
101

CONCEPTS AND TASKS R~LATING TO SYSTEM DESCRIPTION

K. Nygaard

Abstract

Modern organisations for production and administration are
becomming networks of people, production equipment and information
processing equi pment. The design, implementation, operation and
modification of information processing systems are essential parts
of the development of these organisations.

Direct human interaction with the social and physical
environment is to a rapidly increasing extent being substituted by
'interaction through computing and telecommunication equipment, the
interfaces being defined by rather fixed, computer b.ased models of
the surrounding reality.

In Norway new laws and negotiated, nationwide agreements
between the Trade Unions and the employers specify that·:

1. Employees have the right to participate in the development
of information processing systems which may affect their
employment, their job content and their work env ironment.

2. Information on such systems should be clearly stated in a
language understandable to other than system specialists.

Similar conditions will probably be imposed upon system
development work in Denmark and Sweden in the course of the next few
years.

These imposed conditions are now beginning to influence,
in a very direct sense, both the system development process itself,
the tools used, and the research and educat ion process relating to
information processing systems.

One important
communicating information
carefully, and in a wider

The lecture

implication is that
about systems must be
context than before.

ex amines the system
commun ic ation process I particularly the part which

the process of
considered more

concept and the
may be named the

system description process. Various categories of system
description and system exposure are being discussed.

The need for and role of system description languages
oriented towards a range of specified tasks in the development
process and the operation of systems is ~xplored, with a number of
examples.

Discussion

Professor Page considered that acceptance of the
responsibility to train and educate is good; but he was not sure
what should be done about workers and students wh o cannot master the

102

computing technicalit i es. Professor Nygaard suggested th a t the
less able students and workers could be- trained in only those
aspects of the computing directly relevant t o their jobs, and very
well trained'in those aspects. The more able workers , who might
already be in system design, must be retained to wor'k wi th computer
system design, but this pr esents problems for which there are no
answers yet.

Dr. Laue r observed that making something automatic often
implies making yourself or others redundant , so provision is
necessary for moving peopl e around in jobs.

Professor Nygaard agreed that this is a problem. The
primary motivations of manufacturers to automate are finance a"d
convenience. It is sometimes good to automate jobs in a polluted
environment, but manufacturers may use this reason to disguise their
true motivation, as only some polluted jobs may reasonably be
automated.

Professor Neuhold thought that the trai ning appropriate to
system is very different from that required to build the

He wondered who really benefi ts from retraining and who
consul ted abou t the co ntent of such training.

use a
system.
should be

Professor Nygaard said that this was a long subject. The
retra ining of employees a ffe cts the jobs done by the progranmers and
system workers. Si nce the Data Agreements we re between the
employers and emplo yees, the prog ramm ers resented not being
involv ed. However, i n retr ospect they have seen the benefits of
the Agreements.

Professor Wells pOinted out that the resistance of
progranmers and systems workers was one aspect of what
agreements were intended to prevent.

An Outline of DELTA, a SIMULA-Inspired Language
Descriptio~.

Abstract

for

the
the

SIMULA I and SIMULA 67 were developed to be, at the same
time, system description languages and high-level programming
languages and are being used in practice for both purposes. As a
system description tool , SIMULA assists in the researcher ' s
development of his own understanding of the system being considered
(the " referent system "), and in his communication with other
researchers or other people concerned with the system .

SIMULA has , however, a number of shortcomings as a system
description language , because it also is a programming language.

When we consider systems in our environment , most actions
are regarded as time consuming. Changes of state take plac e
continuously, often in a continuous interplay between components .
Other actions are regarded as instantaneous (for example, leaving a
queue). The computer is a discrete device and has to portray such

103

time consuming actions involving continuous changes of state by a
sequence of instantaneous actions.

Also, it is only to a limited extent , dependent
available herdware configuration, possible to portray
action sequences.

upon the
parallel

Description of parallelism and time
necessitates the use of an interrupt concept
not exist in a sufficiently powerful version.

consuming actions
which in SIMULA doe s

The DELTA language is an attempt to generalise the notion
of a programming language to create a more comprehen sive tool fo r
system description. DELTA was developed in 197 3-75 by Petter
Handlykken, Erik Holbaek-Hanssen and the lecturer, all employed by
the Nee. Since DELTA is not a programming language and cannot be
used for instructing computers, its semantics is defined in relation
to an "idealised system generator", a generalisation of a computer.

