
LECTURE 3

HUMAN-COMPUTER INTERACTION IN THE COMPUTER SCIENCE CURRICULUM

In this final lecture we shall consider three things:

1. Why computer scientists need to know about human-computer interaction,

2. Where it fits in the ciurriculum, and

3. What might be taught.

Why does a computer scientist need to know about human-computer

interaction?

This question is easy. It is difficult to escape the conclusion that computer interfaces are

becoming an increasingly important part of computer systems for the reasons we listed in

Lecture 1: the availabilty of more computer power, bitmapped graphics and other graphical

hardware innovations, increased subtlety of computer interaction, the possibility of "intelligent"

interfaces. Beyond these technical reasons, and partially because of them, organized groups of

users (unions and user groups) guarantee that computer scientists are going to hear a lot about

usability in the future. There may even be attempts at regulation, so the computer scientists of the

future would do well to be informed. But the real reason is that greater understanding of human­

computer interaction will be necessary for the computer scientist to do his woek.

Where does human-computer interaction fit in the curriculum?

Let us rephrase this question as a set of nine computer science curriculum design issues:

1. Should human-computer interaction be in the computer science curriculum?

Our answer, perhaps not surprisingly, would be yes, that a number of topics in computer

science are heavily influenced both by the structure of computers and by the structure of humans.

that currently virtually all the study is on the computer side, and that this should be balanced by

some on the human side.

2. Is it peripheral or central to computer science?

___ Examples of peripheral topics would be social responsibility or databases. Human-computer

71

interaction belongs first on the periphery as the subject of graduate seminars and small parts of

courses, moving in towards the core as it gains adequate content .

3 . Should it be oriented towards evaluating systems or designing systems?

Our choice is design. Design is a key activity in computer science. Design time is the only time

in which there is enough leverage to really make a large difference. This implies an emphasis on

theory, when available; tabulated facts, when 'usable; guidelines, when possible: and design

methodologies, again, when usable .

4. Who should do the human engineering? Human factors specialists or computer scientists I

The emphasis on design implies that the computer scientist is going to be the major player in

the human engineering of computing systems. Interface considerations must be tr'aded off against

other factors such as machine speed, memory, display technology, and data structures . An

example (due to Robert Sproull) is when a designer of a drawing system chooses between using a

geometric model or a pen model. This choice of abstraction by itself determines that some tasks

will be easier and some tasks more difficult; it determines whether the storage requirements will

be large or small; it determines some of the errors users will have and some of the difficulties there

will be in training. These issues must be traded against each other directly. By the time the

designer has made this decision, the major interface decisions have already been made.

Another reason computer scientists will be the ones to do human engineering is that it is the

computer scientists who will be the first ones to see/invent many technology opportunities. A

related reason is that much human engineering may get done through the creation of user

interface software packages. The creation of these is a computer science task.

Finally, the history of having human factors specialists in other engineering domains shows

they tend to play minor roles and have little impact on the overall system. (They get to choose the

fonts, the color of the case, and to write the instructions).

Of course I have talked as if people came in certain stereotyped packages. [n fact, we are

beginning to see more students who have acquire respectable backgrounds in both computer

science and the relevant psychology as well as professionals who have cross experience. This

should warn us to judge research contributions directly, rather than by primary professional

affiliation. A related qualification is the real lack of a laboratory culture in computer science. This

means that while computer scientists are preeminant in design, they often do not do particularly

well when it comes to making measurements and working out theories of user behavior. If

computer scientists are going to do reasearch on human-computer interaction as well as building

72

systems, it would be nice to ensure in their training that they have some background in laboratory

science, including at least some in the natural sciences .

5. At what course-level should human-computer interaction enter the curriculum?

Ideally, human-computer interaction would enter the curriculum at the undergraduate level

for those things that can be established. Presently, however, the most appropriate place for most of

t~e material in this area is in graduate seminars .

6. Should what is taught be human-computer interaction or human factors?

We think it should be human-computer interaction. The issues are closely bound U;J with

software issues. Splitting off of the software issues and leaving only the human factors

considerations IS likely to result in the isolation and ignoring of human factors by computer

scientists.

7. Should the sort of material in these lectures be a course or part of one?

For similar reasons as above, we think it preferable that this material be part of a course on the

interface. The human part of programming languages should go with the programming language

courses, where appropriate, and the human part of interfaces should go with interactive systems

and the human part of graphics should go with graphics. This especially should be a consideration

for text-book writers.

