
• • 

The Newcastle Connection as a Mechansim 

for providing a Multi-Level Secure File Store 

J . E. Dobson 

MARI Advanced Microelectronics Ltd 

Abstract 

This paper describes the overall architecture of a 
distributed computer system that is designed to enforce a 
multi-level security policy . The system is composed of 
standard UNIX* systems and small trustworthy security 
mechanisms linked together in such a way as to provide a 
highly cost effective secure system. This system appears 
from the point of view of its users to be a single multi
level secure UNIX system, since the fact that it is a 
distributed system is completely hidden from the users and 
their · programs. This is achieved though the use of the 
"Newcastle connection", a software subsystem that links 
together multiple UNIX systems into a single virtual UNIX 
system in which each component behaves as a directory in 
the overall UNIX united name tree. 

* UNIX is a Trademark of Bell Laboratories 

41 



-, 

The main principle for the constuction of secure systems 
is to keep entities of different security classifications 
apart from one another, except when performing operations 
that require access to more than one level. These latter 
operations must be performed under the surveillance of 
trustworthy 'reference monitors' that encapsulate and 
ensure compliance with some externally imposed 'security 
policy'. Hence our approach to the design of a secure 
system is based on the two key notions of separation and 
mediation the separation of entities of different 
security classification and the mediation of communication 
channels between entities of different classifications. 

Modern distributed computing systems have in principle a 
structure which matches these twin principles, since they 
comprise a number of physically separated components each 
of which can potentially be dedicated to a single security 
level or specialised function. In order to achieve 
security it is then necessary to control communications 
between the distributed . components and to provide 
trustworthy reference monitors for multi-level operations. 
Our design involves connecting a number of large untrusted 
'host' systems together with some small specialised 
processors which are placed between the hosts and the 
underlying communications medium. The host systems will 
provide services to a single security partition and also 
provide file storage facilities; since it will be 
physically impossible for them to communicate without the 
messages passing through the interface units, the latter 
will act as the reference monitors in the overall system. 

Although the system we wish to construct is distributed, 
we wish to hide the exact details of the distribution from 
the user and present a single system image. This 
transparency is most easily achieved if all user-visible 
system components have a common interface. And because it 
is desirable to admit the possibility that the components 
may themselves be distr·ibuted sys terns in the i r own right, 
we have constructed our system according to the Recursive 
Structuring principle [1]: 

Each component of a distributed system 
functionally equivalent to the entire 
which it is a part. 

42 

should be 
system of 

-, 



j 

The value of this principle is that it permits a system 
structured in this way to be indefinitely extended. It 
requires, however, that the component systems poss e ss 
external characteristics that are appropriate for the 
system as a whole. The design of a single system 
interface that is equally suitable for a whole and for it s 
components is a non-trivial task, and we do not feel that 
it is worth the effort to improve significantly on UNIX. 
We have found that the Newcastle Connection (2), which 
extends a uniprocessor UNIX to a single UNIX system 
spanning any number of component processors, to be a most 
suitable vehicle for the construction of a distributed 
secure system. 

Other designers (3) have also identified UNIX as a 
suitable base from which to start, and recognising its 
untrustworthiness have attempted to patch in those 
features thought necessary to bring it up to the status of 
a secure operating system. We have chosen not to do this, 
firstly because we do not feel capable of the work 
involved, and secondly because we do not believe it to be 
necessary since an alternative and simpler approach can 
achieve the same end. We start from the premiss that all 
the component systems are untrustworthy and therefore the 
overall system may make no assumptions about their 
behaviour, except that the LAN provides the only means of 
inter-communication. We then investigate what mechanisms 
need to be interposed between the components in order to 
provide suitable reference monitors that can then 
guarantee the behav iour of the system as a whole. In 
order to do this we need first to examine the kinds of 
mechanism available, which we do by means of a simple 
classification. 

In order to develop the security features of our design in 
more detail, we need to discuss the various mechanisms 
available for enforcing the separation required in a 
secure system. We have identified four different means by 
which this can be achieved. The four methods can be 
categorised into physical, temporal, cryptographical, and 
logical mechanisms. We shall discuss each of them 
separately. 

As its name implies, physical separation keeps objects of 
different classifications physically separate. For 
example, CONFIDENTIAL and SECRET items will use dedicated, 
physically separate memory boards, disks, and machines. 
The advantage of this approach is that separation is 
manifest; its disadvantages are cost and inflexibility. 
For example the introduction of a new security compartment 
will require the introduction of new hardware components. 

