
AUGMENTBD TRAHSIT!ON NETWOR~ GRAMMARS
FOR NATURAL LANGUAGE ANALYSIS

V.A. Woods

Rapporteur: Dr. J .M. Rushby

Abstract

The use of augmented transition network grammars for the
analysis of natural language sentences is described.
Structure-building actions associated with the arcs of the grammar
network allow for the re-ordering, restructuring and copying of
constituents necessary to produce deep-structuring representations of
the type normally obtained from a transformational analysis, and
conditions on the arcs allow for a powerful selectivity which can
rule out meaningless analyses and take advantage of semantic
information to guide the parsing. The advantages of this model for
natural language analysis are discussed in detail and illustrated by
examples. An implementation of an experimental parsing system for
transition network grammars is briefly described.

1. Preface

La te in the fall of 1968, in order to provide mechanical input
for a semantic interpreter, I began constructing a parsing program
based on the notion of a recursive transition network grammar, a
model very much like a finite-state transition graph except for the
presence of non-terminal as well as terminal symbols and labels on
the arcs. A non-terminal label causes a recursive application of the
transition network to recognize a construction of the type indicated
by the label before the transition so labelled is permitted. This
model, which is weakly equivalent to a non-deterministic pushdown
store automaton, occurred to me as a natural representation of the
type of grammar that one would get if one carried the use of the
Kleene * operator and bracketed alternatives in the right-hand sides
of context-free grammar rules (a notation used by many linguists) to
its logical conclusion by permitting arbitrary regular expressions as
the right-hand sides of rules. One could then merge all of the rules
with a given non-terminal symbol as their left-hand side and could
represent this rule either by its regular expression or alternatively
by an equivalent finite state transition graph (over the total
vocabulary of terminal and non -terminal symbols). It is this la·tter
form of representation which I have called a recursive transition
network. In the course of this implementation, I learned that a
similar approach to natural language analysis had been used by
Thorne, Bratley and Dewar (1968) and by Bobrow and Fraser (1969). My
approach is in effect a generalization and formalization of these
earlier parsers and provides a number of additional capabilities.

117

In addition to many advantages for efficient context-free
recognition and improved strong generative power, the transition
network model also provides a convenient means for incorporating
syntactic and semantic conditions for guiding the parsing and for
performing transformations and relocations of constituents. This is
done by associating arbitrary conditions and structure building
actions with the arcs of the network. This augmented network is a
kind of "transducer" , whose effects are to make changes in the
contents of a set of registers associated with the network and whose
transitions can be conditional on the contents of those registers.
Registers can be used to hold pieces of syntactic structure whose
position and function in the syntactic structure being built might
not yet have been determined.

Experience wi th the parSing system has shown it to be an
extremely powerful system -- capable of performi ng the equivalent of
transformational analys is in little more time than that customarily
required for context-free analysis alone. In addition, the system i s
conveni e n t for the designer of the grammar and facilitates
experim ents with various types of structural representations and
various pars ing strategies .

1.1 Motivation

One of the ear ly models for natural language grammars was the
finite-state transitiongraph corresponding to a finite-state machi ne
that accepted (or generated) the sentences of a language. In t his
model, the grammar is represented by a network of nodes and direc ted
arcs connecting them. Th e nodes correspond to states in a
finite-state machine, and the arcs represent transitions from state
to sta te. Each arc is labelled with a symbol whose input can cause a
transition from t he state at the tail of the arc to the state at its
head. This model has the attractive feature that the sequences of
words which make up a sentence can be read off direct ly by following
the paths through the grammar fro m the initial state to some final
state. Unfortunat ely, t he model is grossly i nade quat e for the
representation of such grammars because of its failure to capture
many of the regularities of s uch grammars. The most notabl e of these
is the pushdown mechanism that permi ts one to suspend the processing
of a constituent at a given level while u sing the same mechanism to
process an embedded constituent.

Suppose, however, that one added the mechanism of recursion
directly to the transition graph model by fiat. That is, suppose that
one took a collection of transition graphs each with a name, and
permitted not only terminal symbols to be l abels on the arcs but a lso
non-terminal symbols naming constructions which must be present in
order for the transition to be followed. The determination of whether
such a construction was in fact present in a sentence would be done
by a "subroutine call" to another transition graph (or the same one).
The resulting mod el of grammar , which we wi ll call a recursive
transition network, is equivalent in generative power to that of a
context-free grammar or pushdown stor e automaton, but as we will show

118

I

l

allows for grea ter effi c iency of expression, more efficient parsing
algorithms, and natural extension by "augmentation" to more powerful
models which allow various degrees of context dependence and more
flexible structure-building during parsing. We will argue in fact
that an "augmented" recursive transition network is capable of
performing the equivalent of transformational recognition without the
necessit y of a separate inverse transformational component, and that
this parsing can be done in an amount of time which is comparable to
that or ordinary context-free recognition.