8. Should all the human relaied aspects be in one course or separate courses?

This is a version of the previous question. The human-related aspects of computer science

ought to be separated into different courses because the focus in computer science is not on humans

per se; it is on whatever (human aspects included) is relevant to the various topics of computing.

9. What should be the objectives of such a course (or part of one)?

The objectives of the part of the course that teaches about human factors should be: (1) to

establish the goal of taking the user into account; (This has been the lament in the human factors

discipline all these years.) (2) to give students a realistic operational picutre ofthe user; and (3) to

give the students some techniques to use in design and research.

73

There is one additional comment that should be made . The sorts of interfaces that are
\

becoming possible and .that are much in need of university-based cc~earch cl~pend on modern

hardware. Yet the equipment available to most users in universities is such as to make training

and research on modern interfaces almost impossible. Students trained on interfaces using 8·0

character x 24 line displays running on a time-sharing mainframe will be largely unaware or and

unprepared for the rich possibilities for modern interfaces. Pronably the most cost-f!/fectil.-'e

expenditure that any government funding agency could make toward raising the generallevd o/Ihe

state-of-the-art in human-computer interaction would be to reequip the universities Ihm,nJh

eq uipment grants.

What would be the content of a course in interactive systems?

To explore this issue, let us propose a straw-man syllabus for a course in interactive systems to

see where things might fit. Our suggestion is as follows:

1. Overall interaction model.

Computer scientists will program not just the type of systems they common ly use at

uni versities, but also devices such as aircraft flight systems, power plants, space te lescopes,

automated bank tellers, and other systems that have embedded computers. Students should be

given an overall model, general enough to embrace all these contexts. The Sheridan model

presented earlier has some attractions as does recent work by Rasmussen and others.

2. Characterization of the human.

Computer scientists need some approximate characterization of human capabilities to

structure their knowledge of humans so as to be able to predict the gross reasonableness of various

proposals. (This is an intended role of the Model Human Processor.) They also need to be taught

what applied models there are for predicting user responses.

3. Dialogue styles and task characteristics.

Putting these all in order is one of the tasks in this area that needs tidying up. Students should

have exposure to a systematically collected sample of styles, since at this stage in the field,
"--

concrete cases are one of the most important design influences. These, of course, are the building

74

blocks out of which the students will later build systems. Suggested topics include users' models,

windows, menus, alphameric dialogues, and devices. The topics would also include some parts of

computer graphics, data structures, and similar topics. But different interaction techniques are

appropriate for different tasks, so this activities also leads to some taxonomizing of the tasks

people actually do at the interface .

4 . Problems.

There also needs to be exposure to the challenges in this area and the means that exist for

fielding them. Examples: the integration problem, controlling detail on the display, increasing

functionality without proportionally increasing complexity.

S. User interface management systems .

How can the complexity of programming the interface be reduced by making packages that

support components of the interaction, much as is done for graphics? The supposed benefits of such

packages include reduced costs of constructing interfaces, smoother interaction, higher reliability,

and increased interface consistency across applications and within applications.

6. Intelligent interfaces.

Using an interface is a communicaiton process. Artificial intelligence techniques can be

applied to the interface to produce different types of interfaces: For example interfaces can be

made that coach their users by giving them hints (Sleeman and Brown, 1982). Interfaces can be

built that tailor their interaction based on dynamic models of the user. Systems can be made that

make use of the "conversational postulates" of human discourse.

Conclusion

Let us recapitulate our theme:

Now (in the next five years) is the time to deal with the interface. There are finally adequate

computational resources beyond the needs of the subject program such that we can afford to spend

code and memory on the interface. A lot is at stake, since the usefulness of many programs

depends critically on the interface.

We would suggest requirements for making progress in this area as follows: (1) The human

side of human-computer interaction must be taken seriously. (2) This must happen within

75

computer science (not within just psychology or human factors). (3) It must happen by building ltn

engineering theory of human behavior that encompasses task analysis, calculation,

approximation, and is theory-based. These are necessary so that they can aid system building by

computer scientists at design time.

We have outlined some progress m satisfying these requirements: The :'v1odel Human

Processor as a base and models such as the G0:\18 model and the Keystroke-Level :\[odel as

examples . The Model Human Processor is as yet very crude. It gives some useful results, but there

is much that is still missing in terms of its coverage. It is a synthesis of various results thltt are

around, not a new theory on its own. It tri.es to make it possible for computer scientiststo wOl'k

with a reasonable model of what the user is all about.