The language hes been used in practical descripti on tasks,
both in informal, semi-informalised and strictly formal versions.

The lecture
properties of DELTA and
situations.

Discussion

will attempt to present some of the basic
some examples on its use in different

Dr. Tanenbaum recalled the need for the systems
descriptions to be und ers tood by ordinary workers, and asked whether
it was intended that the ordinary worker would eventually understand
the system description language DELTA .

Professor Nygaard stated that there is definitely a need
for a language s uch as DELTA, but that experience had shown a great
syntactic freedom was required in order that the form could be close
to natura l language. A more natural appearing language would help
avoid activ ating defence mechanisms within the users, and could be
tran sfo rmed into a more formalised description.

Professor Dijkstra suggested that maybe even natural
language is not used accurately enough to enable it to be em ployed
as a tool for system description. The best action was probably to
apply teach ing methods to overcome any defence mechanisms. In
general it was inappropriate to imagine that there could be a good
correspondence between a natural language and a formal language , and
if it was not possible to communicate a system descriptio n in a
formal language then maybe no attempt at description s hould be made.

Professor Nygaard agreed that there were many dangers of
misunderstandings when using a natural language for communication,
but stressed that it was very important to have some tool for
describing and understanding systems. It was hoped that gradually
a more formalised notation would become accepted, and that the
current, less adequate, tools would no longer be necessary. He
agreed with the problems Professor Dijkstra had raised , but felt
unable to accept the co nclus io ns.

104

An Outline
Construction.

Abstract

of BETA , a DELTA-Inspired Language for Software

In the spr ing of 1916 it was decid ed to embark upon a
project to develop a high level pr ogr amming language based upon
DELTA and the present " state of the art" in programming research.
The participat ing inst i tutions were: The Departmen t of Computer
Science and t he Computing Center at the University of Aarhus ,
Denmark; the Department of Computer Science at the University of
Aalborg, Denmark; and the No r wegian Computing Center. This new
language, tentatively named GAMMA , was intended to be a useful
platform for a possible, later revision of SIMULA 61.

We needed, however, an implementation tool for GAMMA.
Soon the development of this tool, a system programming language (or
software construction l anguage) named BETA, became an important
objective in its own right. The team working on this main partial
project consists of Bent Bruun Kristensen, Ole Lehrman Madsen,
Birger Moller- Pedersen and the lecturer. The BETA language
proposal will be completed t hi s year and implementation projects
started by the end of this year .

BETA is intended for use on a wide range of computers.
NCC ' s first implemen t ation is planned for the INTEL 8086 Micro
Processor. Typical tasks for the intended use of BETA are:
Development and implementation of user oriented languages,
experiments with development of new block structured programming
languages, operating systems, communication systems and data base
systems .

The basic notion of BETA is the notion of a text block and
its incarnations in the program executions: the bloc k instances
called entities. In the BETA development the emphasis is on the
structures generated on the storage media of computing equipment
during the execut ion of a prog r am. Such a structure, generated by
the execution of a program written in a language L, is called an L­
system.

a BETA-system thus consists of
program by enti ty descriptors,
BETA-entities may be either

If the language L is BETA,
entities, described in the associated
being BETA program text blocks .
autonomous or constituents of
desc ribed as singular by

other enti ties. A BETA-entity is

BEGIN entity specification END

or by entity patterns, described by

PATTERN P: BEGIN entity specification END

An autonomous entity is gener8ted and spends its life span as one ,
integrated whole, like those generated by " NEW C" (C being the title
of a cl"ss declaration) and the procedure- statement "0" (0 being
title of " procedure declaration) in SIMULA.

• .

105

In BETA autonomous entities may be generated by three
distinct constructional modes:

- objects,

- ins t ances,

- contexts ,

by the expression " OBJECT P" , P being a pattern
title or a singular entity descriptor . Objects
may develop into stacks with an associated actio n
sequence.

by the expression " INSTANCE P" , P once more being
a pattern title or a singular entity descriptor .
Instances are members (but never bottom members)
of object stacks .

by the expression " CONTEXT P" , (syntax not yet
definitely settled) , P being a pattern title or a
singular entity descriptor . Contexts provide
env ironments in which BETA-program s are ex ecuted.