1.2 Recursive transition networks

A recursive transition network is a directed graph with labelled
states and arcs, a distinguished state called the start state, and a
distinguished set of states called final states. It looks essentially
like a non-deterministic finite state transition diagram except that
the lab els on the arcs may be state names as well as terminal
symbols. The interpretation of an arc with a state name as its label
is that the state at the end of the arc will be saved on a pushdown
store and that control will jump (without advancing the input tape)
to the state that is the arc label. When a final state is encountered
then the pushdown store may be "popped" by transferring control to
the state which is named on the top of the stack and removing that
entry from the stack. An attempt to pop an empty stack when the last
input character has just been processed is the criterion for
acceptance of an input string. The state names that can appear on
arcs in this model are essentially the names of constructions that
may be found as "phrases" of the input tape. The effect of a
state-labelled arc is that the transition that it represents may take
place if a construction of the indicated type is found as a "phrase"
of the input at the appropriate point in the input string.

Figure 1 gives an example of a recursive transition network for
a small subset of English. It accepts such sentences as "John washed
the car", "Did the red barn collapse?", etc. It is easy to visualize
the range of acceptable sentences from inspection of the transition
network . To recognize the sentence, "Did the red barn collapse", the
network is started in state S. The first transition is the aux
transition to state q2 permitted by the auxiliary "did". From state
q2 we see that we can get to state q, if the next "thing" in the
input string is an NP. To ascertain if tllis is the case, we call the
state NP . From state NP we can follow the arc labelled det to state
q6 because of the determiner "the". From here, the adjective "red"
causes a loop which returns to state q6, and the subsequent noun
"barn" causes a transition to state ~7' Since state q7 is a final
state, it is possible to "pop up' from the NP computation and
continue the computation of the top level S, beginning in state q3
which is at the end of the NP arc. From q the verb "collapse"
permits a transition to the state q4' and sinc~ this state is final
and "collapse" is the last word in the string, the string is accepted
as a sentence .

119

adj

~~d~et~ ____ ~ __ n~ _____ ~W

prep NP

S is the start sta te

q q q qs and q10 are the final states
4, 5' 7'

Figure 1 A sample transition network

120

The fac t tha t the recursive transition network is equivalent to
a pushdown store automaton is not difficult to establish. Every
recurs ive transition network is essentially -a pushdown store
automaton whose stack vocabulary is a subset of its state set. The
conv erse fact that every pushdown store automaton has an equivalent
transition net could be established directly, but can be more simply
established by noting that every pushdown store automaton has an
equivalent context-free grammar which has an equivalent recursive
transition net as we will show.

1.3 ius-ented transition networks

It is well known (cf. Chomsky 1964) that the strict context-free
grammar model is not an adequate mechanism for characterizing th e
subtleties of natural languages. Many of the conditions which must be
sat isfied by well-formed English sentences require some degree of
agreement between different parts of the sentence which mayor may
not be adjacent (indeed which may be separated by a theoretically
unbound ed numb er of intervening words). Context-sensitive grammars
could take care of the weak generation of many of these
constructions, but only at the cost of losing the linguistic
significance of the "phrase structure" assigned by the grammar (cf.
Postal 1964) . Moreover, t he unaided context-free grammar model is
unable to show the systematic relationship that exists between a
declarati ve sentence and its corresponding question form, between an
active sentence and its passive, etc. Chomsky's theory of
transformational grammar (Chomsky 1965), with its distinction between
the surface structure of a sentence a nd its deep structure, answers
these objections but falls victim of inadequacies of its own (cf.
Schwarcz 1967, or McCawley 1968). In this section we will describe a
model of grammar based on the notion of a recursive transition
network which is capable of performing the equivalent of
transf ormational recognition without the need for a separate
transformational component, a nd which meets many of the objections
that hav e been raised against the traditional model of
transformational grammar.

