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Abstract 

The talk describes the research and development in speech 
understanding systems carried out at Bolt Beranek and Newman Inc. 
(BBN) during the ARPA Speech Understanding Project. This work 
included the development of bottom-up and top-down acoustic-phonetic 
recognizers, a lexical matching scheme that accounts for within-word 
and across-word phonological effects, for the use of ATN grammars, a 
uniform scoring philosophy for combining the evaluations of different 
knowledge sources, and the exploration of approximate and admissible 
control strategies. These developments were implemented in a speech 
understanding system called HWIM (for "Hear What I Mean"). 

1. Characteristics of the Speech Understanding Process 

A naive view of speech understanding might consider it as a 
process of successively recognizing speech sounds (called phonemes), 
grouping phonemes into words, parsing word sequences into sentences, 
and finally interpreting the meanings of those sentences. However, 
considerable experience now indicates that the acoustic evidence 
present in the original speech signal is not sufficient to support 
such a process (Woods and Makhoul 1974). For sentences recorded from 
continuous speech, it is not generally possible to reliably determine 
the phonetic identity of the individual phonemes (or even to be sure 
how many phonemes are present) using the acustic evidence alone. 
Experiments in spectrogram reading (Klatt and Stevens 1971) indicate 
that the reliability of such determinations can be increased by use 
of the redundancy provided by knowledge of the vocabulary, the syntax 
of the language, and semantic and pragmatic considerations. 

Tape splicing experiments (Wanner 1973) seem to indicate that 
this low-level acoustic ambiguity is an inherent characteristic of 
continuous speech and not just a limitation of human 
spectrogram-reading. Specifically, intelligibility of individual 
words excised from continuous speech is very low, but the 
intelligibility increases when sequences of two or three words are 
used. It appears that the additional constraint of having to make 
sense in a larger context begins to resolve the ambiguities that were 
present when only the acoustic evidence was considered. This 
processing, however, happens below the level of introspection and has 
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all the subjective characteristics of a holistic or Gestalt 
phenomenon. That is, if a sufficiently long sequence of continuous 
speech is heard, its correct interpretations usually appears 
immediately and effortlessly, without conscious awareness of the 
details of the process. The vast majority of our spoken 
communications are understood in this manner, and it is markedly 
conrasted with those cases where an utterance is garbled sufficiently 
to invoke conscious effort to decide what was said. 

Recently, speech understanding research has taken a direction 
that recognizes the importance of syntactic and semantic constraints 
as an essential part of the process which deciphers speech signals 
into sequences of sounds (see Newell et al. 1973). Consequently, it 
has become important for speech researchers to be acquainted with the 
work that has been done in the area of computational linguistics, 
attempting to construct computer programs to model the process of 
natural language understanding. In this paper, I will attempt to 
provide an introduction to some of the ways that these "higher level" 
sources of knowledge can be used in speech understanding. 

2. Syntactic and Semantic Analysis 

There are two parts of the problem of syntactic and semantic 
analysis - one is a component of judgment or decision (whether a 
given string of words is a possible sentence or not), and the other 
is a component of representation or interpretation (deciding how the 
pieces of the sentence relate to each other and what they mean). In 
speech understanding, the former function is especially important. 
This judgmental function is critical in distinguishing possible word 
sequences that a speaker might have uttered from mere random 
sequences of words that happen to match the acoustic input. Without 
this ability to discriminate well-formed, meaningful sentences from 
"word salad", a speech understanding system would frequently (perhaps 
even usually) produce interpretations of the input that are 
incomprehensible. 

Rules for expressing syntactic constraints on possible sentences 
can be expressed in several formal grammar models, such as 
context-free phrase structure grammars, transformational grammars 
(Chomsky 1965), and augmented transition network (ATN) grammars 
(Woods 1970). A discussion of various grammar models and parsing 
methods is given in Woods (1975). The ATN model is well suited both 
to expressing sophisticated grammars of natural language and to 
efficient computational use. In BBN's HWIM speech understanding 
system, (Woods et a1. 1976), a parser was developed that can use an 
ATN to parse (from the middle out) an isolated fragment of an 
utterance and determine whether such a fragment is a possible 
fragment (not necessarily a well-formed constituent) of some complete 
sentence. Moreover, this algorithm could predict possible words and 
syntactic classes that could be used to extend such a fragment. 
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Semantic constraints on possible utterances (i.e., constraints 
that they be meaningful as well as grammatical) can be expressed by 
formal semantic interpretation rules (Woods 1978). They can also be 
expressed as an ATN either in a combined 
syntactic/semantic/pragmatic ATN (as in HWIM) or as a separate ATN in 
a cascade of ATN transducers (Woods 1980). Since space here does not 
permit a full treatment of semantic rules and semantic 
interpretation, the reader is referred to the above two references 
for further details. 

3. Theories, Monitors, Notices, and Events -
A Computational Framework for Perception 

The BBN speech understanding system (Woods et al. 1976; Wolf and 
Woods 1977) has evolved within a general framework for viewing 
perceptual processes. Central to this framework is an entity called a 
theory. A theory represents a particular hypothesis about some or all 
of the sensory stimuli that are present. Perception is viewed as the 
process of forming a believable coherent theory which can acco unt for 
all the stimuli. Thi s is arrived at by successive refinement and 
extension of partial theories until a best complete theory is found. 