Finally, we have tried to show where this sort of effort would fit into a curriculum concerned

with more than just the user per se.

76

References

Averbach, E. and Coriell, A. S. (1961).

Short-term memory in vision. Bell System Technical Journal 40, 309-328.

Card, S. K.; English, W. K.; and Burr, B. J. (1978).

Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection

on a CRT. Ergonomics 21,601-613.

Card, S. K.; Moran, T . P.; and Newell, A. N. (1983) .

The Psychology of Human-Computer Interaction. Hillsdale, New Jersey: Lawrence Erlbaum

Associates.

Conrad, R. and Hull, A. J. (1968).

The preferred layout for numerical data-entry keysets . Ergonomics ll, 165-173.

Darwin, C. ,J.; Turvey,.\1. T.; and Crowder, R. G. (1972).

An auditory analogue of the Sperling partial report procedure: Evidence for brief auditory

storage. Cognitive Psychology 3,255-267.

Kurke, M. I. (1956).

Evaluation of displays incorporating quantitative and check-reading characteristics. Journal of

Applied Psychology 40, 233-236.

Michotte, A. (1946/1963).

The Perception ofCausaility. New York: Basic Books, 1963. Origina1ly published as La

Perception de fa Causalite. Louvain: Publications Universitaires de Louvain, 1946.

Murdock, B. B. Jr. (1961).

Short-term retention of single paired-associates. Psychological Reports 8,280.

National Research Council 1982).

Automation in Combat Aircraft. Washington, D. C.: National Academy Press.

National Research Council (1983).

Research Needs for Human Factors. Washington, D. C.: National Academy Press.

Peterson, L. R. and Peterson, M. J. (1959).

Short-term retention of individual verbal items. Journal of Experimental Psychology 58,

193-198.

Siewiorek, D.; Bell, G.; and Newell, A. (1981).

Computer Structures. New York: McGraw-Hill.

Sleeman, D. and Brown,J. S., eds. (1982).

Intelligent Tutoring Systems. London: Academic Press, 1982.

Sperling, G. (1960).

77

The information available in brief visual presentations. Psychological Monographs 74 (11, Whole

No. 498).

Welford, A. T. (1968) . Fundamentals o(Skill. London: Methuen.

78

DISCUSSION

Professor McCarthy pointed out that when a designer makes a system for
other people to use, this tends to make a "dictator" out of the designer. In
other words, there is a difference between designing for yourself and
designing for other people. The results of designing for others can be
disastrous . For example, the U.S . trade unions are concerned about the fact
that computerizing a job often results in a "de-skilling" of that job. They
would like to see an increase in the skill required for a job, once that job
has been computerized. In other words, a computerized system should not be
simply a "data entry system", where the system is the master and the user its
slave; a computerized system should be the "tool" of its user.

Dr . Card remembered that, when deciding what sort of system to have in the
office, the argument ran that if everybody was put together in the office on
the word processor, it would put the office staff on an assembly line . Job
satisfaction from people-contact argues for distributed power. When people
don't design systems for themselves, there is often a lack of feedback from
users (and also often a lack of laboratory testing.) A modest amount of
observation can make a great difference in design (e.g. the video showing a
secretary doing pointing to the screen: firstly, she was hampered by long
fingernails, secondly, she thought she had to trace whole lines instead of
single words).

Professor Randell recalled the time when he wrote compilers, in an office
he shared with the users of those compilers (although he himself was not a
user). In this situation the "feedback loop" was very intensive.

Dr. Scoins asked how many lectures would make up a course on 'Interactive
Systems'. Dr. Card replied that he was thinking in terms of 2 - 3 hours per
week, for a 10 - 13 week semester. Dr. Spence pointed out that an important
element in both the teaching and the advancing of a subject is appropriate
notation. An appropriate formal language is needed in which to describe
'Interactive Systems'.

Dr. Card went on to say that his team had tried to develop formal languages
for the description of 'Interactive Systems', but had experienced
difficulties. You can try to describe a system using a formal language that
can be compiled. However, too many details about a system are needed in order
to get its description to compile. The important aspects of a system become
obscured amongst the details. On the other hand, you can describe a system
more informally. Such a description may prove useful. However, it has the
disadvantage the it cannot be compiled.

Dr. Spence wondered how many pages would be needed to describe, say, a cash
dispensing machine, in such a formal language. Dr. Card thought that it might
take as many as 10 pages.

