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DESIGN OF CRYPTOGRAPHIC SYSTEMS 

Historical systems: 

The Enigma, a commercial enciphering machine manufactured in the 

1920's, wa~ 
j 

adapted for use by the Germans in World War II. It 

contained three rotors, each of which had electrical leads going from 26 

input positions to 26 output positions. These rotors would turn as each 

letter was enciphered, like an automobile odorneter. At the back was a 

reflector, which paired up the 26 pos it ions in an arbitrary manner. A 

cleartext letter would activate the input lead on the first rotor, thus 

making a path through all three rotors to the reflector, and taking a 

different path out, activating an output (ciphertext) letter. The 

initial pos i tions of the rotors were secret, and changed each day. 

These initial positions formed the ~ When the rest of the system was 

known to the cryptanalysts (by having obtained copies of the machine), 

only the key was secret. The task became that of deducing the key. 
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One weakness in the scheme was that at each pos ition, the 

transformation from input to output character was an involution; i.e . if 

a cleartext IIA" became a ciphertext "Wll, then at the same position a 

cleartext "Wit became a ciphertext "A". 

exploit this by group-theoretic techniques. 

Cryptanalysts were able to 

Another weakness was in t he protocol for establishing session keys: 

under a master key, the session key encrypted and sent out twice in 

succession. Analysts were able to make use of coincidences in the double 

encryptions of session keys to make deductions about master keys in use. 

Hodges' biography of Alan Turing gives a delightful account of the 

cracking of the Enigma. 

The one-time pad is a truly unbreakable cipher. A long string of 

random data ("key") is prepared, and two copies are distributed, one to 

the sender, one to the receiver . The sender adds, character by 

character, his cleartext to the key, and transmits the resulting 

ciphertext. The receiver subtracts the same key from the ciphertext, 

character by character, and recovers the cleartext. If the key is truly 

random, the eavesdr opper has absolutely no way to distinguish among the 

severa l possible messages;. all information has been des troyed, from his 

point of view. 

The chief disadvantage of this scheme is the key length. The key 

is as long as the enciphered message, and must be transmitted over 

secure channels . (This transmittal can be done beforehand, at the 

leisure of the communicants.) This is totally impractical for computer 

communication, due to the sheer bulk of data being c ommunicated. It is 
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primarily useful for highly sensitive data, such as diplomatic 

communications and some intelligence data. 

A good many schemes are fashioned after the one-time pad, but they 

are not one-time pads, and they do not enjoy the total security of this 

scheme. Generally a shorter key (a few hundred bits) is expanded to a 

long random-looking string, via some pseudo-random number generator. 

This string is then added to the cleartext. (An example is the 

mUltiple-loop Vernam ciphe~.) The expansion can be done at both sender 

and receiver, so that only the shorter key need be exchanged. The task 

of cryptanalysis is now that of analyzing the pseudo-random number 

generator. 

These schemes enjoy the possibility of precomputation: the sender 

or receiver can generate the longer string at his leisure, dependent on 

storage, and then encryption/decryption is a simple matter of addition. 

A disadvantage is that a false sense of total security is imparted by 

the analogy to the one-time pad. 

Modern systems. 

An important system in use today 

Standard, developed by IBM in the early 

is the DES or Data Enc rypt ion 

1970's. At heart is a block 

cipher, using a 56-bit key to transform a 64-bit cleartext into a 64-bit 

ciphertext. The idea of chaining (see below) is an important addition, 

which lends the DES strength against "brute -force" or "dictionaryll 

attacks. 
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The workings of the DES will be sketched; further detail can be 

found in Meyer & Matyas, or Konheim. During each of 16 "rounds", the 

message is split into 32-bit halves. One computes a nonlinear function 

of the left half and the key, and adds it (mod 2) to the right ha If; 

then the left and right halves are reversed. The result of one round is 

that the new right half is the old left half, unscathed; the new left 

half is the sum of the old right half with this nonlinear function. A 

consequence of this schemE> is that decoding is like encoding, except 

that the IIroundsll are taken in reverse order. One has the "old left 

half" and the key available, so one can recompute the non linear 

function, subtract it from the "new left half" to obtain the "old right 

half"; thus one works backwards through each round. 

The particular nonlinear function in use: each of eight liS-boxes" 

takes as input six bits of message, exclusive-ORed with six bits of key, 

performs a prescribed nonlinear function taking six bits to four bits, 

and sends those four bits to prescribed locations in a 32-bit word. From 

round to round, and from S-box to S-box, the locations of the key bits 

are changed in a known manner. 