In general, a high-level perception process requires the ability 
to recognize any member of a potentially infinite class of 
perceptible objects that are constructed out of elementary 
constituents according to known rules. That is, the object perceived 
is generally a compound object, constructed from members of a finite 
set of elementary constituents according to some kind of 
well-formedness rules. These elementary constituents, as well as the 
relationships among them that are invoked in the well-formedness 
rules, must be directly perceptible. Thus, a perceptual system must 
incorporate some basic epistemological assumptions about the kinds of 
things that it can perceive and the rules governing their assembly. 
The well-formedness rules can be used to reject impossible 
interpretations of the input stimuli, and may also be useable to 
predict other constituents that could be present if a given partial 
theory is correct. 

This perception framework assumes mechanisms for using subsets 
of the input stimuli to form initial " seed " hypotheses for certain 
elementary constituents (stimulus-driven hypothesization) and 
mechanisms for deriving hypotheses for additional compatible 
constituents from a partial theory (theory-driven, or predicted, 
hypothesization*). It also assumes mechanisms for verifying a 
hypothesis against the inp ut stimuli and evaluating the 
well-formedness of a compound hypothesis to assign it some measure of 
quality and/or likelihood. A theory may therefore be thought of as a 

139 



hypothesis that has been evaluated in this way and assigned a measure 
of confidence. * 

In the case of speech understanding, a theory can range from an 
elementary hypothesis that a particular word is present at a 
particular point in the input (a word match) to a complete hypothesis 
of a covering sequence of words with a complete syntactic and 
semantic interpretation. (In general, a theory can be a set of 
compatible word hypotheses with gaps between them and with partial 
syntatic and semantic interpretations.) A partial theory may be able 
to generate predictions for appropriate words or classes of words 
either adjacent to the words already hypothesized, or possibly 
elsewhere in the utterance. 

Predictions are dealt with in our computational framework by two 
kinds of devices: monitors, which are passively waiting for expected 
constituents, and proposals, which are elementary hypotheses that are 
to be evaluated against the input. Proposals result in actively 
seeking stimuli that would verify them, while monitors passively wait 
for such hypotheses to be formed. The functioning of monitors assumes 
tha t there is an organizing structure into which all derived partial 
hypotheses are placed as they are discovered and that the monitors 
can essentially set "traps" in this structure for the kinds of events 
that they are watching for. This is to be contrasted with continuous 
parallel evaluation of special processes (frequently called "demons") 
to watch for expected patterns in the input stream. Monitors perform 
no computation until and unless some other process makes an entry of 
the kind they are waiting for in some data structure. 

The functioning of monitors is illustrated by an early speech 
understanding system at BBN dealing with concentrations of chemical 
elements in lunar rocks. There, for example, a word match for 
"concentration" would set monitors on the concept nodes for SAMPLE 
and CHEMICAL ELEMENT in a semantic network. If a word such as 
"Helium" was subsequently found anywhere else in the utterance, a 
check in the semantic network starting with Helium would lead to the 
superset category CHEMICAL ELEMENT where it would wake up the monitor 
from "concentration", thus detecting the coincidence of a detected 
hypothesis and a predicted hypothesis (Nash-Webber 1975). 

* Our notion of stimulus-driven hypothesization is essentially the 
same as that of "bottom-up" processing referred to in many 
discussions of such processes. However, our notion of theory-driven 
hypothesization is slightly different from the sense usually given to 
"top-down" processing in that it does not necessarily imply any 
global ("topmost") hypotheses, but only predictability by some other 
hypotheses, which may itself have been derived "bottom-up". The terms 
"top-down" and "bottom-up" in this sense come from the literature on 
formal parsing algorithms. 
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When a monitor is triggered, an event is created calling for the 
evaluation of a new hypothesis and the creation of a new theory if 
the hypothesis is not rejected. In general, a number of events are 
competing for service by the processor at any moment. In human 
perception, there may be full parallel processing of such events, but 
in a serial machine, these events must be queued and given processing 
r eso urces on the basis of some priority ordering. (Even in human 
perception, there is probably some sort of priority alloca t ion o f 
resources, since various kinds of interference can occur.) In our 
computational framework, events are maintained on a queue in order of 
priority, the top event being processed at each step. 

The processing of a n event can result in new proposa l s being 
made, new monitors being set, and existing monitors being triggered 
to produce new events. Since so much hinges on the event chosen for 
processing, a major issue is that of assigning priorities to events 
in order to find the most likely interpretation of t he input. In the 
new BBN system, priority scores are assigned on the basis of Bayesian 
estimates of the probabilities of the compet ing t heories, and certai n 
control strategies and priority scoring metrics can be guaranteed to 
discover the most probable interpretation of the input. 

4. Control Strategies 

The above discussion leaves open issues s uch as when should 
initia l one-word " seed" theories be formed, how many should be 
considered, should all seeds be worked on in parallel, etc. These 
issues we refer to as control iss ues. They have b een critically 
imp ort an t in computerized speech understanding systems. In the BBN 
system, for example, there are a variety of d i fferent control 
stategies that all fit within the above paradigm. Figure 1 
illustra tes one c l ass of stra te gies in which seeds are formed 
anywhere in the utterance that suffi ciently salient word matches are 
found. The figure shows the seed events formed as a result of a n 
initial ' scan of an utterance for high likelihood word matches 
anywhere in t he utterance. Each theory is assigned a score expressing 
its likelihood of being correct (actually a logarithm of t he ratio of 
the likelihood of t he acoustic evidence given the theory over the a 
prior i likel ihood of that evidence occurring independently). The 
regi on of the utterance covered by the theory is indicated by 
specifying its left and right boundary positions in a list o f 
potential boundary positions (the l ef t end of the u ~terance is 
numbered 0 and in thi s case the right end is numb e r ed 18 ) . The 
exclamation marks indicate t he theories that are ac tually part of t he 
correct interpretation. 