Professor Whitfield thought that there might be a danger that this emphasis
on "human factors" could cause the designer to concentrate on things that are

79

non-essential. He recalled the time when he was writing a compiler . The
users used the compiler for 10 days without noticing a major (in his op1n10n
as the designer) "bug" in it - he found the "bug" himself . On the other hand,
the users noticed less important (in his opinion) things about the compiler.
In other words, users may be sensitive to non- essential aspects of a system,
yet insensitive to essential ones.

Dr. Card replied that this is why he has tried to emphasise the balance
between "computing science " issues and "human factors" issues . At the moment
all the emphasis is on the Computing Science issues. He said that we are not
trying to detract from Computing Science, just to get human factors in the
picture as well.

From Dr. Card's lecture, Professor Whitfield came to the conclusion that,
when he comes to design a computer system, he will need to know some basic
information about human capabilities. For example, he might need to know the
answers to questions such as, "What is the resolution of the human eye?" or,
"How fast can a person type?" He wondered whether there was any sense in
attempting to collect together this sort of information, in some form of
reference document.

The speaker replied, "That is the activity I'm trying to do." Also there
is another attempt "The Handbook of Chemical Perception and Human Performance"
(approximately 50 chapters). It is difficult to extract the required
information from this book, for the following reason. The book describes
various experiments on human perception and performance. However, when
results on the same aspect of human perception and performance are provided by
more than one experiment, no attempt is make to compare these results. The
airforce found they could not make use of all the information on perception,
because it was so spread around, so they commissioned chapters by leading
exponents of different fields, then abstracted and tabulated the data. One
problem is that some of the "facts" are not established, therefore some of the
material is contentious. Work is under way to produce a more useful reference
manual.

Dr. Larcombe agreed that it would be useful to have a computer science
course on "human factors", yet pointed out that there are many other topics
that might also be useful in a computing science course. Furthermore, there
are no text books which can be used as background reading for a course on
"human factors".

Dr. Card replied that, when he was a graduate student taking courses in
Computing Science there were no textbooks on Computing Science. Lecturers
strung together material from research papers. The text books followed, and
now we are overwhelmed by authority. He continued, "I'm sure others here can
remember the wild and woolly days of Computing Science. It seems very tidy
now. This happens in areas which are new and difficult."

Dr. Card was asked how he would characterize the book mentioned in his
abstract. He explained that the book is a research monograph, yet it could be
used as a text book. This is being used for a number of courses at research
seminar level . It is machine readable (because it was prepared on a machine.)

80

It is a recursive book, in that it was generated using the systems which it
describes.

It was pointed out that there is a difference between "computing science
and "human factors" - computing science is "synthetic" whereas human factors
is "analytic". You can write a program from nothing, but you can't invent
data about how people behave.

Someone was unhappy with the term "human factors". For example, in the
U.S. there are two journals: one entitled "Ergonomics", which deals with the
"hard" aspects of the subject, and another, called "Human Factors", which
deals with the "soft" aspects. Professor McCarthy requested an explanation of
the terms "hard" and "soft" in this context. Dr. Card replied to the effect
that "hard" aspects are those that deal with things like display layout or the
hardware provided for the user. "Soft" aspects deal with the way in which the
user interacts with the system. Someone suggested that "hard" aspects are
"static" while "soft" ones are more "dynamic", while Professor Randell
ventured the suggestion that "hard" and "soft" aspects are at different
"cognitive levels".

Professor Randell wondered whether the subject of "human factors" would
move into other computer science topics. For example, this happened with the
subject of "compilers". Early text books on compilers simply deal with the
details of how to write a compiler. Later books, on the other hand, attempt
to put the subject into the larger context of "computing science". Dr. Card
agreed that instead of simply concentrating on "human factors", we must blend
the study of "human factors" with the wider area of "computing science", by
combining it into computer science courses on other topics.

Professor Randell pointed out that this approach was the same as that of
these I.B.M. seminars. The goal of a seminar is to synthesise where a
particular subject has "got to so far", and try to put that subject in the
wider context of "computing science". In this way, people from all areas of
computing science will come to know about the subject and then use this
knowledge in their particular field. This year's seminar, more than previous
years', has achieved this goal. One problem may be that, by concentrating on
human factors as a separate field, it never quite gets integrated into the
discipline. When a designer designs, whatever he knows or DOESN'T know in his
head about the different aspects of human factors is going to determine how
and what he designs.

81