To all intents, the DES appears to be a random function taking 

56+64 bits (key plus cleartext) into 64 bits (ciphertext), with the 

proviso that under the same key, two different cleartexts map to two 

different ciphertexts: EK(X),EK(Y) if X'Y. For a fixed key, it appears 

to be a random permutation on the space of 64-bit messages . 

The DES is particularly well suited to hardware implementation. 

Software implementations are much faster than, say, the public key 

systems, but not as fast as hardware. 
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The DES is in used today in electronic funds transfer, bulk 

communication between main-frame computers in networks, and protection 

of data resident on main-frame computers. 

DES is enhanced by the use of chaining. As a block cipher, the 

same key and the same cleartext will always produce the same ciphertext; 

this would allow "dictionary" attacks such as the Hellman attack 

(outlined below). To c9unteract this, one uses "chainingll. The 

ciphertext is preceded by a random string of 64 bits (eight bytes) yD. 

Then instead of enciphering the cleartext as is, one adds to each block 

X. of 64 bits of cleartext, the preceding block Y. 1 of 64 bits of , ,-
ciphertext, and then enciphers. Thus 

Y. = EK (X. +Y . 1)' 
1 1 1-

The effect is that, although a particular cleartext string ("Dear Sir") 

may occur several times enciphered with the same key, the ciphertext 

will be different on each occasion. 

PUBLIC-KEY ALGORITHMS 

The concept of the public-key system is a relatively new idea; see 

Diffie and Hellman, "New Directions in Cryptography," IEEE Transactions 

on Information Theory, IT-22, pp.644-654, Nov . 1976. One objective is 

to avoid the logistical problem of distributing keys. In some schemes, 

the receiver concocts two keys, a secret deciphering key and a public 

enciphering key. He sends the public key to any senders. The sender 
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enciphers data and forwards it to the receiver. Only the receiver, in 

possession of the secret deciphering key, can read the messages; other 

senders, in possession of only the public enciphering key, cannot. Other 

variants exist. 

One use for these systems is to distribute keys for a private-key 

system (such as DES). Public-key systems are traditionally slower than 

DES, but can be used without prior exchange of secret information. 

Having exchanged a key, the two parties can now revert to the faster DES 

(e.g.) for the bulk of their data. 

The most popular, and most trusted, public-key system is the Rivest 

Shamir Adleman (RSA) scheme. Its difficulty is based on the difficulty 

of factoring large integers into their prime factors. (Actually, it is 

not yet known to be as hard as factoring, and the precise difficulty of 

factoring is not known. If one could factor, one could certainly solve 

the RSA scheme, and all known methods for solving RSA reduce to 

factoring.) 

In this scheme, the owner (receive r) produces two large primes P 

and Q, which are kept secret. He publishes their product N=PQ. He also 

produces two integers D and E (the deciphering and enciphering keys), 

such that DE=l modulo l cm (P-l, Q-l), and publishes E while keeping D 

secret . 

A sender first encodes his message as a sequence X. of integers , 
E modulo N. He then computes Y.=X. modulo N (the ciphertext), and sends , , 

this to the receiver. The receiver computes Xl .=y.D module N; it is easy , , 
to show that X' .=X .. , , 
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This scheme can also be used for "signatures": the owner can apply 

D to a plaintext to produce a "signature" of D. Then anybody can apply E 

to the signature to recover the plaintext. With proper safeguards, the 

public can thus verify that only the owner could have produced the 

signature. 

Another public-key scheme is the Diffie Hellman (discrete 

exponentiation) scheme. Its security is based on the difficulty of 

taking "logarithms" in finite fields. The scheme was originally 

proposed as a number-theoretic scheme (operating in GF(p), the integers 

modulo a large prime p), but has been adapted to operate in GF(2
n

) (the 

ring of polynomials over GF(2) reduced modulo a fixed irreducible 

polynomial of degree n) for ease of implementation in hardware. The 

present author showed that there are pitfalls in the GF(2
n

) version: 

"logarithms" are easier to compute in fields GF(2
n

) than in GF(p). 