For this general class of control strategies, referred to as 
"middle-out" or " island-drive n" strategies, theories are grown by 
starting with a seed word, aski ng a higher-level linguistic component 
to predict categories of words that can occur on either side of it, 
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asking a lexical retrieval component to find the best matching words 
in those categories on the appropriate sides, and generating events 
for each such word found to extend the theory by adding that word. 
Thus, events will be placed on the event queue to add words both on 
the left and on the right ends of given theories. These "new word" 
events will compete with each other and with the remaining seed 
events on the basis of score to determine which event will be 
processed next, causing the processor sometimes to continue adding 
words to a given theory and at other times to shift its processing to 
a different competing theory. 

Figure 2 shows the sequence of theories that are formed as a 
result of this process, starting with the event queue of Figure 1. 
(Brackets in the figure indicate theories that include the hypothesis 
that the left or right ends of the utterance have been reached. A 
number in parentheses after a theory number is the number of a 
preceding theory from which the indicated theory was formed by the 
add i tion of a new word.) Notice that the final theory is developed in 
this case by working independently on two different portions of the 
utterance starting from the seeds "shown" and "trips". The final 
theory in Figure 2 is in fact derived from a kind of event called a 
collision event which combines the theories "show me" and "trips" 
when they both notice the word "her" filling the gap between them. 
This event is formed during the processing of theory 13, although its 
score is such that it does not reach the top of the queue until 
theory 23. 

Figure 3 shows the seed theories for a hybrid strategy in which 
seeds are started within a bounded distance from the left end of the 
utterance, and are grown right-to-left until they reach the left end, 
after which the remainder of the processing is left-to-right. Figure 
4 shows the sequence of theories developed in the course of 
understanding this utterance using the hybrid strategy. The basically 
left-to-right nature of the hybrid strategy, except for a bounded 
initial delay in getting started, seems to be a reasonable 
possibility for a model of human speech understanding, since it is 
clear that human processing of speech does not involve the buffering 
of a complete sentence before understanding begins. 

5. Priority Scoring 

The scoring assigned to a theory by the summation of individual 
word scor~s (essentially the log probability of its words being 
correct) we refer to as the quality score of the theory. We 
distinguish from this a possibly separate score called the priority 
score, which is used to rank order events on the event queue to 
determine the order in which they are to be processed. In early 
versions of HWIM, we used the quality score itself as the priority 
score. However, we have developed several algorithms with interesting 
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fF SCORE REGION THEORY 

0 11-14 ADD 
2 0 4-7 NEED 
3 -. 455 0-3 SHOW 
4 - .605 12- 17 TRIP 
5 -.727 1-5 ROME 
6 - . 769 8- 11 THERE 
7 -1.25 12- 18 TRIP-S 
8 -1.47 0-5 SHELLY 
9 -1.65 15 - 17 END 
10 -1. 72 11 - 14 AND 
11 -1. 73 1-5 ANN 
12 -1. 74 0-5 CHEYENNE 
13 -2. 19 8- 14 BERT 
14 -2.26 2-6 ANY 
15 -2.82 0-5 SOME 

+15 ADDITIONAL EVENTS 

Fig. 1. Seed events for middle-out strategy 

THEORY 1 ADD 
THEORY 2 NEED 
THEORY 3 SHOW ! 
THEORY 4(3) (SHOW I 
THEORY 5( 4) (SHOW ALL 
THEORY 6(3) SHOW ALL 
THEORY 7 TRIP 
THEORY 8 ROME 
THEORY 9(4) [SHOW ME 
THEORY 10(3) SHOW ME I 
THEORY 11(7) HER TRIP 
THEORY 12 TRIP-S I 
THEORY 13( 12) TRIP-S 1 I 
THEORY 14(13) HER TRIP-S ] I 
THEORY 15(12 ) HER TRIP-S 
THEORY 16 SHELLY 
THEORY 17(16) (SHELLY 
THEORY 18 (SHOW ME HER TRIP 
THEORY 19 SHOW ME HER TRIP 
THEORY 20( 11 ) HER TRIP IS 
THEORY 21 (20) HER TRIP IS] 
THEORY 22(20) OF HER TRIP IS 
THEORY 23(9, 13) (SHOW ME HER TRIP-S ] I 

Fig. 2 Theories formed for middle-out strategy 
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1 

I 

# SCORE 

1 3.53 
2 1.92 
3 0.0 
4 -2.43 
5 -3.24 
6 -4.32 
7 -5.36 
8 -6.00 
9 -6.18 
10 -6.21 
11 -6.53 
12 -6.85 
13 -7.00 
14 -7.12 
15 -7.21 

+39 

Fig. 3. 

THEORY 1 
THEORY 2( 1) 
THEORY 3 
THEORY 4(3) 
THEORY 5(4) 
THEORY 6(3) 
THEORY 7(5) 
THEORY 8 (7) 
THEORY 9 
THEORY 10(9) 
THEORY 11 (3) 
THEORY 12(8) 
THEORY 13(12) 

REGION THEORY 

1-5 WHO 
3-6 WEI 
0-1 -PAUSE- ' 
2-3 A 
5-10 ELEVEN 
5-9 IRAQ 
1-3 HER 
1-4 WHOLE 
1-5 00 ! 
3-6 WERE 
3-7 WORK 
1-4 HIS 
1-5 HOW 
1-6 HAWAII 
3-6 WHERE 

