
79

THE DIS',RIBUTION OF DATA AND PROCESSES IN COMPUTER NETWORKS

E. J. Neuhold

Rapporteur Dr. R. B. Gimson

Abstract

Distributed data b ase manag ement systems have attracted
considerable attention of researchers in the last one or two years.
Commerical interest also has been developing rapidly but as of this
writing (June 1978) no such system is commercially available.

Using POREL, a distributed data base system which is
currently under developnent at the University of Stuttgart, as an
illustrative example different aspects of distributed data base
management systems are investigated and possible solutions to
distribution related problems are discussed.

1. Introduction

Only a v ery few years ago data commun i cation networks were
simply seen as vehicles for remote batch processing or interactive
access to centralised large hardware and software packets, as for
example airline reservation systems.

In the last two years large research and developnent
efforts have been oriented toward building distributed processing
and distributed data manipulation networks. The advent of
minicomputers and the mul tiple installations found of these systems
in large companies have given a tremendous impetus to such
developments. The limitations which are introduced by the
relatively restricted speed and storage capacity of each
minicomputer system can be relieved by interconnecting the
processors and by using load balancing and data distribution
strategies to utilise fully the capacity of each system in the
network.

There has been much talk that distributing a computing
facility between many different locations will reintroduce the
inconsistencies, of data and data handling procedures inside an
organisation, which were a large problem in the earlier days of
computing and which have just been eliminated by centralising the
computing facilities and integrating the data into data base
management systems. Unfortunately this distribution already has
happened and is still happening completely independent of computer
networks. Minicomputers and microcomputers originally were only
used for very limited and special purpose tasks but they have become
so powerful in a very short time period that more and mo re general
purpose work which should probably be organised in a coordinated
manner throughout a company is being done locally on such machines.
The reason usually is to avoid the red j:.ape of the computer centre
or to have " rough data " under local control so nobody else can look
·at them. The perennial distrust in privacy and data security
mechanisms of course still persists and one does not feel
comfortable if these " personal" data are floating around in some

80

large, distant computer centre where all "those people" are running
around and physically handling disk or tapes containing ones data.
A consequence of this behaviour of course is that programming
efforts are duplicated and that everybody keeps even generally
needed information on his personal file which then is either
unavailable globally, or if the information also is maintained
globally, most probably will be inconsistent with that information.

Connecting the computers into a network, as for example
ARPA has been doing for a number of years, does not directly solve
the problems since this network is not at all integrated when seen
from the users point of view. He still has to know on which
compute" the required programs and data reside and which programming
languages and commands to use to gain access to this information, in
order to send input to a distant program, to execute it, and receive
its output.

In a
the task of
formidable and
system.

network containing many different computer
remembering even a few of these procedures
effectively restricts the users flexibility

systems
becomes
in the

Distributed processing and distributed data management try
to eliminate these diversification problems for the user.
Unfortunately I feel that already the name "distributed" has been
chosen wrongly. It was selected in typical self-centred fashion by
the system builders, because these systems look distributed when
seen from their point of view, in other words, from the inside.
Actually the whole purpose of these systems is to present a unified 0, integrated processing and data management system to the user.
The user can work on the system without concern as to where the
programs he is to execute are stored, where his data are kept and
where ul timately the processing resul ting from hi s work will take
place. For him, the system looks as if everything would be located
in his interactive terminal or at most the local computing facility .

Since we can view programs just as a special kind of data,
and all executions as transactions on these data, an integrated
system in a computer network will be provided if we construct a data
base management system which accomplishes data manipulation and
program execution in a consistent manner throughout the system.
Such systems are called Distributed Data Base Management Systems
CDDBMS) and at the University of Stuttgart we are building one of
them, named POREL.

Summing up the most important characteristics of a DDBMS
we arrive at

1. It works
of many
systems,

on a computer network which is formed by
different types using many differing

that is, the network is inhomogeneous.

computers
operating

2. It presents a unified view on data and programs to each of
the users sharing the system. The users never have to be
aware where their programs and data reside and where the
processes they start are actually executing . Using data
manipulation requests which are identical to those of
centralised data base systems the users can work with the

81

total distributed system .

As of this time no general purpose distributed data base
management system is available from vendors, although users have
al ready developed ad-hoc systems. Some vendors are even selling
distributed file systems which they call distributed data base
systems, but a deeper analysis usually reveals that they do not
satisfy the above characteristics of a DDBMS . They are usually
lacking either in data base functions, such actually representing
distr ibuted fil e systems , or do not present a un ified view of data
and programs to the user.

2. The Architecture of Distributed Data Base Management Systems

Distributed data base management systems of course contain
many features and mechanisms that also appear in centralised DBMS's.
In our investigations we shall concentrate however on problems which
are of direct concern to the distribution and homogeneity aspects of
a distributed system .

When constructing a DDBMS two principal approaches have to
be distinguished depending on the planned environment of its use
(1). They are illustrated in Figure 1, parts 1 and 2;

1. The homogeneous data base system

Still under the assumption of an inhomogeneous computer
network and differing operating systems, a single integrated
data base management system is constructed, parts of which
are executing on the different computers in the network.