In one implementation of the Diffie Hellman scheme, a user C wishes 

to communicate a message K to user D. The users agree on a large prime p 

(which may be constant over the whole system or may be generated on the 

fly). User C generates a secret random number c relatively prime to 

p-1; he also generates 
-1 

c such that 
-1 

c c = 1 modulo p-l. User D 

similarly generates d. User C computes KC and sends it to D. User D 
-1 

computes 

sends it to D. Finally User D computes 

User C computes 
-1 

(Kd)d =K. The 

(Kcd)c =Kd and 

transaction is 

complete. The eavesdropper has seen KC, K
cd

, and K
d

, but not K. He can 

deduce K if he can take "logarithms": if J given two numbers X and Y in 

the field he can deduce an integer Z such that XZ=y in the field, then 
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he can use this ability to find d' 
c d I cd I 

such that (K) =K ,presume d =d, 

-1 
and compute d and K. All known attacks reduce to taking logarithms. 

This scheme is used to exchange keys for private-key systems. 

Merkle and Hellman produced a public-key system, the knapsack, 

whose difficulty was related to that of NP-complete problems. 

The difficult problem: given a sequence A. of m n-bit integers and 
1 

a sum B, produce a set of, coefficients £., all 0 or 1, such that E. 
1 1 

£ .A. =B, or assert (truthfully) that none exists. This is in general a 
1 1 

hard problem, since any NP-complete problem can be encoded as a special 

case of this. 

The cryptographic system built on this problem: the legitimate 

owner takes an easy knapsack problem (say one in which each A'. is 
1 

larger than the sum of the previous ones) and transforms it into a 

difficult-looking problem Ai' by mUltiplying by a secret constant modulo 

another secret constant. He publishes A .. Persons wishing to send him a 
1 

message £i compute B=L
i 

ti and send B. The legitimate owner can reverse 

his transformation, solve the easy knapsack, and recover the message. 

Outsiders presumably could not. 

The hitch was that such knapsacks were easily broken (even though 

the general knapsack might not be). Shamir applied integer programming 

to the class of knapsacks constructed along these lines, and solved 

them. Later, Lagarias and Odlyzko showed that most low-density knapsacks 

were also easily solved, using the Lenstra Lenstra Lovasz lattice 

reduction techniques. ("Low density" means that the number of A. IS, rn, 
1 

is less than half the number of bits, n.) The lesson: although your 
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scheme is based on a "hard" problem, your scheme itself might still be 

easy to crack. 

More recently, Ong, Schnorr, and Shamir have developed a family of 

fast signature schemes, based on number theoretic problems. Unlike RSA, 

these schemes are easy for both generating and checking signatures. 

The owner publishes a.polynomial P (in a few variables) and a large 

composite number N. To sign a message M, he constructs integers 

X,Y, ... ,2 such that P(X,Y, ... ,2) = M modulo N. The way he constructs P 

gives him secret information which he can use to construct X, Y J' •• , Z 

given M; the outsider, without this secret information, presumably has a 

harder time of it . 2 2 2 In the first scheme, P(X,Y)=X +kY , where k=-l / u 

mod Nand u is a secret random number. Then choosing a random number r , 

2 2 
set X=(r +M) / 2r, Y=u ( r -M)/2r. 

The first two versions of their system have been broken, by 

Pollard, but the hope remains that more complicated versions might 

survive. 

Considerations for future systems. 

Several concerns have been expressed about the present systems. 

(1) Some contend that the key-length of DES renders exhaustive 

attacks possible. I don't believe that this is true yet, but in the next 

decade or two, as computing becomes cheaper, people might become less 

willing to rely on a 56-b i t key. One solution is triple encryption: 
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repeating DES with three independent keys. This brings the apparent 

key-size to 2x56=112 (not 3 x56=168), which should be sufficient in our 

lifetimes. 

(2) The present schemes all are fairly slow in software, and (with 

the exception of DES) too expensive for hardware. A faster scheme (but 

not less secure) would facilitate application of cryptography to areas 

in which it is now too expensive. 

(3) On the public-key side, the existing schemes (RSA and Diffie 

Hellman) both rely on number theory, on the difficulty of either 

factoring large integers or taking logarithms modulo large primes. Thus 

any breakthrough in number theory could disable both the existing 

schemes. New schemes are needed to protect against this possibility. 

These schemes might involve several ideas compounded, so that a 

breakthrough in one field does not necessarily antiquate the scheme 

immediately. 

So there is plenty of room for improvement: key length, ease of 

implementation, and new ideas in public key schemes. 