ADDITIONAL EVENTS 

Seed events for hybrid strategy 

WHO 
[WHO 

WEI 
00 WE I 
[DO WE I 

[WE I 
[DO WE HAVE 
[00 WE HAVE A 
-PAUSE- I 
[-PAUSE- I 

ARE WE 
[00 WE HAVE A SURPLUS I 
[DO WE HAVE A SURPLUS] I 

Figure 4. Theories formed for hybrid strategy 
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theoretical properties using priority scores t hat are derived from, 
but not identical wit h , the quality score. The first measures the 
difference between the particular quality score for a theory and an 
upper bound on possible quality scores for any theory covering the 
same portion of the utterance. We call this the shortfall score, and 
it can be shown t hat using t he shortfall score as a priority score 
under appropriate conditions guarantees finding the best scoring 
interpretation of the unpu t utterance (Woods et al . 1976, Woods 
1977). Using the quality score itself as a priority score does not 
guarantee this. Other priority scores are obtained by dividing either 
the quality score or the shortfall score by the time duration of the 
island to give quality density and s hortfall density scoring, 
re s pective l y. Since a fairly complete derivation of t he shortfall 
density scoring strategies t ogether with proofs of their theoretical 
properti es i s given in Woods ( 1977), we wil l present here only a 
brief recapitulation of the strategies, and discuss differences we 
have observed between them. 

5.1 Shortfall Scoring 

The shortfall score measures the amount by which t he quality 
score of a theory fall s an'upper bound on the poss i ble score that 
could be achieved on the same region. When shortfall scoring is being 
used, a MAXSEG profile is cons tructed having the property that th e 
score of a word between boundaries i and j will be less than or equal 
to the area under the MAXSEG profile from i to j (ca l l th is latter 
the MAXSCORE for the regi on from i to j). The shortfall score for a 
theory is then computed as the s um over all the word mat ches in the 
theory of the difference between the score of the word match and the 
MAXSCORE for the same r egion. The preferred t heory is the one with 
the smallest magnitude of shortfal l . 

The MAXSEG pro f ile can be constructed incrementally by adding to 
the profile whenever a word match is found whose score is not bounded 
by it. Whenever the score of a word match exceeds the MAXSCO RE for 
its reg ion , the excess score is distributed over the region to raise 
its MAXSCORE to that of the word matc h . In HWIM , an initial profile 
is constructed during the initial scan f or seed words and this 
profile is substantially correct. Occasionally, a word match is found 
later which raises the profile , and in this case all even t s 
overlapping the changed region are rescored. 

In order to satisfy the theoret ica l claims of 'the al gorithms, 
the way in which the excess score of a word match is distributed to 
rai se the MAXSEG profile doe s not matter . However, it is desirable to 
do it in such a way as to minimize the amount by which the shortfall 
of other words that overlap the region is raised. Our c urrent 
algorithm is to distribute the excess score over the segments covered 
by the word match that are not already bounded by the profile and to 
divide it in prop ortion to the durations of the segments. Other 
distribution algorithms are possible, some of which have been tried. 
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This one is better than some, but there are probably better 
strategies to be found. Keeping the MAXSEG profile as low as possible 
while still satisfying the upper bound condition is important since 
excessively conservative upper bounds translate directly into an 
unnecessary increase in the breadth-first nature of the search, 
requiring more events to be processed before finding the chosen 
interpretation. 

The theoretical characteristics of the shortfall scoring 
algorithm are that if the words are returned by the Lexical Retrieval 
component in decreasing order of quality and events are processed in 
order of increasing magnitude of shortfall (plus a few other 
assumptions, documented in Woods (1977)), then the first complete 
spanning interpretation found will be the best scoring interpretation 
that can be found by any strategy. We refer to this condition as 
"completeness" (a more traditional term is "admissibility"). For 
speech understanding applications, completeness is a desirable 
property, but not necessarily ess ential if the cost of its attainment 
is too great. Shortfall scoring has the property of being complete 
without searching the entire space. Its completeness proof depends 
only on the fact that when the first complete spanning theory is 
found, all other events on the queue will already have fallen below 
the ideal maximum score by a greater amount. Thus, the result does 
not depend on the scores being likelihood ratios, nor does it make 
any assumption about the nature of the grammar (e.g., that it be a 
finite-state Markov process) provided a parser exists that can make 
the necessary jUdgements. The completeness also does not depend on 
the order of scanning the utterance - it is satisfied both for 
middle-out and for left-to-right strategies. 

5.2 Density Scoring 

Another type of priority scoring is density scoring. Here the 
score used to order the event queue is some basic score divided by 
the duration of the event. Conceptually, we can think of this 
priority scoring metric as predicting the potential score for the 
region not covered by a theory to be an extrapolation of the same 
score density already achieved. (In these terms, the shortfall 
strategy can be thought of as predicting that the upper bound for the 
uncovered region will be achieved.) Unlike the shortfall scores, 
density scores can get bad and then get better again as new words are 
added to a theory. Hence, the density score is certainly not 
guaranteed to be an upper bound of the expected eventual score. 
However, it has another interesting property: in exactly those cases 
where it does not bound the eventual score, there is a word to be 
added somewhere else that has a better score density and whose score 
density does bound the eventual score. This arises from the property 
of densities that the density of two regions combined will lie 
between the densities that they each have. It turns out that this 
alone is not sufficient to guarantee completeness for a density 
scoring strategy, since it is still possible for the density score 
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starting from the best correct seed to fall below that of some other 
less-than-optimal spanning theory before it can be extended to a 
complete theory itself. However, with the addition of a facility for 
combining islands that start from separate seeds when they collide 
with each other, the density scoring strategy working middle-out from 
multiple seeds can be shown to be complete. Again, density scoring 
does not depend on any assumptions about the basic scores to which it 
is being applied other than that they be additive (and capable off 
division). Hence, the density method can be applied to either the 
original quality score or to a shortfall score. The combination of 
the two methods in a shortfall density strategy seems to be more 
effective t han either shortfall or density scoring alone. 