2. The inhomogeneous data base system

Under the assumption that on each of the computers in the
network a local (centralised) data base management system
already exists a distribution and coordination system is
built which makes these DBMS's available in a homogeneous
fashion to the users of the network.

82

r---I 1 ---1 '---I
I User 1 I I User 2 I I User 3 I • • •
--X-- --j\-- --'A.--

I I I

I I
I User m I

A

I
V V V V r---------------------------

I..D~s~r~b~t.:d_D:t: ~a,:::e_~n:g.:risl __________ ~

A A

I I
V

1---.---
I OS!cFile
I Syst 1 I

--y---
1 OS!cFile 1

: Syst 2 I
------ ------

A A
I
V

I
--y--

I Comp 1 I I C I
!.. _ _ _...! !.. :m~ :. ...:

A A
I I
V V

• • •

• • •

A

I
V -----,

1 OS!cFile
I Syst (n) 1 L ____ l

A

I
I-

I 1
!.. C:m~ ~ _ J

A

I
V ----------------------------

: Communi cation Network '
---------------------------~

Homogeneous Distri buted Data Base System

Figure 1 : The Archi tecture of a Distributed Data
Base Management System (part 1)

----- ----- ----- -----I I I , I r I I

1_ u,:::ei ~...! !.y,:::ei ~ J !.y,:::ei ~ ..! L u::ei ~ ...!

I I I I __ ~ ___ __ V _____ I ___________ I __

: Distribut i on and Coordi natation Manager(s) J --A------1----- - ---------1-
I I I

V V V ,----- ,
1 DBMS1 1 ------

A

I
V 1----'

I OS!cFile 1

LSi!:s! ~..: J
A

I
V

1----j
1 DBMS 2 I ------

A

I
__ :1[__ _
1 1
1 OS!cFile I

!.. ~si ~ _ J

I
V - - - -- - - - --1 I

1 Comp 1 I --1--
I

V

I I
L. C~m£ ~ .J

A

J

· . .

· . .

· . .

1"---- 1
!..D~M~ :: _ ...!

A

I
V ---"""--

; OS!cFile I

I Syst (n) I
---]t--

I
V - - - --

~C~m£(::)_ ~
A

I
V

: Communication Network I
--------------------- ______ 1

Inhomogeneous Distri buted Data Base System
Figure 1: The Architecture of a Distributed Data

Base Management System (part 2)

:

83

In both systems the user is presented with a unified and homogeneous
view of the data and programs avail able in the network. In the
first case no specific partitioning strategy is imposed a priori.
Data and program may reside and may be processed where it is
economically most feasible . One is .also fairly free in choosing
the data model and data representation mechanism most appropriate
for the selected distributi on strategies . Work in this area has
been desc ribed in (2, 3, 4,5,6; 7). Data which are already included
in existing (centralised) data bases will have to be transform ed and
transferred into the new distributed system.

In the second approach already existing data bases will
remain untouched . A translation and t ransformation mechanism has
to be constructed to produce the unified user view. However the
problem of translating user requests and data representations
correctly is very difficult and at present not very well understood.
As a consequence the translation mechanisms will be very complex and
the transferability of data and programs in the network much
restricted (8,9,10). The problem is somewhat s implifi ed if one can
assume that all the l ocal data base systems are built according to a
single architec ture, for example CODASYL-DBTG (11). Actually such
a system can be consider ed to stand in between a ppr oaches one ' and
two depending on the l evel of general control data base
administrators as sociated with a local system can execute.

Although con trasting in basic approach , the two strategies
have a great deal of problems and concepts in common . They both
hav e to ensure that the user is presented with a un ified view of the
whole system . They both imply the use of some communicati on medi um
and of some l ocalised file handling mechanism. They also require
the existence of some distributed executive supervising the t o tal
system operati on . Both must pay attention to performance,
reliability, and cost.

Global

Local

1- - - - - - - - - - -
User Services

A
I User Interface
V

1

1 Network Independent Analysis
1- - - - - - - - - - -

Network Oriented Analysis

1- Di;t;ibuti~n-
1-

Data Base Machine 1 _________ _

1 ~p~r~t~n~ ~y~t=m_ ,-
Processor and Communication System L _______________ _

Figure 2 : The Logical Structure of POREL

-I

_ I

_I

84

I
V

Use r

, RDBL -, L ___ ,

RDBL : <-­
V

Use r
I
V

! Deci s'Ion I
!... S.YP.ll~.rt_ J

- ..! RDBL

-,

I
V

User

r- - ---
, FRN&RDBL : ---1 - --

, FTN&RDBL
V r-

I Netw. I ndep .
I Analys i s 1(- - - - - - I Preprocessor ,
- - 1- - - - -
RMLV

J - - - - - ~ , _ __ ,_ _ _ _ _ '
I RML&FTN
V

:-N~t: .~r~e~t~d;<- _ _ _:c~m;i~e-T~m~ - '-- - - -
, I

I_ An_ a_ly_s i_s _1 _ ...J - - _ _ _ ~I Coordi nator .<:. - - -
/- - - - - - - - -" 1 I

II RML I r - -Y. --"j
- - - - 1 Execut i on
1 +t+++t+'4 _I M_on_i t _or_

+wai t i ng+
111111111 :<- --

V ,--,
I !!I~ 3. I

I ' NOA 2 I
I I

I - - - -
- - -;> ~ RML&Ob j • Code

RML & Obj Code

---- - - -
: Authorization : __ _) : Execution :

I Moni tor -' L ___ ____ ...!

f -- -- - -
r - - - -----,

Scheduler a nd I ,

~L~c~~n~1~r_1_ J
V

I Base
I Machine 1 ' L.. ____ ...!