ATTACKS UPON CRYPTOGRAPHIC SYSTEMS 

I present here some of the known methods of attack against various 

cryptographic systems. Some of the ideas have been used in several 

different contexts, and a study of these ideas in particular is 

necessary for a developing cryptographer. 
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Current attacks: 

Current attacks include statistical and group theoretic attacks. I 

don't sufficiently understand the details of these to speak about them; 

however, I do know that a knowledge of statistics and group theory is a 

necessity. 

If key-space is small enough, there is always brute force: just 

try all possible keys until you get a match. This was usefu l during 

World War II with the Enigma machine, for several reasons: 

(1) the operators of the machine were using a weak protocol; 

(2) the operators were unaware of the computing power that the 

cryptanalysts would bring to bear on the problem; 

(3) the key-space actually in use was not sufficiently large 

(because of (2)). 

In modern times, situations such as (2) are unlikely to occur; the 

cryptographers have a rough idea of the computing strength of the 

potential cryptanalysts, and are likely to devise keys long enough to 

foil such attacks. Still one must guard against the use of weak 

protocols; see below. 

The ideas behind Rho method for factoring (due to Pollard) have 

been employed in two vastly different schemes; one for factoring 

integers, the other for a space-time trade-off for a "dictionary" attack 

against block ciphers. 
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To factor integers, one concocts a polynomial function such as 

2 
F(X)=X +3 mod N. One then l ets Xo be a random integer , and repeatedly 

If P is a factor of N, and if X.=X. mod P , then 
1 J 

Xi+k=Xj +k mod P for all positive k. Then gcd(N,xj+k - Xi+k) =P, and we 

. n n. n+l 
have factored N. (In practice, one lets J+k=2 , and 2 <1+k:S2 . ) If 

one i magines the values of X. mod P, they trace out a figu re "rho": an 
1 

initial tail, then around a cycle, then joining back on itself and 

continuing to go around the cyc le. The expected time before completing 

the first cycle is O(/P). Thus one is hoping for a coincidence, 

f(X. l)=f(X . 1)' to complete the cycle, to factor N. 
1 - J-

In Hellman' s brute - force attack against block ciphers, one is 

hoping to avoid coincidence . He attacks a block cipher with a message 

space of size N and a key-space of size M<N. The precomputation involves 

se l ection of plaintext ~IO which he can expect to find enciphered 

directly later, and encipherment of MO under essentially all possible 

keys K. The cleverness is in the way he can store the result of this 

precomputation in space ~12/3, and use it in time M2/3 to deduce an 

individual key K, given EK(M
O
)' 

For illustration, take R=S=T=fl
l

/ 3 . Hellman constructs R functions 

f mapping message space to key - space . For each r, he selects S starting 
r 

values X(r,s , O) in key space. Then for t ranging from 1 to T, he 

computes X(r,s,t) as f (E
X

( _l)(M
O

)) ' The pairs (X(r,s,O) ,X (r,s,T)) 
r r ,5, t 

are sorted and stored . 

To use the table (of size RS=M
2

/
3
), we suppose that we have 

available EK(M
O

) for t he unknown key K. For each r, compute 

Y( r ,O)=fr(EK(MO))' and for each t, compute Y(r,t)=fr (EY(r ,t_l)(MO))' 
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Compare Y(r , t) against X(r , s ,T). If there is a match, recompute 

X(r , s,T- l - t) f r om X(r,s,O); this is a candidate for K. 

(Notice that the assumption of t he availability of ciphertext 

corresponding to chosen plaintext ~10 is defeated by chaining, so that 

Hellman's attack fai l s in the presence of c haining.) 

The connection with t he Rho method i s in the possibility of 

coincidences . I f , for a fixed r , we have X(r , s,t)=X(r , s' ,t') , then for 

all positive k , we will · have X(r,s,t+k)=X(r,s' , t ' +k), and we will 

duplicate entries throughout this row of the tables . Thus R,S , and T 

must be chosen so as to make it unlikely that a given row X(r , s,*) will 

have a coincidence with ANY other entries in the same table X(r,s ' , t ' ). 

This leads to the restriction that ST
2

<M. Without this restriction , more 

favorable time - space trade - offs could be effected. 

The fac t that the same ideas occu r in the Pollard " Rho " method and 

the Hellman brute - force attack suggest that they are worth study by 

students of cryptography. 