"OBJECT P" corresponds to " NEW P" in SIMULA . " INSTANCE P"
corresponds to the procedure--statement "P" . " CONTEXT P" has no
counterpart in SIMULA , but will provide a generalisation of that
language ' s " system class" concept; fo r example , the classes SIMSET
and SIMULATION.

In con t rast to ALGOL 60, SIMULA and most other bl ock
structured languages , BETA has only one kind of block specifi cations

the singular entity specification and pattern declaration being
i nstead used in different constructional modes.

An entity may contain a declaration part consisting of
("prefix" , I'infix ll , I' insertion" explained below):

a prefix constituent entity,

any number of infixed , constituent entit i es ,

any number of entity pattern decla r ations ,

any number of references to objects (and possib l y to
contex ts) .

An entity may also contain an action part consist i ng of :

a sequence of statements,

among the statements
constituent entities,
1 anguages.

some may
analogous

be insertions , being
to macros in some other

Constituent entities are integral,
constituent entities and autonomous
enties are specified by constructional
or singular entity specifications.

inseparable parts of other
entities . All co nstituent

modes referring to patterns

106

If P is a pattern title, then:

"P BEGIN END" specifies a P prefix entity, with
properties similar to those of SIMULA prefixes .

"X, Y: P" in the declaration part
entities. Infixed entities are
the type P or static subroutines

"statement 1;
P BEGIN END;
statement 2, "

specifies two infixed
used to obtain variables
described by P.

P
of

in the action part specifies an inserted singular entity
having a P prefix constituent entity.

All constituent entities may be given a name, but only one.

Parameters are implemented as value or resul t parameters.
The virtual concept of SIMULA is extended and provide the tool
corresponding to procedure parameters. Repetitions of infixes
(correspond ing to arrays) and insertions and instances
(corresponding to "fo r-loops") are given a unified t reatm ent. Only
few , basic and transparent control structures are provided , since
more complex control structures usually are associated with

' specialised data structues and should be regarded as parts of their
definition.

Basic constructs for handling parallel execution of
objects are being developed, as well as tools for specifying the
hardware and software environment of BETA-programs. Specification
of an entity's " interface" with its dynamic environment in a program
execution will be developed later (corresponding to, for example,
" export" and "import" clauses of other languages) .

Since BETA is to be used as
languages means for linking program
syntax wi th BETA-defined semantics

,compilers .

a tool for implementing other
constructs in user-defined

will be associated with BETA

A GAMMA language will be defined when BETA is frozen and
DELTA is being revised.

Discussion

Professor Kat zenelson observed that the language
development work at Delta was related to extensible languages, and
asked what extensions would be allowed to operators and data
structures through syntax .

Professor Nygaard repl ied that syntax
handled by providing a compiler generator to
phase of a compiler. This would allow a user
syn tax.

extensio ns would be
produce the analysis
to define his own

Professor Katzenelson then asked whether additional
features could be added to a language by the programmers.

• .

107

Professor Nygaard pointed out that a problem oriented language would
be defined for a particular project, with a syntax and semantics
appropriate to that project. The defined language would then be
implemented through the compiler gener ator.

Dr. Tanenbaum suggested that it was not appropriate to
build a compiler for a particular microprocessor, the Intel 8086 or
Zilog Z80, as Professor Nygaard had mentioned during his talk. A
portable compiler would be a much better aim.

Professor Nygaard agreed completely, and stated that
although the intention was to develop a portable compiler, the first
ex ample implementation would be for an Intel 8086. The eventual
goal would be to move on to a more useful and economical package.

Professor Pyle said that since the system was to be
designed for a microcomputer then the storage required by the run­
time nucleus wculd be a dominant consideration. He enquired
whether there were any preliminary ideas or bounds on the size of
the run-time nucleus, and whether this would be a design
consid eration.

Professor Nyg&ard replied that obviously , in a more
generally distributed package, the size would be a consideration.
During the development the crucial factor considered was the amount
of support required for the execution of programs, and compilation
would be allowed to take what it needed. The run-time support
required depended very much on the modes of entiti es within the
programs, and the basic techniques and facilities used, but he did
not foresee any great problems with this.