__ _ -J 1- I

V

I ,
I Scheduler and I
I Lockhandler 2 ,

V

,
Base

, Machine 2 I
I I

• • •

Figure 3: Process (Modu le) Structure of POREL

I A
V i

r---, FTN
'_ C~m.ei!eE

are

85

The questions which are of special importance for a DDBMS

a) how
b) how
c) how
d) how
e) how

and where to store data,
to locate data,
to control concurrent manipulation,
to provide acceptable cost/performance,
to provide reliability and recoverability,

and we shall investigate them in somewhat more detail in the
framework of the POREL distributed data base management system (4).

In Figure 2 we show the logical structure of POREL whereas
in Figure 3 a more process (module) oriented representation is
given. The figures illustrate the system as it would be seen by a
user, they do not represent the multi-user, multi process
environment which actually exists. That is, more than one editor,
more than one n.etwork independent analyser etc. may be ex ecuting at
the same time. However each computer in the network contains only
a single scheduler and lockhandler and is represented by a single
(software implemented) base machine .

POREL has been designed around the relational
originally proposed in (12) and an algebra
manipulation language.

data model as
oriented data

POREL supports three interfaces for the user of the
distributed data base:

1. A Relational Data Base Language (REBL); a nonprocedural,
algebra-oriented, interactive language for data definition,
data manipulation and control .

2. FORTRAN (or some other programming language) and RDBL as a
data language, whereby RDBL has been extended with a cursor
concept similar to the one found in SEQUEL 2 (15).

3. A problem solving, decision support system which provides
the user with a working place oriented environment.

A detailed description of these features is beyond the scope of our
current discussions. Many aspects of them are quite independent of
the distributed network environment and the interested reader is
referred to (13). In the later sections we shall use examples
written in RDBL but we hope that the selected language features will
be self-explanatory.

At the other end of the spectrum of POREL features is the
computer network we are using. The network contains PDP11' sand
German minicomputers and one TR440 system, a system of IBM 360/65
size and technology. The computers in the network communicate via
the X.25 interface (14) which was developed by CCnT (Consultative
Committee on International Telegraph and Telephone) and will become
the standard communication vehicle in the Federal Republic of
Germany.

The different components of the POREL system will not be

86

discussed individually but only in connection with the distributed
data base management features which they support and which will be
described in the next sections.

3. Data Storage

In a distributed data base system there is a clear benefit
in storing data at the processor site where it is most frequently
used since

a) long distance communication is much slower than local access
to data, and

b) communication costs are a very significant part of any
network system and are directly dependent on the amount of
information transmitted across communication lines.

If we would know the frequency of access for all data
objects in the data base, an optimal allocation of the data objects
to processor sites could be found which would minimise access time
and network traffic. Unfortunately this problem has been shown to
be NP-complete (16), and therefore today's best known algorithms are
much too slow for practical applications. In addition the problem
becomes even more complex if we distinguish between retrieval and
update traffic as the latter always involves at least two transfers,
a retrieval and then a replacement access . We may also gain
advantage by storing more than one copy of a data object. This
tends to reduce retrieval time but increases the time required for
updates and also complicates the mechanisns which are to ensure the
consistency of the data in the data base .

After the decision has been made on which processor site a
data object is to be kept we have also to determine the s torage
technique to be used locally for the object. Because of the
relatively long time required to read or write secondary storage
devices it is important that data which are frequently used together
are also placed "close" to each other on these storage media, for
example in the same physical block, or in blocks where no mechanical
actions are involved when accessing them together. Again the
problem of finding an optimal placement is NP-complete and
consequently no algorithm is available for practical applications.

Heuristic techniques have been used for both the site
selection and data placement problem, and have been found to work
qui te well . Many of the techniques are based on mathematical
programming optimisation models, some also introduce the notion of
imperfect knowledge of access and update statistics (17) . Another
study (18) developed a very comprehensive model that distinguishes
query and update traffic. The problem attacked is how to allocate
copies of data objects to processors and also how to allocate
communication bandwidth in order to minimise the combined storage
and transnission costs. In addition the model allows to specify
that the average access time to data is to be bounded by a designer
suppl ied parameter. The heur istic technique employed for the
evaluation hwoever still turned out to be too slow for large
applications. Clearly more research is needed in this area of
where and how to store data objects in a distributed data base
system .