6. Comparison of Speech Understanding Systems 

6.1 BBN HWIM 

The admissible strategies discussed above are only some of the 
control strategy options implemented in the BBN HWIM speech 
understanding system. In addition there are a large number of 
strategy variations that result in approximate strategies, including 
strictly left-to-right strategies and "hybrid" strategies that start 
near the left end of an utterance and work left and then right. For 
reasons of time and resource limitations, our final test run of the 
HWIM system was made using one of the approximate strategies. 
Subsequently, a much smaller experiment was run to compare various 
control strategies on a set of ten utterances at random from the 
larger set. Although this sample is much too small to be relied on, 
the results are nevertheless suggestive. For two comparable 
experiments using our best left-to-right method (left-hybrid 
s hortfall density) and our best island-driven method (shortfall 
density with ghosts, island collisions, and direction preference), 
both with a resource limitation of 100 theories and without using a 
facility for analysis-by-synthesis word verification, the results 
were as follows: 

Correct interpretation 
Incorrect interpretation 
No interpretation 
Average number of theories evaluated 

LHSDNV 
6 
2 
2 

50.7 

SD+GCD 
5 
o 
5 

75.5 

That is, the left-to-right strategy found the best (and in these 
cases the correct) interpretation within the resource limitation in 6 
of the 10 cases, while the island-driven strategy found only 5 (not 
necessarily a significant difference for this size sample). On the 
other hand, the left-to-right method misinterpreted two additional 
utterances with no indication to distinguish them from the other 6. 
If this strategy were used in an actual application with compara ble 
degrees of acoustic degradation (e.g. due to a noisy environment), 
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the system would claim to understand 80% of its utterances, but would 
actually misunderstand 25% of those. The island-driven strategy, on 
the other hand, would only claim to understand 50% of the utterances, 
but would misunderstand a negligible fraction. 

The island-driven strategy in the above experiments expanded 
only 50% more theories (and incidentally used only 30$ more cpu time) 
than did the left-to-right strategy. Although, as we said before, 
this test set is much too small to draw firm conclusions, the success 
rate of the two methods are not much different, excpet that the 
island-driven shortfall density method is clearly less likely to make 
an incorrect interpretation. Moreover, the numbers of theories 
considered and the computation times are not vastly different. If one 
considers proposals to improve the performance of left-to-right 
strategies by having them continue to search for additional 
interpreta tions after the first one is found (and thus take the best 
of several), then the time difference shown above could easily be 
reversed and there would still be no guarantee that the best 
interpretation found would be the best possible. 

6.2 DRAGON 

The DRAGON system (Baker 1975) is the only other speech 
understanding system in the ARPA project that provides a guaranteed 
optimum solution. It does this by using a dynamic programming 
algorithm that depends on the grammar being a Markov process (i . e. a 
finite-state grammar). It operates by incrementally constructing, for 
each position in the input and each state in the grammar, the best 
path from the beginning of the utterance ending in that state at that 
position . The computation of the best paths at position i+1 from 
those atposition i is a relatively straightforward local computation, 
although the number of operations for each such step, for a grammar 
with n states, is n times the branching ratio (i.e. the average 
number of transitions with non-zero probability leaving a state). 
DRAGON performs such a step for each 10 millisecond portion of the 
utterance using a state transition that "consumes" an individual 
allophonic segment of a phoneme. 

The optimality of the solution found by this algorithm depends 
on the property of finite state grammars that one sequence of words 
(or phonemic segments) leading to a given state * is equivalent to 
any other such sequence as far as compatibility with future 

* I am using the term "state" a little casually here in roughly the 
sense that it is used in an ATN grammar (Woods 1970). If one takes 
the condition of having equivalent future predictions as the 
definition of a "state" of a grammar, then what the finite - state 
grammar does is guarantee that there are only a finite number of such 
states, which can therefore be enumerated and named ahead of time • 
For a more general grammar, the number of such states is open-ended. 
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p~edictions is concerned (regardless of the particular words used). 
It is this property that permits the algorithm to ignore all but the 
best path leading to each state (even if competing paths score quite 
well), and therefore permits it to find the best solution by 
progressively extending a bounded number of paths across the 
utterance from left to right. (This is a very attractive property, 
although in this case it requires one such path for each state in the 
grammar.) For more general grammars, where there may be 
context-sensitive checking between two different parts of the 
utterance (e.g. number agreement between a subject and a verb), the 
best path leading to a given state at a given position may not be 
compatible with the best path following it. In this case, second best 
(and worse) paths must be considered in order to guarantee finding 
any complete paths at all (much less an optimum). 

Although only applicable to finite-state languages, DRAGON's 
dynamic programming method has the advantage of taking a relatively 
constant amount of time from utterance to utterance, being simple to 
compute, and guaranteeing to obtain the optimal solution. The only 
difficulty is that for a large number of states in the grammar (e.g. 
thousands for a reasonable size grammar) the amount of computation 
required is expensive. Except to the extent that the finite-state 
grammar permits one to el iminate from consideration any path that is 
not the best one leading to its state, the algorithm exhaustively 
enumerates all other possibilities. 

