

such as electronic pre-press systems for preparing printing plates must handle pictures. Some of the 

drawbacks of the painting model arc not severe in this application: device independence is rarely 

necessary, since images may be scanned in and out at identical resolutions or may be scanned with 

sufficient precision that scaling algorithm errors are nor. visible. But the graphic arts systems pay a price 

for representing the entire raster image at high resolution: the systems are expensive and can be slow. 

In less demanding applications, such as illustrating technical documents or office communications, the 

models are not as sharply distinguished. It is notable, however, that both Star [3, 4] and LISA [6] use 

geometric models, in part because practical problems with the painting model can be daunting on small 

systems. However, if a color display were available on either of these systems, perhaps pictorial images 

would receive greater attention. 

Conclusion 

The art of designing user's models is in its infancy. Although cognitive psychologists are beginning to 

work on "mental models" [1], there are as yet no ways to analyze user's model designs to anticipate the 

user's understanding of the model or performance with it. There are, however, examples of interactive 

systems that have firm models underlying them: Star [3, 4] and LISA [6] are recent examples. Although 

many people feel these are good models, no one has figured out how to do experiments to measure their 

strengths and weaknesses. 

A typical student of computer science is ill prepared to design interactive systems. Curricuh tend to do 

poorly at teaching design, and usually the specification or design of a user interface is not covered at all; 

in some cases, students never write an interactive program. Software engineering courses emphasize the 

133 



Users' Models 

design of abstractions (objects and operations), but the principles that make well-engineered software 

internals do not lead to good user interfaces. Until we are able to produce students capable of these 

designs, we must be content with a very limited pool of talented designers: there are probably fewer 

than twenty people in the world who are capable of designing modern integrated interfaces. 

References 

[1] D. Gentner and A.L. Stevens, cds., Melltal Models, Lawrence Erlbaum Associates, Hillsdale, N.J., 
1983. 

[2] D.E. Lipke, S.R. Evans, .l.K. Newlin, and R.L. Weissman, "Star Graphics: An Object-Oriented 
Implementation," Computer Graphics, 16(3): 115 -124, July 1982. 

[3] D.C. Smith, E. Harslem, C. irby, and R. Kimball, "The Star User Interface: An Overview," Proc. 
National Computer Conference, June 1982, pp. 7-lO. 

[4] D.C. Smith, C. Irby, R. Kimball, B. Verplank, and E. Harslcn, "Designing the Star User Interface," 
Byte, 7(4):242- 282, April 1982. 

[5] J. Warnock and O.K. Wyatt, "A device-independent imaging model for usc with raster devices," 
Computer Graphics, 16(3):3l3-319, July 1982. 

[6] G. Williams, "The LISA Computer System," Byte, 8(2):33-50, February 1983. 

13 4 