43 



The temporal approach does allow common hardware to be 
used for different security compartments, but not 
simultaneously. Hardware components are time-shared 
between compartments, and are therefo re required to be 
memoryless (i.e. none of their system state may persist 
across activations at different security levels). The 
temporal approach is often applied manually, and to entire 
systems. However, it can also be applied to individual 
system components and can be automated. 

The cryptographical approach achieves separation by 
encrypting information of different security partitions 
under different cryptographic keys. There are only a very 
few security-related operations that can be performed 
which require the application of this technique (basically 
it is only applicable to bulk movement or storage 
operations) but in general it is the only mechanism 
suitable for those applications. 

The four th approach, the log ical one, is one in which a 
higher-level mechanism (often implemented in software) 
manages simpler mechanisms of one or more of the three 
basic types previously mentioned -either in order to 
control their behaviour or in order to synthesize separate 
logical entities out of lower-level components. This 
approach is very powerful and flexible, but guaranteeing 
the separation can be non-trivial, involving for example 
the application of formal techniques. 

The purpose of the taxonomy we have just introduced is to 
show that there are several types of mechanism available, 
and that each has its own advantages and di"sadvantages and 
area of application. We have done this because our system 
will incorporate mechanisms of all four types and use each 
type wherever it is most appropriate. 

As previously mentioned, the unit of protection in our 
distributed system is the component system, since we are 
not prepared to trust a UNIX. AI though there is no 
security within a system, we can enforce security on the 
communication of information between systems by placing a 
trustworthy mediation device or reference monitor between 
each system and its network connection. These 'Trust
worthy Network Interface Units' or TNIUs (at least in the 
first instance) permit communication only between systems 
belonging to the same security partition. In its simplest 
form, it merely monitors the address fields of each 
incoming or outgoing packet, passing only those packets 
which are not attempting to cross partition boundaries. 
In addition, in order to provide security of packets on 
the network against eavesdroppers, the TNIUs are also 
responsible for the cryptographic function. 

44 



/' 

I 

It is symptomatic of the difficulty of security issues 
that even this simple architecture turned out on 
examination to be not nearly so simple as it might appear. 
This is not the place to discuss the problems in detail, 
but it can be said that they ar ise from the need for the 
protocols not only to be formally correct but also to be 
trustworthy and secure. The issue of assigning functions 
to layers in a protocol hierarchy can become quite complex 
in the presence of encryption. 

So far, we have merely considered how resources can be 
separated by security level: information may not flow from 
one partition to another. This can be achieved by 
allocating physically separated computer systems to each 
partition with specialised monitor processors to provide 
cryptographic protection and to enforce the separation 
between component systems belonging to different 
compartments. We now wish to extend the system so that 
information can be moved across partition boundaries in a 
controlled secure manner to provide true multi-level 
security. This will allow, for example, information to 
flow upwards but not downwards in the security lattice. 

Again we introduce the function of a reference monitor to 
mediate such information flow. The complexity of the 
monitor will depend on the generality of the services it 
provides and the granularity and complexity of the objects 
whose flow is controlled. For simplicity we have chosen 
files as the only objects that will be allowed to cross 
security boundaries, with the implication that the 
serVlces to be provided by the reference monitor are the 
(multi-level secure) storage and retrieval- of files. It 
is a consideration also that the choice of the file as the 
unit of granularity fits in well with the UNIX philosophy, 
which also uses the file as the unit of naming and 
external storage. The idea is that when a system wishes 
to make one of its files available to higher levels, it 
sends it to the filestore. Another machine can then, 
subject to security policy, request a copy of this file 
from the filestore. 

conceptually, the filestore is just an ordinary UNIX 
system that is associated with a directory (SFS, say) in 
the UNIX united directory structure. This directory 
contains sub-directories for each security partition in 
the overall system and these in turn will be structured 
according to the user's needs. However, the structure 
just described exists in name space; it does not reflect 
the functional requirements of the filestore, which has 
two separate concerns to address: the security of the 
system, and the archiving of the files. 