87

In POREL we have developed RDBL commands which allow the
data base administrator (or an authorised user) to control the
placement of data i n the data base. To illustrate a few of these
commands the relational data base is thought to consist o f

supplier (sno, sname, city)
project (jno, jname, city)
sup pI y .< sno, jno, amoun t)

The DISTRIBUTE commands then may have the form

DISTR suppl ier
LOC sl FIX WHERE city = "New York"
LOC s2 FIX, s 1 OPT

WHERE city = "BOSTON"
OTHER TO LOC s3 FIX

DISTR projec t
OTHER TO LOC 51 FIX

DIS TR supply
OTHER TO LOC 52 FIX, s3 FIX

descr i bi ng a distribution as illustrated i n Figure 4.

s l
J

s2

supplier (part 1 and opt i nally part 2)
project

s3

supplier (part 2)
supply (copy 1)

supplier (part 3)
supply (copy 2)

Figure 4: Data Distribution

To define the grouping of data objects on a single
processor site a c lustering technique for data has been implemented
in POREL (19). A command to organise s uch a cluster fo r our s ample
data base may have the form

DEFINE CLUSTERSET supplying
USING SUPPLIER (sno, sname)

project (jno, jname)
WHERE supplier.sno = supply.sno &

supply.jno=project.jno

In our current implementation of POREL the above commands
have to be given by the Data Base Admi n istrator. In the future we
pl an to implement optimisation algorithms. The DBA can then use
the se programs and the resul ting restructuring information to make
dec i sions on the placement of data. In its final stage the
placement and reorganisation of the data should be carr ied out
autom atically by the network oriented analysis (NOA) and the base
machine mechanisms.

88

4 . Locating Data

A request for a data object kept in a distributed data
base system can originate from any of the processor sites. The
management routines of that processor now have to know some way for
finding the data object. Several alternative strategies for
locating a data object are available and the selection of a strategy
will depend on the size of the data base, the expected distribution
of the data, and the frequency of reorganisation of the data base
(3) .

The simplest method is to store all descriptive
information of the data, that is, the knowledge base, on a centrally
located processor site. However much of the advantages of
distributing the data now gets lost again as this site always has to
be accessed before the actual data reference takes place. In
addition a breakdown of this processor will inhibit all operations
on the data base. For these reasons this simple algorithm is not
actually acceptable .

Another simple approach is to store the descriptive
information on the site where the data are physically kept. An
accessing algorithm will check first whether the data are locally
available and, if the object is not found, it will broadcast the
request to all other s i tes. This procedure creates a large amount
of network traffic and a lot of unnecessary processing. In a
network of N processor, N-2 unnecessary transmissions and N-2
unnecessary inv ocations of data base managers would be created.
Only in very rare circumstances will this be a tolerable strategy.

A third alternative is to store a detailed description of
the data only at the sites where the data are located but to keep a
short and compact description on every other site. This
information should just be sufficient to provide information for the
correct parsing of the input commands and for the network
independent analysis of the requested operations. This analysis
includes things like the static checking of correctness and
consistency of the request, and optimisation mechanisms. In POREL
we have chosen this third approach. As long as the compact
description of the data base as it is kept on every network si te is
stable over longer periods of time, this solution produces the
lowest network traffic of the three techniques presented.

After the requested data have been located in the network
the network oriented analysis (NOA) of POREL will analyse the user
transaction to determine how ·and where the request is to be
processed. The algorithm employed is similar to the algorithms
discussed in (20,25). A multivariable transaction thereby is
decomposed into a sequence of one variable actions . Such an action
then can be executed on a single location by moving all the relevant
data to that site, or it can be moved to all the sites where (part
of) the data reside which are identified by the single remaining
variable. The network oriented analysis will decide which of these
two solutions is preferable by the amount of network traffic it
creates and the degree of concurrency which becomes feasible.

Let us assune for example a command to be issued on site s 1.

ASSIGN SMITH supplies DISPLAY ALL
SELECT (supply .jno)
WHERE (supply . sno=supplier.sno &

suppl ier .sname=' SMITH')

For this query the algorithm then proceeds as follows;

1. Do the one-variable sub query

ASSIGN temp DISPLAY
SELECT (suppl ier. sno)
WHERE (supplier.sname = ' SMITH ')

89

The network oriented analysis decides that the resul t most probably
will be a unique sno (or at least only a very small set of such
numbers if sname is not a candidate key of the relation supplier)
and that the query will best be executed at all the sites where
parts of the suppl ier rel ation resid e. The ex ecution monitor
therefore wi 11 star t suc h queries at the si tes s 1 , s2, and s3 of our
example . In the general case the result is a relation " temp"
distributed on all three sites.

2. The original query now becomes

ASSIGN SMITH supplies DISPLAY
SELECT (supply.jno)
WHERE (supply.sno = temp.sno)

In our example the supply relation resides one copy each on the two
sites, s2 and s3. If we assume the size of temp to be much smaller
than the size of supply the network oriented analysis will

a) select as the execution site that site out of s2 and s3
where the larger segment of temp resides,

b) create commands to send the other segments of temp to that
si te, and

c) create commands to transport the resul t relation
SMITH_supplies to site s1.

The execution monitor will start the e xecution of the above
query. After it has finished, the monitor will execute the
proper transfer actions to pl ace SMITH_ suppl ies at the
original requesting site (s1).