Although DRAGON's scores are estimates of probabilities of 
interpretations, its guarantee of optimality does not depend on that, 
but only on the fact that its grammar is finite-state and that 
therefore it suffices to carry a record of the best path leading to 
each state. The same dynamic programming algorithm can be applied at 
the level of phonemes or words, and can be generalized to apply to an 
input lattice such as the BBN segment lattice (Woods et al. 1976) 

6.3 HARPY 

The eMU HARPY system (Lowerre 1976) is a development of the 
DRAGON theme which gives up an absolute guarantee of optimality in 
exchange for co mputation speed. Like DRAGON, it takes advantage of 
the unique characteristic of finite-state grammars cited above, so 
that only the best path leading to a given state need be considered. 
However, it uses an adaptation of the dynamic programming algorithm 
in which not all of the paths ending at a given position are 
constructed. Specifically, at each step of the computation, those 
paths scoring less than a variable threshold are pruned from fur ther 
consideration. (In the Itakura-metric version of the system, setting 
this threshold at 1/100000 of the score of the best path at that 
point was reported to give the best performance.) Thi s gives an 
algorithm that carries a number of paths in parallel (the number 
varying and depending on the number of competitors above the 
threshold at any given point) but is not exhaustive. If the threshold 
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is chosen appropriately, the performance closely a pproximat es that of 
the optimal algorithm, although there is a tradeoff between the speed 
efficiency gained and the chances of finding a less than optimal 
path. 

In 1976, the HARPY system had the best demonstrated performance 
stat istics of any continuous speech understanding system. However, it 
derived this performance in l arge part from the us e of a highly 
constraining (and advantageously structured) finite-st a te grammar. 
Th is grammar has an average branching ratio of approximate l y 10, and 
character izes a non -ha bi tab l e, finite set of sentences, with 
virtually no "near miss " sentence pairs i ncluded. For example, "What 
are their affiliat ions" is in the grammar, but no other sentences 
starting with "What are their" are possible. The only two sentences 
starting with "What are the" are "What are the ti tles of the recent 
ARPA s urnotes, " and "What are the key phrases." These three sentences 
will almost certainly find some robust difference beyond the initial 
three words t hat will reliably tell them apart . Similarly, the 
grammar permits sent ences of the form "We wish to get the latest 
forty articles on <topic>, " but one cannot say a similar sentence 
with "I" for "we", "want" for "wish", usee" for "get", "a" for "the", 
"ten" for "forty", or any similar deviation from exactly the word 
sequence given above.) Most of HARPY's grammar patterns (such as the 
last one) consist of a particular sentence with one single open 
category for either an author 's name or a topic. A large number of 
them are particular sentences with no open categories (like the first 
three above). 

The HARPY algorithm makes no guarantee that the correct path 
will not be pruned from consideration if it starts out poorly, but at 
least for the structure of HARPY' s current grammar (most of whose 
sentences start with stressed imperative verbs or interrogative 
pronouns), the correct interpreta tion is usually found. 

The HARPY technique (or varia t ions o f i t) seems to be the 
algorithm of preference at pre sent for applications involving 
care fully structured artificial languages with finite-state grammars 
and small branching ratios (on the order of 10 possibl e word choices 
at each position in an utterance). However , i t does not conveniently 
extend to larger and more habitable grammars. This is due to a number 
of factors, includ ing: the combinatorics of expanding them into a 
finite-state network (the branching ratio 10 grammar on which i ts 
best performance is reported is about the largest HARPY could hold in 
its memory ), the appr oximations necessary to represent such a grammar 
as a fin ite-state network (most such grammars are at least 
context - fr ee and usually context-sens i tive - so that finite-state 
approximations necessarily accept sentences that the or igina l grammar 
doesn't or fail to accept some that it does), and the difficulty of 
dealing with dynamically changing sit ua tions s uch as constraints on 
utterances that depend on previous sentences. 
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Neither the DRAGON nor the HARPY system use density 
normalization or any method to attempt to estimate the potential 
score that is achievable on the as yet unanalyzed portion of the 
utterance. Such normalization is not necessary, since they both 
follow paths in parallel, all of which start and end at the same 
point in the utterance, and therefore never have to compare paths of 
different lengths or in different parts of the utterance. Again, it 
is worth emphasizing that the ability of these algorithms t o keep the 
number of paths that need to be considered manageable depends on the 
unique characteristic of finite-state languages that requires only 
the best path to each state to be considered. 

6.11 IBM 

A group at IBM (Bahl et al. 1976 ) has a speech understanding 
system based on Markov models of language, which has implemented two 
control strategies: a Viterbi algorithm (essentially the same dynamic 
programming algorithm used by DRAGON) and a " stack decoder", a 
left-to-right algorithm with a priority scoring function that 
attempts to estimate the probability that a given partial hypothesis 
will lead to the correct overall hypothesis. The latter apparently 
does not guarantee the optimal interpretation, but somehow is 
reported as getting more sentences correct than the other (a 
circumstance I don't fully understand, but which can happen if there 
are acoustic-phonetic scoring errors such that the best scoring 
interpretation is not correct). 

Recent experiments with an improved version of one of the IBM 
systems (incorporating the CMU technique of bypassing a phonetic 
segmentation to do recognition on fixed length acoustic segments 
(Bahl et a1. 1978) reported performance on the same grammar user. in 
the HARPY system (the "CMU-AIX05 Language") of 99% correct sent.cnce 
understanding. (This performance is based o n reco"dings in a 
noise-free environment, however, compared to a rRther casual 
environment for the CMU results). They also report performance of 81% 
correct sentence understanding on a more difficult, but still stJall 
branching ratio, finite-state grammar (their "New Raleigh Language"). 
Both of these resul ts were obtained in experiments wt th the system 
trained for a single speaker and tested on that same speaker. 
Performance of the system when tested with a difficult speaker is 
significantly less. 