Another technique used in several cryptographic attacks is the 

Morrison - Brillhart factoring technique. This is used in factoring (RSA), 

i n discrete logarithms in GF(p) (Diffie - Hellman) , and in discrete 

logarithms in GF(2
n

) (adapted Diffie-Hellman). I will describe the 

technique as used i n factoring. 

2 2 
To factor N, we wish to find integers X and Y such that X =Y mod 

N, while X#Y mod Nand X# - Y mod N. Then gcd(X+Y, ' ) will yield a 

nontrivial factor of N. 
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' .. 

2 We begin by finding integers A, such that A, mod N is "smooth", 
1 1 

i,e, expressible as the product of small primes, 

smaller than, say, 

c(log N log log N)1/2 
e 

("Small primes" are 

for a given small constant c,) (One way to do so, the "quadrat ic 

sieve", is to search through integers A, near 
1 

IN, applying a "sieve ll to 

2 find those Ai for which a given small prime q divides Ai -N, and looking 

for A, which are hit by. many "sieve" values q,) 
1 

express 

A 2 - IT (e, ,) d N 
i - jqj lJ mo . 

For each such A" 
1 

Now, by Gaussian elimination, find a collection r of subscripts i such 

that 

Then 

2 
rA, ) 

e 1 

and there is no reason to think that X=Y or X=-Y mod N, 

This technique, with modifications, forms the basis for all the 

modern integer factorization routines, for Adleman r s algorithm for the 

discrete logarithm mod p, and for Coppersmith's algorithm for the 

discrete logarithm in GF(2 n); in the latter instance it works much 

better because a quirk of fields of small prime characteristic enables 

us to produce small quantities which we require to be smooth, and small 
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quantities are more likely to be smooth than large quantities. Having 

found three applications, 

cryptographic students. 

it too is recommended for study by 

The Lenstra Lenstra Lovasz Basis reduction algorithm is a recent 

advance which is finding applications to several cryptanalyt ic 

algorithms. 

Their algorithm begins with an integer lattice (i.e. a subset of Zn 

closed under addition), and with a basis for this lattice, and finds a 

relatively short basis for the lattice (each basis vector is relatively 

short) . It has been used to factor univariate polynomials over Z, 

factor univariate polynomials over Zip, 

application by Lagar ias 

problems. 

and Odlyzko, 

and, in a cryptographic 

solve low-density knapsack 

If one can test whether one I 5 hypothesized "key" is "closeT! to the 

correct key (in some sense), then one can apply hill-climbing 

techniques. Suppose some easily computed "objective function" is 

correlated to the distance of the hypothesized key from the correct key. 

One makes an initial guess at the key (perhaps a random guess), and 

repeatedly tries making small changes, seeing what effect they have on 

the objective function, and keeping those which have a favorable effect. 

This is unlikely to work against well-designed systems. It should 

be considered~ however, in the design of systems. 
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One should know all the tricks which have worked in the past . But 

most important is ingenuity, to discover tricks which will work in the 

fut ure, and to apply existing techniques in new areas. This is much 

harder to teach than mere technique, but it is essential . 

A strong cryptographic scheme can still be attacked if its 

protocols are weak: if there is a weakness in the way that the system is 

applied. To give a few examp l es: 

The RSA (Rivest Shamir Adleman) scheme is multiplicative, in that 

the encryption of message X, times the encryption of message Y, is the 

encryption of message XY . If it is employed as a signature scheme by a 

"notary public" , the possibility exists that I could ask the "notary 

public" to sign two innocuous-looking documents X and Y, and produce his 

signature to the damaging document XY. 

With the similar Rabin scheme (the signature of the message X is a 

Y such that 2 Y =X mod N, where N is a composite whose factors are 

secret), I cou l d ask a notary public to sign a document X (where I have 

2 secret l y computed X=Z ), and comparing the signature Y with Z, I might 

deduce the factorization of N: gcd(N,Z -Y ) can be a nontrivial factor of 

N. Here one signature was enough to break the whole scheme. 

To exchange keys in the Enigma, the practice was to encrypt the 

session key under a master key, twice in succession . Cryptanalysts were 

able to make use of coincidences in the subsequent encryption to make 

deductions about the master key. 