5. Concurrency Control

To maximise the concurrent use of system r esources by many
users , shared access to these resources has to be possible . A data
object is " locked" by a process whenever the process has to be sure
that the object is not in some transient state . As soon as locking
is permitted the possibility of deadlock arises when two or more
use r s each are trying to reach an object locked by the other.
Locking strategies and deadlocks have been investigated qui te
extensively for operating systems and for centralised data base
systems (22, 23, 24).

90

In distributed data base systems however deadlock control
is made more difficul t by the existence of multiple lock and
concurrency managers (21, 26, 27). The problem we are faced with
is to ensure that the data in the distributed data base remain
consistent despite attempts at concurrent access and update from
different processors. This consistency has to be ensured even if
duplicate data exist in the system or (partial) system breakdown
occurs. Of the referenced proposals only the paper by Rosenkrantz
et. al. (27) deals with all of these aspects.

In general a user will specify a group of one or more RDBL
commands which are closely related to each other. Thereby he
constructs a semantically consistent portion of the total data
manipulation he plans to execute. These command groups are termed
transactions and, as seen from the user, they represent a
semantically meaningful transformation on the data base. As a
consequence the system has to ensure that during the execution of
such a transaction the data base cannot be changed by parallel
processes in a fashion which would destroy the meaning of the result
expected by the user from his transaction. That is, concurrency
and locking managers have to ensure the consistency of the data base
throughout the processing of such a transaction.

Strict control, in other words no interference, can be
very costly in a data base with many users. Therefore many data
base management systems do allow a user (or data base administrator)
to specify different levels of consistency, where the least
restrictive one usually ensures only the well defined ness of a data
object during a single read or single update activity. The most
restrictive will of course ensure that a person executing a whole
transaction can look at the data base as if he would be the only
user at that time.

To allow system control of concurrency and of locking, the
network independent analysis (NIA) of POREL constructs a time graph
relating time dependencies between the different actions found in
the user specified transaction currently processed. The time graph
reflects possible (network independent) parallelism which could be
util ised and forms the basis for creating separate (partial)
transactions and the necessary synchronisation and resource requests
to execute these transactions properly. The network oriented
analysis then updates this graph to reflect possibly created new
partial transactions and to incorporate the new interdependencies
and parallelisms l"hich arise through the use of the network.

For the one-variable sub query of section 4

ASSIGN temp DISPLAY
SELECT (supplier.sno)
WHERE (supplier.sname= 'SMITH')

NIA would produce two partial transactions and a time graph as
follows:

TO: WAIT()
R LOCK supplier
CREATE TEMPORARY temp
ASSIGN temp

SELECT (supplier,sno)
WHERE (supplier,sname='SMITH')

R_ UNLOCK supplier
END TO

T 1: WAIT(TO)
DISPLAY temp
DROP temp
END t1

91

The network oriented analysis of POREL then uses the
information which describes the distribution o f the relation
supplier to create partial transactions o f, for ex ample. the form

TO
I I - - - - -I

I
V

- - --
I T1
I I - - - --

92

S1.TOO: WAIT ()
R_ LOCK supplier ON(sl,s2,s3)
CREATE TEMPORARY temp ON (sl,s2,s3)
END sl.TOO TO (51,52,53)

51. TO 1 : WAIT (s 1. TOO)
ASSIGN s 1 • TEMP

SELECT (51.5upplier.5no)
WHERE (51.supplier.5name='SMITH')

R UNLOCK 51.5upplier
END 51 . TOl TO (51,52,53)

52.T02: WAIT(51.TOO)
ASSIGN 52 . temp

SELECT (52.5upplier.5no)
WHERE (52.5upplier.5name='SMITH')

R UNLOCK 52.5upplier
END 52.T02 TO (52)

52.T03: WAIT (52. T02, 5 1. TOn
I_ LOCK 51. temp
MOVE 52. temp TO(51.temp)
I UNLOCK 51. temp
END 52.T03 TO(51)

53.T04: WAIT(51.TOO)
ASSIGN 53. temp

SELECT (53.supplier.5no)
WHERE (53 .5upplier .5name= ' SMITH ')

R UNLOCK 53.5upplier
END 53.T04 TO (53)

53.T05: WAIT (53 . T04, 51.TOn
I LOCK 51. temp
MOVE 53. temp TO(51. temp)
I_ UNLOCK 51 . temp
END 53.T05 TO (5 1)

51.Tl0: WAIT (51.T01, 52 .T03, 53.T05)
DISPLAY t emp
DROP temp ON(51)
END sl. Tl0

and the time graph

, - - --
v

I s2. 'IlJ2 I
I ____ J

93

The synchronisation between sl.TOl and the transactions
s2. T03 and s3. T05 ensures independent recoverability of the assign
actions. If s2 or s3 would already send data before TOl was
finished, a failure of TOl would require a reexectuion of T01,T02 ,
and T03 since it would be impossible to separate the data in temp
which were the results of the partial execution of the assign
command in TOl from the data sent from s2 and s3 .