6.5 Hearsay II 

The Hearsay II System (Lesser et a1. 1975) permits the kind of 
generalized middle-out parsing described in this paper, and does so 
for context-free grammars (although apparently not for 
context-sensitive or more powerful grammars). Moreover, it has a 
capability for a kind of island collisions (Erman--personal 
communication). However, its design philosophy specifically rejects 
the use of an "explici t control strategy" as "inappropriate" (because 
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it "destroys the data-directed nature and modularity of knowledge 
source activity" (Hayes-Roth & Lesser 1976». Its scoring function 
for hypotheses, which its authors refer to as the "desirability" of a 
KS (knowledge source), is an ad hoc combi nation of functions 
reflecting intuitive notions of "value" , "reliability", "validity", 
"credibility", "significance", "utility", etc . Specifically , they 
state: "the desirability of a KS invocation is defined to be an 
increasing function of the following variables: the es t imated value 
of its RF (an increasing function of the reliability of the KS and 
the estimated l evel, duration and validity credibility of the 
hypothesis to be created or supported); the ratio of the estimated RF 
value to the minimum current state in the time region of the RF; and 
the probability that the KS invocation will directly satisfy or 
indirectly contribute to the satisfaction of a goal as well as the 
utility of the potentially satisfied goal" (Hayes-Roth & Lesser 
1976) . 

They go on to say that the above is not "complex enough" to 
"provide precise control in all of the situations that arise", and 
proceed to describe various further elaborations, all of which are 
vague as to exactly what the system does. 

Although it is extremely difficult to tell from the available 
published descriptions exactly what Hearsay II does, the fact that 
the "desirability" of a KS invocation is an increasing function of 
its duration definitely rules out any interpretation of it as 
implementing the density method. The above allusion to the "current 
state in the time region of the RF" refers to a parameter that for 
each point t in the utterance specifies the maximum of the "values" 
of all hypotheses "which represent interpretations containing the 
point t". This "sta te" function at first glance seems similar to the 
maxseg profile used in the shortfall algorithms (and indeed was what 
caused me to start thinking along those lines), but in actuality it 
is quite different. Instead of being an estimate of the maximum 
possible portion of a score that can be attributed to a segment, 
Hearsay's state is the maximum total score of any hypothesis found so 
far that covers it (recall that such scores increase with length of 
the theory). Its contribution to the desirability of a hypothesis is 
the ratio of the "value" of that hypothesis to the smallest value of 
the state parameter in its region. 

Since the smalles t state value in the region of a hypothesis 
will always be at least as great as that of the hypothesis being 
valued (each state is the max value of all covering hypotheses), this 
ratio is always less than or equal to one, and is strictly less only 
when every portion of the region covered by the hypothesis has some 
better covering hypothesis (although not necessarily a single 
hypothesis that covers the whole region). Consequently, the "state" 
component of the score has the effect of inhibiting a hypothesis that 
at every point has a better competitor. Since the values of 
hypotheses grow with the length of the region covered, the effect 
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will be that hypotheses that get big early will inhibit alternative 
hypotheses on the regions they cover. With shortfall scoring, on the 
other hand, the tendency is for big hypotheses to pick up additional 
shortfall and increase the likelihood of a shift to a competing 
hypothesis that might ultimately get a better score (this is what 
makes it an admissible algorithm). Hearsay II's use of the "state" 
parameter, is more reminiscent of SRI's "focus by inhibition" 
technique discussed below, which was found to have generally 
undesirable effects, although it did offset some of the costs of 
their island driving strategy (Paxton 1977). 

In summary, it is difficult to say exactly what the Hearsay 
focus of attention strategy does, or how it relates to the methods 
presented here, except to say that it is certainly not the same as 
any of these methods. 

A superficial comparison of the Hearsay II system performance 
with that of the BBN HWIM system might lead one to believe that the 
Hearsay II control strategy is somehow more effective. However, it is 
more likely that the difference in performance is due to the 
differences in difficulty of the two grammars or to differences in 
their acoustic "front end". The reported performance resul ts of the 
Hearsay II system are based on the same highly constrained, branching 
ratio 10 grammar used by HARPY. The BBN grammar, on the other hand, 
is a general ATN grammar with average branching ratio (measured from 
hypothesis predictions in a running system) of 196, permitting a 
relatively hab itable subset of English which includes such minimal 
pairs as "What is the registration fee" and "What is their 
registration fee". Informal conversation with members of the Hearsay 
II project convinces me that Hearsay II can in principle explore all 
the alternaties that the SD+C strategy would and would in fact 
explore at least these if functioning according to its design 
philosophy of finding a first interpretation and then exploring 
further any hypotheses that could produce something better. 

6.6 The SRI Experiments 

At SRI, Paxton (1977) has performed a number of experiments on 
control strategy options, using a simulated word matching component 
based on performance statistics of the SDC word matching component to 
which a speech understanding system at SRI was originally intended to 
be coupled. Paxton's system is well-documented, and contains a number 
of interesting and well-done capabilities. He has worked out a very 
clean representation of the SRI grammar as a collection of small ATN 
networks (although he doesn't call them that) which do not have the 
directional left-to-right orientation that convent ional ATN's do and 
in which the association of augments with transitions is more 
systematized and less procedural. The capabilities of this system for 
syntactic/semantic/pragmatic constraint are comparable in power to 
that of HWIM's general ATN grammar, and in several respects the 
notations used are cleaner and more perspicuous than one usually 
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finds in a conventional ATN. Moreover, the implementation of these 
grammars contains some very elegant efficiency techniques. The system 
has a capability for middle-out parsing maki ng use of the 
semantic/pragmatic augments i n the grammar, although it doesn't seem 
to hav e a capability for island collisi ons and doesn't cons truct 
islands for arbitrary sentence fragments. 