The basic recursive transition network model as we have
described it is weakly equivalent to the context-free grammar model
and differs in strong equivalence only in its ability to characterize
unbounded branching, as in structures of the form :

The major features which a transformational grammar adds to those of
the context-free grammar are the abilities to move fragments of the
sent~nce structure around (so that their positions in the deep
structures are different from those in the surface structure), to
copy and delete fragments of sentence structure, and to make its

121

actions on constituents gene r al ly de pendent on t he contexts in which
those constituents occur. We can a dd equivalent facilitie s to the
transition network model by add ing t o eac h a r c o f the transition
network an arbitrary condition which must be satisfi ed in order for
the arc to be followed, and a set of structure building actions to be
executed if the arc is followed. We call this version of the model an
augmented transition network .

The augmented transi t ion network builds up a partial structural
description of the sentence as it proceeds fro m state to state
through the network. The pieces of this partial description are held
in registers which can c ontain a ny r ooted tree or list of rooted
trees, and which are au to ma tical l y pushed down when a recursive
application of the transi tion network is called for, and restored
when the lower level (rec ursive) compu t ation i s completed. The
structure-building actions on the ar c s spe c ify changes in the
contents of these registers i n terms of their previous contents, the
contents of other regist e r s, t he cu r rent input symbol, and/or the
resul ts of lower level computations. I n addition 'to holding pieces of
substructure that will eventually be i ncor porat ed into a larger
structure, the registers may also be us ed t o hold flags or other
indicators tc be interrogated by conditi ons on the arcs .

Each final state of the augmented network has associated with it
one or more conditions which must be satisfied in order for that
state to cause a "pop" - i.e. to r e turn from a lower level
computation to the next higher one, or tc complete the analysis when
the end of the string is encountered. Paired with each of these
conditions is a function which computes the value to be returned by
the computation. A distinguished reg i ste r denoted by., which
contains the current input word when a word is be i ng scanned, is set
to the result of the lower level computation when the network returns
tc the arc which called for the recursive computation.

1.3.1 Representation or augaented newtorks

To make the discussion of augmented transition networks more
concrete, we give in figure 2 a spec ification of a language in which
an augmented transition network can be represented . The specification
is given in the form of an extended context- f r ee grammar in which a
vertical bar separates alternative ways of rorming a construction and
the Kleene star operator (.) i s used a s a s uper s cript to indicate
arbitrarily repeatable constituents. The non- t erminal symbols of the
grammar consist of English de scriptions enclosed in angle brackets,
and all other symbols except the vert i cal bar and the superscript •
are terminal symbols (includi ng the parentheses, which indicate list
structure). The • which occurs as an alternative right-hand side for
thhee rule for the construction form, however, is a terminal symbol
and is not tc be confused with the superscrip t .'s which indicate
repeatable constituents. The first line of the figure says that a
transition network is represented by a left parenthesis, followed by

122

an arc set, followed by any number of arc sets (zero or more),
followed by a right parenthesis. An arc set in turn consists of a
left parenthesis, followed by a state name, followed by any number of
arcs, followed by a right parenthesis, and an arc can be anyone of
the four forms indicated in the third rule of the grammar. The
remaining rules are interpreted in a similar fashion •

• <transi tion network > -+ «arc set> <arc set>)

<arc set>-+ «state> <arc>·)

<arc> (CAT <category name> <test> <action~ <term act» I

(PUSH <state> <test> <action>· <term act»I

(TST <arbitrary label> <test> <action>· <term act»I

(POP <form> <test»

<action> (SETR <register> <form»I

(SENDR <register> <form» I

(LIFTR <register> <form»

<term act> (TO <state»I

(JUMP <state»

<form> -+ (GETR <register»I

•
(GETF <feature» I

• (BUILDQ <fragment> <register>)1

(LIST <FORM>·) I

(APPEND <form> <form» I

(QUOTE <arbitrary structure»

Figure 2: Specification of a language
for representing augmented transition networks

123

execute the actions: (SETR AU:X *), which puts the current word
"does" into a register named AUX, (SETR TYPE (QUOTE Q», which
pu ts symbol "Q" into a register named TYPE, and (TO Q2), which
causes the network to enter state Q2 scanning the next word of
the sentence "John".