During the execution of the MOVE commands the locking
protocol ensures that the inserts into the temporary relation part
on site sl cannot interfere with each other . As can be seen by
this example it is possible in POREL to dynamically request
resources . In general we do not prevent deadlocks in our system
but the resource request protocol reduces deadlock occurrences to
only such circumstances where backout and recoverability ha s been
found to be acceptable. If such failures seem unacceptable a
deadlock prevention strategy for the involved processes is chosen .
That is, the process is not started if it cannot be assured that it
also can finish without becoming involved in a deadlock situation.

6. Cost/Performance

Distributed data base management systems will on l y be used
i n t he praxis if one can demonstrate an i mprovement in
cost/performance over the same application done in a centralised
system. In special cases the added reliability and the "fail safe"
properties of a distributed system may be of such importance that
they outweigh strict cost/performance conSiderations , but in genera l
cost/performance will be of very strong influence.

Many factors will influence the behaviour and the
performance of data base systems. Unfortunately even for
centralised data bases no comprehensive performance data are
available or have been analysed. Much work remains to be done in
this area to enable us to predict the behaviour of a data base
system in a specific usage environment. Data base designers
therefore try to include as many parameters as possib l e into their
system to allow for adjustments to the specific requirements of a
work environment even after the system has been i nstalled there.
Of course so far the responsibility for these adjustments mostly
rests o n the data base administrator and his ability to select
proper storage strategies, clustering and data access techniques,
and in network environments the proper distribution of data in the
system.

When deciding on data distribution a data base
administrator has to dete rmine the cost of typical data
manipulations expected in the system and has to try to minimise this
cost. This same evaluation however will have to be done when
individual queries are to be optimised by the data base management
system and therefore the necessary algorithms have to be included in
the system .

Whenever the DBMS is to process a user transaction it will
use the existing system and data descriptions to minimise the cost
of processing the transaction.

Optimisation techniques as they have been employed for

94

nonprocedural languages are applied by POREL during the network
independent analysis.

Breaking up transactions into sub-tractions very often can
be done in more than one way . The network oriented analysis of
POREL uses the network description to minimise the total cost of
executing a transaction. Again only heuristic techniques are
available for doing so but the experience with some of them in the
centralised 'data base environment (25) has been encouraging enough
to allow predictions about their usefulness in distributed systems.

In a network environment the cost of processing a (sub)
transaction can be formulated as

c 1 *network-traffic + c2*total-processing- time

To ·analyse this formula and to minimise its values we restrict
ourselves to the simple example of a n-variable query.

Let us assume there are

N sites in the network, and
n relations referenced in the query.

We as'sume that whenever the query is to be processed only one of the
relations, Rp, is allowed to remain distributed, all others; will be
completely: available at the processing si tee s) . We now have to
determine

K as the number of processing si tes of the query,
Rp as the relation to remain fragmented,
R ' as the segment of the relation Rp residing on site j

The communication cost of moving relations to the. K processing s ite
can be calculated as follows

K
comm cost = SUM(c *(SUM<!RJ I») +

j=l K-l i p i

M

SUM(c * (SUM(1 R J I» + c
j=K+ 1 Kip i 1

*(I~I»
p

where IRI denotes the size of a relation (fragment) and c (x) the
cost of sending x bytes of data to K sites, a cost that depends on
the network that is used. The first part of the formula refle.cts
the cost of sending relation fragments from a 'processing si te to the
K-l other processing sites. The second part reflects the cost of
sending 'fr,agments 'of the relations Ri, i p, from non-processing
si tes to processing sites and of sending a fr agment Rj, j>K, .to any
one of the processing sites.

The analysis of the processing costs of a query becomes
more complicated due to the fact the processing time in general will
not be a 1 inear function of the si ze of the data processed. In
addition, system overhead will usually be more severe for small
processes than for large ones. Since an analysis of these time

:

95

dependencies requires detailed knowledge of the data base design we
shall not further d i scuss it in this overview oriented paper .

To illustrate the communication cost formula let us
however investigate our earlier query

ASSIGN SMITH supplies DISPLAY
SELECT (supply.jno)
WHERE (supply.sno=temp.sno)

The relation temp resides on all three processors i n our network.
The supply relation is not distributed but a copy exists on s2 and
also s3 . We now can distinguish the following cases .

1.

2 .

3.

4 .

Execution sites : s1 , s2, s3

Di str ibuted : temp
comm c = c *(I I \1 2.supply)

Execution site :

Di str ibuted :
comm c =

s1

suppl y
c/(I s2.templ + \s3.temp l+l s2.supply \)

(Note: either s2. suppl y or s3. suppl y can be chosen)

Execution site :

Di str ibuted :
comm c

Execution site:

s2

suppl y

= c
1
*Qs1.templ+ \ s3. tem p l)

s3

Di str ibuted : suppl y
comm c: =c * q s 1. temp I + I s2. temp I)

If we assume I templ< l supplyl then one of the cases 3 or 4 should be
chosen depending on tlie sizes of s2 . temp and s3. temp. These
results confirm the intuitive site selection we have done in section
4.