In terms of the control strategy framework set up in this paper 
(as opposed to the terms that he himself uses), Paxton's system makes 
a distinction between a quality score for a hypothesis and a priority 
score for an event, although the kinds of hypotheses and events tha t 
his system creates are somewhat different than those above. One way 
of viewing his system in the terms presented h ere is that his 
hypotheses ar e a lways partially completed constituents (w hat he calls 
"phrases " ), which can make predictions for the kinds of words or 
constituent phrases that they can use. These phrases are incorporated 
into a structure called a "parse net" in which explicit "p roducer " 
and "consumer " links associate such hypotheses to each other, but 
partially completed phrasess are not combined into larger sentence 
fragments corresponding to our notion of islands (wh ich can be 
partial at several levels of phrase structure). His events are of two 
types: o per at ions to look for a word or words at a point (what he 
calls a "word ta sk", co mparabl e to our proposals to the lexica l 
retrieval component), and events to create such predictions f rom a 
phrase (what he calls a "predict task" ). Every phrase is implicit ly 
an event for a predict task , and he has a special data type called a 
"prediction" to represent events for word tasks. 

Whereas HWIM, when it processes a hypothesis, wi ll always make 
all predictions, call the lexical retrieval component to find a ll 
match ing words, and create word events for each such found word, 
Paxton's system breaks this cycle u p differently. His syst em 
schedules separate events for each of the individual word predictions 
generated by a hypothesis, and whenever a word or completed phrase is 
found he distribu tes it immediately to all its "consumers " without 
waiting. (This difference is probably motivated by his lack of a word 
matcher that could efficiently find the best matching words at a 
given position without ex hau s tively considering each word in the 
dictionary. ) 

Paxton's system make s no attempt to guarantee the best 
interpretation, nor does it stop with the f i rst com plete 
interpretation it finds. Rather it runs unti l one of several stopping 
conditions is satisfied (such as running out of storage), after which 
it takes the best interpretation that it has found so far. 

Paxton performed a systematic set o f experiments varying four 
control strategy choices, which he called "focus by inhibition", "map 
all at once", "context checking" , and "island driving". The first was 
a strategy f or fo cusing on a set of words that occur in high scoring 
hypotheses and decreasing t he scores of a ll tasks for hypot heses 
incompatible with those words. 
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The "map all at once" strategy referred to a "bottom up" lexical 
retrieval strategy that found all possible words at a given point a nd 
ranked t hem taking their word mapper scores into account, rather than 
proposing s uch words one at a time in the order in which their 
proposing hypothesis ranked them (essentially ranking such words 
according to a priori preferences assigned by the grammar). 

" Con t ext checking" referred to a technique of assigning a 
priority score to predictions of a partial phrase on the basis of a 
heuristic search for the best possible combinations of higher level 
constituents that can use that phrase, rather than by basing such 
priority scores solely on the local quality of the partial phrase 
alone. (This mechanism gives part of the effect of our use of 
theories tha t include arbitrary fragments of a sentence that may 
cross several levels of phrase boundary, but does not apparently 
permit a fragment that has incomplete phrases at both ends to be 
prioritized as a whole. It assigns the resulting priority score j ust 
to the phrase doing the prediction without apparently remembering the 
context t hat justified this score). 

"Island driving", in Paxton's system, referred to the use of a 
middle-out strategy that looked for a best word somewhere in the 
u tterance t o start a seed, and if a ll hypotheses from that seed 
scored badly enough would look for another s uch seed, and so on. 
However, his system contained none of t he features s uch as island 
collisions, ghosts, preferred directions, shortfa ll, or density 
scoring techniques discussed in this paper, although it may have had 
something amounting to an absolute direction prefere nce (the 
documentation is not totally clear on whether both ends of an island 
can be worked on independently). Hence its version of island driving 
seems to have all o f the disadvantages of a middle-out strategy with 
almost none of the compensating advantages. 

The experiment s indicated that the "main effects" of focus by 
inhibition (Le., the net effects averaged over all combinations of 
other strategy options) wwere negative both in accuracy of the 
r ecogni t ion and in number of events processed, and that the mai n 
effects of mapping all at once and context checking were positive 
(the former was more expensive in run time in t heir system, but might 
not have been with a suitable lexical retrieval component such as 
that of HWIM). All three of these experiments showed a statistically 
signifi cant effect. In addition, the main effect of their island 
driving feature was found to be negative in time and acc uracy, 
al though the resul t was not stat istically signifi cant "because of a 
large interaction with sentence length". Specifical l y, Paxton found 
that island driving imp roved performance for short utterances, but 
decreased performance for longer ones, largely due to exceeding the 
stor age limitati on s before finding the best inter pretation. 
Consequent l y, it is possible that the implementation of some of the 
features describ ed in this paper might have improved the performance 
of the island dr iving strategy sufficiently to gain a net 
improvement. 
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Paxton's results with the focus of inhibition strategy reflect 
what seems to have been a common experience of the various speech 
understanding groups in the ARPA project. Although it seems natural 
to expect that some word match scores should be good enough that they 
could be considered correct, the r eby eliminating attempts to find 
alternatives to them, in fact all att e mpts to implement such an 
intuition seem to have lead to at best indifferent results and 
usually to positive degradation. In retrospect, the fact that perfect 
matches of other words or short word sequences can occur by accident 
in completely accurate transcriptions of sentences should suggest 
that there is no magic t hreshold above which one can consider a given 
hypothesis correct without verifying its consistent extension to a 
complete spanning theory. It seems, therefore, that the absolute 
value of the local quality score is not what matters in deciding the 
most likely interpretat ion. The relative scores of competing 
hypotheses are more relevant, but what really counts is the eventual 
quality of the complete spanning theory. 
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