2. State Q2 has only one arc leaving it, which is a push to state
NP/. The push will be successful and will return a
representation of the structure of the noun phrase which will
then become the value of the special register •. We will
assume that the representation returned is the expression "(NP
John)". Now, having recognized a construction of type NP, we
proceed to perform the ac tions on the arc. The action (SETR
SUBJ *) causes the value "(NP John)" to be placed in the
register SUBJ, and the ac tion (TO Q3) causes us to enter the
state Q3 scanning the next word "like". The register contents
at this point are:

TYPE Q

AUK does

SUBJ (NP John).

3. From state Q3, the verb "like" allows a transition to state
Q4, setting the contents of a register V to the value "like"
in the process, and the input pointer is advanced to scan the
word "Mary".

4. Q4, being a final state could choose to "POP", indicating that
the string that has been processed so far is a complete
sentence (according to the grammar of figure 1); however,
since this is not the end of the sentence, this alternative is
not succcessful. However, the state also has an arc which
pushes down to state NP/, and this alternative will succeed,
returning the value "(N? Ma ry)". The action (SETR VP (BUILDQ
(VP (V +) .) V» will now take the structure fragment "(VP (V
+) .)" and substitute the current value of • for the
occurrence of a • in the fragment and replace the occurrence
of + with the contents of the indicated register V. The
resulting structure, "(VP (V like) (N? Mary»" will be placed
in the register VP, and the action (TO Q5) causes a transition
to state Q5 scanning beyond the end of the input string. The
register contents at this point are:

128

I

I
"I

5.

TYPE Q

AUX does

SUBJ (NP John)

v like

VP (VP (V like) (NP Mary»

We are now scanning the end of the_ sentence, and since Q5 is a
final state (i .e., it has a "POP" arc), and the condition T is
satisfied, the sentence is accepted. The form "BUILDQ
(S + + + +) TYPE SUBJ AUX VP)" specifies the value to be
returned as the analysis of the sentence. The value is
obtained by substituting the contents of the registers TYPE,
SUBJ, AUX, and VP for the successive instances of the symbol
"+" in the fragment "(S + + + +)" to give the final sentence
analysis:

(S Q (NP John) does (VP (V like) (NP Mary»)

which represents the parse tree:

~S~
Q Y does /VP~

John V NP
I 1

like Mary

In ordinary context-free recognition, the structural
descriptions of sentences are more or less direct representations of
the flow of control of the parser as it analyzes the sentence. The
struc tural descr-iptions assigned by the structure building rules of
an augmented transition network, as we can see from the example, are
comparatively independent of the flow of control of the algorithm.

129

This is not to say that they are not determined by the flow of
control of the parser, for this they surely are; rather we mean to
point out that they are not isomorphic to the flow of control as in
the usual context-free recognition algorithms. It is possible for a
constituent that is found in the course of analysis to appear in the
final structural description several times or not at all, and its
location may be entirely different from that in which it was found in
the surface structure. In addition, the structural description
assigned to a constituent at one point duri ng the analysis may be
changed or transformed before that structure is incorporated into the
final structural description of the sentence as a whole. These
facilities plus the ability to test arbitrary conditions allow the
equivalent of a transformational deep structure to be constructed
while the parser is performing transitions that are isomorphic to the
surface structure of a sentence.

1._ Transformational recognition

The usual model of transformational grammar is a generative
model conSisting of a context-free (base) grammar and a set of
transitional rules which map syntax trees into new (derived) syntax
trees. The generation of a sentence with such a grammar consists of
first constructing a deep structure using the base component grammar
and then transforming this deep structure into a surface structure by
successive applications of transformations. The terminal nodes (or
leaves) of the surface structure tree give the final form of the
sentence. This model of transformational grammar is totally oriented
toward the generation of sentences rather than their analysis, and
al though there is clearly an algorithm for the use of such a grammar
to analyze a sentence--namely the procedure of "analysis by
synthesis" (Matthews 1962)--the algorithm is so inefficient as to be
out of the question for any practical application. (The analysis by
synthesis method consists of applying the rules in the "forward"
(generative) direction in all possible ways to ge nerate all of the
possible sentences of the language while looking to see if the
sentence which you are trying to analyze turns up in the list.)