7. Reliability, Recoverability, Integrity

Reliability , recoverability and integrity are closely
interrelated properties of any data base management system. No
system and especially no distributed system will ever be free of
breakdowns or partial breakdowns. Some processor may fail,
external storage devices may fail , or communication lines may not
work . In a data base system it is especially important to keep the
influence of such failures as local as possible, that is, increase
the reliability of the total system by leaving as many users as
possible unaffected by such a breakdown. After the cause of the
failure has been found and eliminated a recovery process for the
data base system has to take place. Processors that may have
become separated from the network have to be integrated again,
processes that may have been finished only partially will have to be
completed or backed out. In all these actions it is very important
that both the integrity of the data in the data base and the

96

integrity of the program executions remain ensured. For
if a user transaction results in updates of parts of the
which are located at different processor sites the updates
take place at all these sites or at none of them. Proper
and backout mechanisms have to ensure this behaviour of the
However this problem is not a simple one.

example,
data base

have to
recovery

system.

Suppose for example that a transaction updates three data
objects each stored on a different processor site. The system now
ensures via a commit-strategy (30), that none of these three updates
is in effect until all have been completed and acknowledged .
Assume now that the originating site of the transaction has received
all three acknowledgements and sends out the commit message, but one
of the three processors goes down before it has put the update into
effect.

The problem is c losely analogous to the problem of data
transmission protocols where correctness through messages alone
cannot be absolutely guaranteed (28). A general mechanism for
recovery which is based on checkpointing the data base and keeping
action-traces will resolve this problem as long as checkpoint data
and traces do not get lost. Unfortunately such a mechanism is very
time consuming and uses up a large amount of storage space. In
addition actions which produce an effect outside of the computing
system can only be handled with great difficulty. For example, if
a check al ready has been pr i nted and mailed with a wrong value, how
do I get it back? These recovery problems however are no t
restricted to the distributed data base environment but also exist
in central ised systems.

As it is very often the case in data base systems a
tradeoff between function (in this case data integrity) versus cost
has to be made.

8. Conclus ions

Distributed data base management systems have been
investigated intensively during the last two years, but much work
remains to be done. To be manageable these investigations usually
concentrate on a specific aspect of the system and make many
(restrictive) assumptions about the other system properties.

In actually constructing a DDBMS, as we are currently
doing in Stuttgart, it is very difficult to integrate current
knowledge into a single system since many of the resul ts found in
the literature are too restrictive and sometimes make quite
contrad ictory assumptions about the behaviour of the system. In
many situations simple minded (and usually slow) solutions can be
found and by heavy modularisation of POREL we should be able to
replace such " solutions" by better ones found through our own
research or by others.

97

Acknowledgement

The POREL distributed data base project could not exist
without the close cooperation of all the researchers involved in the
project. Thanks are due to these people and especially to
H. Biller and U. Fouser who have guided the project during my
absence from Stuttgart through many difficul t times.

Discussion

Professor Dijkstra: You should
distributed system close to the point at which
required, rather than that at which it is most

store the data in a
it is most urgently
frequently required.

Professor Page: These are two fundamentally different
criteria. For urgency you must guess or forecast where it will be
required, whereas most frequent need can be determined from past
use.

Professor Neuhold: Even if you know the precise
requirements on frequency of access , the placement problem of where
to allocate the data, and what bandwidth communication lines to
allow, is NP-complete. I think therefore that we cannot allow the
distribution to be carried out automatically, but should allow the
database administrator to specify a distribution initially, and
adjust it later according to the usage of the data.

Mrs. Ringland: I think that you are never going to get
away from having to design your system intell i gently. For example,
taking the problem of producing a total of values spread across the
whole database, you are never going to be in the position of wanting
a user to sit there and do that on demand , no matter how much
processing power you may predict. Implicitly there is some sort of
serial nature to the problem. You are going to have to think
ahead, which comes back to the need to do some sort of offl ine,
housekeeping or background procedures in order to produce this sort
of information.

Professor Neuhold: I think I agree with you. In
general however, you have a dynamic system, you can ' t think ahead
for the system. In some limited systems it may be possible, for
example in an airline reservation system where the number of
different transactions is very limited. In some such limited
systems you may be able to pre- program , at least for a specific
class of users of the system.

Mrs. Ringland: I disagree with you somewhat here in
that one thing that requires intelligence is anticipating which will
be the sort of thing that you have to do in advance, because they
would take impossible processing times to produce on demand.

Professor Neuhold:
systems is a very hard problem.

I think that preplanning such

98

Professor Dijkstra: Is preplanning in contrast to post-
planning? (laughter).

Professor Neuhold: They are rather closely linked, in
fact , because you somehow have to undo the effects of all the things
that have gone wrong!

Re fer ences

1) Deppe, M.E., Fry, J .P. , "Distributed Data Bases: A Summary
of Research", Computer Networks , Vol. 1, No.2, September
1976.

2) Rothnie , J.B., Goodman, N., "An Overview of the Preliminary
Desig n of SDD-1, A system for Distributed Data Bases",
Proc . of the 2nd Berkeley Workshop on Distributed Data
Management and Computer Networks, Berkeley, 1977.

3) Stonebraker , M., Neuhold, E. , "A Distributed Database
Version of INGRES", Proc. of the 2nd Berkeley Workshop on
Distributed Data Management and Computer Networks, Berkeley,
May 1977.