45 



Thus we need to partition the filestore into two 
components which according to the principle of physical 
separation are housed in distinct machines. The first 
component, called the Secure File Manager (SFM) will be a 
small trustworthy component concerned with the enforcement 
of security policy, while the second component, called the 
Isolated File Store (IFS) will be a larger component whose 
task is to provide the actual file system. The SFS 
directory in name space will be identified with the 
machine that houses the SFM, but the entire UNIX file 
subsystem below that directory node will be physically 
held separately on the IFS machine - which must therefore 
be a machine capable of maintaining a UNIX file system. 
One obvious way of satisfying that requirement is to use a 
perfectly standard UNIX system for the IFS. 

Because the IFS will contain files of all security 
classifications, and because it is untrusted (and possibl y 
untrustworthy), it must obviously be presented from 
communicating with the outside world and also from 
corrupting the files entrusted to its care . Thus all its 
communications must be mediated by the SFM, which must 
also be responsible for its good behaviour. These are 
two separate functions of the SFM, and we therefore 
partition the SFM into a File Access Reference Monitor 
(FARM) and a File Integrity Guarantor (FIG). The task of 
the FARM is to ensure that file access requests are 
granted only in accordance with the security policy, and 
that of the FIG is to guarantee that the IFS does not 
leak information or corrupt either the files or the file 
structure it is supposed to maintain. 

Again, the details of the design and implementation of 
these components proved significantly more complex than 
might be expected (though this will surprise nobody who 
has already themselves attempted the task). What made our 
approach more tractable than previous attempts was the 
ease with which UNI~ (and UNIX United in particular) 
permits the separation of naming issues from addressing 
issues, and both of these from access issues. Because 
UNIX prov ides access onl y through the system call 
interface, and because it is the system call that is 
encapsulated in an inter-processor message, it is possible 
to conceal from the caller whether or not it is a UNIX 
system that responds to the call - it only need appear to 
be a UNIX. The trusted mechanism through which the 
requests must be channelled can be made quite invisible, 
and this requirement for invisibility constrains and 
simplifies the design. 

46 



J 
-I 

Acknowledgements 

Brian Randell and John Rushby originated many of the ideas 
behind this approach (4), and I have enjoyed many hours of 
discussion with them. The work has been supported by RSRE 
Malvern, and my gratitude is due to Derek Barnes for his 
continuing help and encouragement. 

References 

B. Randell, 
Distributed 
1983) • 

Proc. 3rd Symp. on Reliability of 
Software and Database Systems, IEEE (Oct 

2. D.R. Brownbridge, L.F. Marshall and B. Randell, "The 
Newcastle Connection or UNIXes of the World unite", 
Software Practice and Experience, Vol 12 (December 
1982) pp. 1147-1162. 

3. B.J. Wal ker, R.A. Kemmerer and G.J. Popek, "Specifi
cation and Verification of the UCLA Unix Security 
Kernel " , CACM Vol. 23 (2) (February 1980) pp.118-131. 

4. J.M. Rushby and B. Randell, "A Distributed Secure 
System", IEEE Computer Vol. 16 No.7 (July 1983). 

47 



. I 

• 

DISCUSSION 

Professor Goos addressed the problem of the network which was 
being used to provide the interconnection between the component 
systems. In particular, how did the DSS solve the problem of finding 
out about corruption of messages. Mr. Dobson agreed that this was a 
problem which the TNIU had to be aware of. Normally the corruption 
would be innocent, and would be attributable to the usual types of 
error to which .networks are susceptible, but when dealing with a 
security system, it has to be assumed that all corruptions are 
malicious. This is recognised as being a difficult problem in the 
design of the TNIU. 

Dr. Freeman referred to the remark in which Mr. Dobson had 
suggested that intelligence within terminals was an undesirable 
feature. Some part of the system design must surely take account of 
the possibility of intelligent terminals being used to penetrate the 
security of the system . Mr. Dobson agreed that the system must 
protect itself against wire-tapping, but since the data crossing the 
network would all be encrypted, i t was the protection of the 
encryption keys which was the crucial factors. The TNIU must be 
responsible not only for checking the credentials of the (supposed) 
originator of the message, but also for decrypting the message 
according to an appropriate key to decide whether it is a valid 
message. 

Dr. Lipner pointed out that the secure file system di d implement 
the 'star-property' (or containment property) but would also allow 
the possibility of 'trojan horse' penetration. Mr . Dobson agreed that 
this was so, and that the designers were aware of the problem, but 
declined to give any further details of the method of solution. 

48 