Two attempts to formulate more practical algorithms for
transitional recognition (Petrick 1965., and MITRE 1964) resulted in
algorithms which were still too time-consuming to be practical for
the analysis of more than a few test sentences with small sample
grammars. Both of these algorithms attempt to analyze sentences by
applying the transformations in reverse, a procedure which is far
less straightforward than it sounds. The difficulty with simply
performing the transformations in reverse is twofold . First, the
transformations operate on tree structures and produce tree
structures as their values. In the forward direction, they begin with
the deep structure tree and end with the surface structure tree. In
order to reverse this process, one needs first to obtain a surface
structure tree for the input sentence. However, there is no component

130

in the transformational model which characterizes the possible
surface structures (their only characterization is implicit in the
changes which can be made in the deep structures by means of the
transformations). Both the MITRE and the Petrick analysis procedures
solve this problem by constructing an "augmented grammar" which
consists of the rules of the original base component grammar plus
additional rules which characterize the structures which can be added
by transformations. In the MITRE procedure this "surface grammar" is
constructed by hand and no formal procedure is available for
constructing it from the original transformational grammar. In the
Petrick procedure, there is a formal procedure for obtaining an
augmented grammar but it will not necessarily terminate unless the
length of the possible input sentences is first circumscribed (which
unfortunately reduces the class of sentences that can be accepted to
a finite set--theoretically analyzable by table lookup).

In the MITRE procedure, the augmented grammar is used to assign
a complete "tentative" surface structure which is then subjected to
inverse transformations. In the Petrick procedure, inverse
transformations are applied to partially built up surface structures
and the processes of applying transformations and building structure
are interwoven. In both systems, the inverse transformations mayor
may not produce a legitimate deep structure. If they do, then the
sentence is accepted, but if they do not, then the tentative surface
structure was spurious and is rejected. There is no way to construct
a context free surface grammar which will assign all and only
legitimate surface structures. One must settle for one which will
assign all legitimate surface structures plus additional spurious
ones. Moreover, the only way to tell the two apart is to perform the
inverse transformations and check the resulting "tentative" deep
structures.

The second difficulty in this method of analysis is the
combinatorial explosion of the number of possible inverse
transformation sequences that can be applied to a given surface
structure tree. Although many of the transformations when applied in
the forward direction are obligatory, so that only one possible
action can be taken, almost all of the inverse transformations are
optional. The reason for this is that even though a given structure
looks like it could have been produced by a given forward
transformation so that the inverse transformation can be performed,
there is no guarantee that the same structure could not have arisen
in a transformational derivation in some other way. Therefore both
the alternative of applying the inverse transformation and that of
not applying it must both be tried whenever an inverse transformation
can apply. The number of active paths can grow exponentially with the
number of transformations applied. Moreover, the forward
transformations usually don't specify much information about the
structure which results from applying the transformation (even though

131

the linguist may know a good deal about what the resulting structure
must be like). For this reason the inverse transformations are not as
selective as their forward counterparts and many more spurious
applications of transformations are allowed. That is, whereas most
forward sequences of transformations will lead to successful surface
structures, most inverse sequences will not lead to legitimate deep
structures, and a large amount of unnecessary wasted effort is
therefore expended on dead end paths. To make matters worse, it is
not always clear what the stopping conditions on the inverse
transformational process should be. Some inverse transformational
sequences could go on forever and it is not clear what set of
conditions is sufficient to guarantee that a given sequence will not
eventually lead to a legitimate deep structure. In short, the inverse
transformational process is an extremely complicated one and is
impractically ineffic ient to implement.

1.5 Augmented transition networks for transformational
recognition

Kuno (1965) suggested that it should be possible to augment the
surface structure grammar of a transformational grammar in such a way
that it "remembered " the equivalent deep structure constructions and
could build the deep structure of the sentence while doing the
surface structure parsing, without the necessity of a separate
inverse transformational component. The model which he proposed at
that time, however, was not adequate to deal with some of the more
powerful transformational mechanisms such as the extraposition of a
constituent fom an arbitrarily deep embedding. The augmented
transition network, on the other hand, provides a model which is
capable of doing everything that a transformational grammar can do
and is therefore a realization of part of the Kuno prediction. It
remains to be seen whether a completely mechanical procedure can be
developed to take a transformational grammar in the usual formalism
and translate it into an equivalent augmented transition network, but
even if such a procedure is available, it may still be more
approppriate to use the transition network model directly for the
original linguistic research and grammar development. The reasons for
this are several: first, the transition network that could be
developed by a mechanical procedure from a traditional
transformational grammar could not be expected to be as efficient as
that which could be designed by hand. Moreover, the transition
network model provides a mechanism which satisfies many of the
objections which have been raised by linguists against the
transformational grammar as a linguistic model (such as its
incompatibility with many psycho linguistic facts which we know to
characterize human language performance).