4) Neuhold, E.J., Biller, H., "POREL: A Distributed Data
on an Inhomogeneous Computer Network" , Proc. of
Conference on Very Large Data Bases , Tokyo, 1977.

Base
the

5) Epstein, R., Stonebraker, M., Wong, E., " Di str ibuted Quer y
Processing in a Relational Data Base System", Proc. of ACM
SI GMOD 78, Austin, May 1978.

6) Schneider ,
Data Net
Angewandte

H.J., Munz, R. , "1977 Report
Project (VDN)", Report No.
Informatik , l:...I:!.:. Berlin , '-978.

on the Distributed
1/78 Inst . fuer

7) Peebles, R., Manning, E., " A Computer Architecture for Large
(Distributed) Data Bases", Proc. of the Conference on Very
Large Data Bases, Brussels, September 1976.

8) Adiba, M., Caleca, J. Y., Elizet, C., " A Distributed Data
Base System Using Logical Relational Machines", Research
Report USMG , Grenoble, 1978.

9) Nahouraii, E., Cardenas, A.F., Brooks, 0. , " An Approach to
Data Commun ication between Different Generali sed DMBS",
Proc. of the Confe r e nce on Very Large Data Bases , Brussels,
September 1976.

10) Voss , K., "A Distributed Inhomogeneous Data Base System",
Gesellschaft fur Mathematik und Datenvararbeitung,
Birlinghoven/Bonn, 1977 (personal communication).

11) CODASYL Systems Committee, "Distributed Data Base Technology
- An in terim report", .Proc. of ACM SIGMOD 78, Austin. 1978 .

12) Codd, E. . " A Relational Model of Data for Large Shared Data
Banks",.f.:.. ACM, Vol. 13, No.6. June 1970.

99

13) E.J. Neuhold (et. al.), "POREL Design Specifications: System
Design", Insti tut fuer Informatik, University of Stuttgart ,
1978.

14) Solmonides, C., "X25 Interface Definition", National Physics
Laboratory , Ox ford, 1977.

15) "Chamberlin , D.D., et. al ., " SEQUEL 2: A Unified Approach to
Data Definition, Manipulation, and Control", IBM Journal of
Res . and Dev . , Vol 20 , No.6, 1976.

16) Eswaran, K., " Placement of
Allocation in a Computer
Stockholm , 1974.

Records in a File and File
Network" , Proc. IFIP Congress,

17) Levin, K. D. , Morgan , H.L., " A Dynamic Model for Distributed
Data Bases ," Proc. ORSA/TIMS Conference , 1975.

18)

19)

20)

Mahmoud, S . A., Riordan , J.S., " Optional Allocation of
Resources in Distributed Information Networks" , ACM TODS ,
Vol. 1, No.1, 1976 .

Poschik , S., " A Portable Relational Interface for the
Distributed DBMS POREL", Proc. of the GI Fachtagung _o_n _D_a_t_a
Bases in Minicomputer Nets , Karlsruhe , 1978 .

Wong , E., "Retrieving Dispersed Data from SDD- 1:
for Distributed Da t a Bases", Proc. of t he 2nd
Workshop on Distributed Data Management and
Networks , Berkeley , 1977.

A System
Berkeley
Computer

21) Chu, W.W. , Ohlmacher , G., "Avoiding Deadlock in Distributed
Data Bases, " Proc. ACM National Conference, November 1974 .

22) Coffman, E.G., Elphick, Shoshani , A., "System Deadlocks",
Computing Surveys, Vol. 3 , No.2, 1971.

23) Eswaran , K.P., Gray , J.N ., Lorie , R.A . , Traiger , ToL., " The
Notion of Consistency and Preicate Locks in a Database
System", £ of ACM, Vol. 19, No. 11, November 1976.

24) Lomet, D.B., "Multi- Level Locking with Deadlock Avoidance" ,
IBM Research, RC7019, 1978.

25)

26)

Wong, E., Youssefi, K., "Decomposition
Pr ocessing", ACM Transactions on Database
No.3, September, 1976 . -

Strategy for Query
Systems , Vol. 1,

Goldman, B.,
Thesis Mass.

"Deadlock Detection in Computer Networks" ,
Institute of Technology, June 1977, 84p .

27) Rosenkrantz, D.J., Stearns, R.E., Lewis , P.M., "A System
Level Concurrency Control for Di stributed Database Systems" ,
Proc . of the 2nd Berkeley Workshop on Distributed Data
Management and Computer Networks, Berkeley, 1977.

100

28) Morrissey, J., "Distributed Processing Systems Some
Economic and Technical Issues", Proc. of ~ Distributed
Processing Wor kshop , ACM Computer Architecture News, Vol . 5,
No.6, 1977.

29) Lampson, B. ,Sturgis, H. , "Crash Recovery in a Distributed
Data Storage System" , Internal Report, Computer Science
Laboratory, Xerox, Palo Alto Research Center, 1976.

30) Blasgen, M.W., " Issues in the Design and Implementation of
Data Base Management Systems" , Proceedings of AICA 1977,
Invited paper, Pisa, 1977.