The PIN (personal identification number) of an electronic credit 

card , loses its cryptographic value if the owner writes it on the back 

of his card . 
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Suppose we use a record-chaining version of DES for message 

authentication: the message to be authenticated is (X 1,X2"" ,Xn ), and 

we are able to "signll a shorter message such as (K,Y ). 
n 

Then a 

potential message authentication scheme: set YO=O, Y.=EK(X.+Y. 1)' and 
1 1 1-

"sign" K,Yn , The trouble: I can concoct any message X' l, ... ,X'n _l' and 

as long as I know K and Y , I can easily figure out the X' =DK(Y )-Y' 1 
n n n n-

that will give the same IIsignaturell. 

Future attacks : 

Who knows? It depends on the ingenuity of the cryptanalyst . 

APPLICATIONS OF CRYPTOGRAPHIC SYSTEHS 

The most obvious application for cryptography is privacy, or 

protection of data against unauthorized -disclosure. 

Data can also be authenticated, either privately or publicly. 

Privately, one can insert redundancy into one's data before encrypting, 

and check that that redundancy exists after decrypting. If the 

redundancy is sufficiently non linear and time -dependent, one can be 

assured that the message has not been tampered with. (However, 1 inear 

redundancy such as error - correcting codes, along with linear 

cryptosystems such as a one - time pad, do not afford this security.) 

Publicly, with a public-key scheme, one can arrange that anybody can 

verify that a message came from the alleged source. 
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These two properties point to applications in the military; in 

diplomatic traffic; in electronic funds transfer . Propos als have been 

made for encryption on identity papers , particularly to aid 

authentication and prevent forgeries. Sensitive data on computer files 

is a natural place to employ cryptography. 

Protection of commercial products: software , online stock services, 

pay-TV. These demand a range of schemes: the pay -TV must involve fast 

decryption, but can afford. to be a weak scheme; software protection can 

be more slowly decrypted but must be somewhat stronger (depending on the 

value of the software). As cryptography matures, this kind of 

application will find more use . 

More exotic new applications include "provable" random number 

generators (Goldwasser et al: a random number generator such that, if it 

fails to appear "random" for your particular application, then your 

application provides a way to break a particular cryptosystem) . 
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DISCOSSI ON 

Lecture 1 

Peter Brownn raised a question: what will happen if the input 
(clear text) happens to be a massive sequence of blanks , when the 
output (cipher text) is derived as the function of the input and the 
previous output . The answer from Dr. Coppersmith was that the output 
wi ll be cycling . 

The issue of key length in the DES encryption chip sparked off 
some discussion. Professor Turn asked why IBM ' s Lucifer encryption 
algorithm had employed a 128 bit key. Dr. Coppersmith believed that 
the l ong key had been justified on the grounds of security. 
Mr. Davies thought that Lucifer had been used in the system applied 
by IBM to Lloyds bank for automated cash dispensing . Dr . Coppersmith 
observed that the retention of a longer key for the DES could have 
averted the widespread cr i ticism that a 64 bit key was open to an 
(albeit expensive) exhaustive search. Professor Turn noted that the 
criticism was directed at National Bu reau of Standards and not at 
I BM . 

Miss Barraclough asked how keys were exchanged at the first 
instance, to which Dr. Coppersmith replied that session keys were 
usually exchanged using a master key, and that master keys were 
established by means of a secure channel (e . g . by meeting, via a 
courier or by using a one-time pad) . 

Professor Llewellyn asked what were the relative effects of 
accidental errors in transmission on the different encryption 
schemes . Dr. Coppersmith noted that both accidental and deliberate 
corruptions of Cipher text had to be considered. Some protection 
against some classes of error could be provided by using redundancy 
for error correction purposes. Professor Churchhouse noted that for 
some methods changing a single bit could destroy the information 
content of all subsequent bits. 

Professor Tanenbaum wondered if it could be possible to attack 
any scheme using prime numbers by conSidering fairly standard 
techniques used to generate primes. Dr . Co ppersmi th pondered over all 
the difficulties this could · entail, and Professor Churchhouse pointed 
out that generating a prime number is very difficult - instead 
integers can be generated and tested fo r primality. 

Professor Rande ll asserted that history shows that breaches of 
ciphers are most often due to mistakes in their ope ration, a point 
reinforced by Mr. Lindley who thought that mistakes are inevitable 
given the personnel involved in transmitting enciphered material. 
Dr. Coppersmith concurred, and suggested that the greater part of the 
work in dispensing protocols for using ciphers is in trying to make 
them idiot proof. Professor Churchhouse advised that the most direct 
attack against any techniq ue lies in the ft of the method, of the 
keys, even the clear text, by bribery, blackmail, burglary, etc. 
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Agreeing, Dr. Coppersmith mentioned that key security was the subject 
of work on the "key management problem". Professor Randell returned 
to the past to observe that at any time in history the currently most 
sophisticated ciphers were considered to be secure, based on the 
current theory and understanding, but that this reasoning has 
invariably been overturned by subsequent developments. 

Mr. Davies closed the discussion on a technical note that Diffie 
and Hellman's paper had not actually supplied the algorithm, as 
credited to them by the speaker, though the essential insight had 
been provided by them. 

Lecture 2 

Professor Turn asked if parallel processing will help the 
factorising algorithm work out faster. Dr. Coppersmith answered 
positively and observed how the CRAY, a vector based system, can be 
exploited. 

Lecture 3 

Professor Randell, referring to the choice of public-key versus 
private-key, asked whether public-key systems were likely always to 
be slower than equally secure private-key systems (given some 
suitable measure of security)? Dr. Coppersmith replied that this 
could be a historical accident; it was not always necessarily so. 

Dr. Freeman asked what the speaker meant by such terms as "truly 
random sequence" or a "fair coin". In the chip testing example, we 
have in principle one very long but finite string of inputs that will 
exhaustively exercise all possible faults; either we use an 
exhaustive test, in which case no randomness is necessary, or we can 
only be using a small fraction of possible inputs, which could be 
generated by a suitable algorithm. This application doesn't 
necessarily need randomness; the speaker had not emphasised the 
sequential aspects - and sequential complexity is quite a different 
kettle of fish from combinatorial complexity. 

Professor Denning intervened to clarify the discussion, by 
putting two distinct questions: firstly, it is really necessary to 
use random number generation to test chips, and secondly how do we 
effectively compare different random number generators? 

Dr. Coppersmith replied that it was indeed not necessary to use 
such methods, but that people DO use them. To the second question, 
the answer was to apply polynomial-time tests. 

Dr. Freeman asserted that the only satisfactory measure of 
randomness known to him was Kolmogorov's, based on the complexity of 
a minimal Turing machine capable of generating the sequence. If the 
argument on the board worked, that would seem to knock a great hole 

20 



in Kolmogorov's results. In reply, Dr. Coppersmith pOinted out that 
Kolmogorov's is not an effective test: one should include statistical 
test, an effective randomness test and consider the application 
aspec ts, so polynomial tests are preferred. 

A brief discussion on the security of PAY-TV signals followed, 
with some disagreement on the complexity of the problem. 
Professor Randell noted that the "messages" in this situation were at 
most valuable for a few minutes; the speaker had pointed out that 
breaking cyphers required both ingenuity and time, and he assumed 
that it was not yet possible to buy ingenuity, in the form of black 
boxes for completely automatic decryption. Quite a lot of PAY-TV has 
no encryption, and it was pointed out that some early systems merely 
added noise to the signal. The economic case for encryption was 
doubtful, and Dr. Hitchcock said that what most companies in this 
field worried about was pirates manufacturing cheaper de-scramblers 
to replace those provided, and hence by-passing their revenue 
collection! Dr. Coppersmith classified the people against whom the 
security should be provided into "casual hackers" (easy to handle), 
and "pirates" who are prepared to invest time and money in breaking 
the system (hence demanding severe measures). 

Dr. Lipner observed that the problem of software piracy was one 
of the toughest to deal with, as one had to end up at some stage with 
"clear-text" in one's possession for execution on a processor. There 
had been a proposal from INTEL for a "crypto-micro-processor", based 
on RSA/DES encryption, a single-chip processor and a key management 
scheme, but this was not absolutely or extremely secure. 

Professor Randell suggested that the solution might be to go 
back to selling programs and their processors "bundled" together 
again! Almost any technology providing great advantages was 
accompanied by equally great disadvantages. 

Dr. Hartley questioned whether the only form of protection worth 
considering was encryption, and referred to copyright and other forms 
of legal protection. Mr. Voysey argued that it might be totally wrong 
to prevent distribution in these ways, and that we should treat 
software as we do books, with a change of view from that of selling 
industrial devices to literary production; while another speaker 
pointed out that we expec.t a manufacturer to provide a manual for 
software products, giving a detailed description of its behaviour, 
from which an equivalent product might be re-developed. 
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