A third reason for preferring the transition network model to
the usual formulation of transformational grammar is the power which
it contains in its arbitrary conditions and its structure building
actions. The model is equivalent to a Turing machine in power and yet
the actions which it performs are "natural" ones for the analysis of

132

. 1

-

languag e. Most linguistic research in the structure of language and
mechanism of grammar has attempted deliberately to build models which
do not have the power of a Turing machine but which make the
strongest possible hypotheses about language mechanisms by proposing
the least powerful mechanism that can do the job. As a result of this
approach many variations of the transformational grammar model have
been proposed with different basic repertories of transformational
mechanisms. Some have cyclic transformation rules, others do not;
some have a distinct "post cycle" that operates in a different mode
after all of the cyclic rules have been applied. There are various
types of conditions that may be asked, some have ordered rules, some
have obligatory rules, some have blocking rules, etc. In short there
is not a single transformational grammar model, there are myriads.
Moreover these models are more or less incomparable. They do not fall
wi thin a single general framework so that their relative merits can
be compared. If one such model can handle some features of language
and another can handle different features, there is no systematic
procedure for incorporating them both into a single model. In the
augment ed transition network model, the possibility exists to add to
the model whatever facility is needed and seems natural to do the
job. One can add a new mechanism by simply inventing a new basic
predicate to use in conditions or a new function to use in the
structure building rules. It is sti l l possible to make strong
hypotheses about the types of conditions and actions that are
required, but when one finds that he needs to accomplish a given task
for which his bas ic model has no "natural " mechanism, there is no
problem in extending the augmented transition network model to
include it. This requires only the relaxation of the restrictions on
the types of conditions and actions, and no reformulation of the
basic mode 1.

ReCerences

Bates, M. (1978). "The Theory and Practice of Augmented Transition
Networks", in L. Bofc (Ed.) Natural Language Communication wi th
Computers, Springer, Berlin.

Bobrow, D.G. and Fraser, J.B. (1969). "An Augmented State Transition
Network Analysis Procedure", Proc. Internat. Joint Conf. on
Artificial Intelligence, WaShington D.C., pp. 557-567.

Burton, R. and Woods, W.A. (1976). "A Compiling System for Augmented
Transi tion Networks", preprints of 6th International Conference on
Computational Linguistics (COLING 76), June, Ottawa, Canada.

Chomsky, N. (1964). "A Transformational Approach to Syntax", in The
Structure of Language, J.A. Fodor, J.J. Katz (Eds.), Prentice-Hall,
N.J •

133

I

I

1

Chomsky, N. (1965). "Aspects of the Theory of Syntax", MIT Press,
Cambridge, Mass.

Kuno, S. (1965). "A System for Transformational Analysis", Report
NSF-15, Harvard Computing Lab., Cambridge, Mass.

McCarthy, J. et al. (1962). "LISP 1.5 Programmer's Manual", MIT
Computing Centre, Cambridge, Mass.

McCawley, J. D. (1968). "Meaning and the Description of Languages", in
Kotoba No Ucho, TEC Co. Ltd., Tokyo.

Matthews, G.H. (1962). "Analysis by Synthesis of Natural Languages",
Proc. 1961 Internat. Conf. on Machine Translation and Applied
Language Analysis, HMSO, London.

MITRE (1964). "English Pre-processor Manual", Report SR-132, The
Mitre Corp., Bedford, Mass.

Petr ick, S. R. (1965). "A Recognition Procedure for Transformational
Grammars", Ph.D. Thesis, Dept. Modern Languages, MIT, Cambridge,
Mass.

Postal, P.M. (1964). "Limitations of Phrase Structure Grammars", in
The Structure of Language, J.A. Fodor, J.J. Katz (Eds.),
Prentice-Hall, N.J.

Schwarcz, R .M. (1967). "Steps toward a Model of Linguistic
Performance: A Preliminary Sketch", Mechanial Translation, Vol. 10,
pp. 39-52.

Thorn, J., Bratley, P. and Dewar, H. (1968). "The Syntactic Analysis
of English by Machine", in Machine Intelligence 3, D. Michie (Ed.),
American Elsevier, N.Y.

Woods, W.A. (1969). "Augmented Transition Networks for Natural
Language Analysis", Report No. CS-l, Aiken Computation Laboratory,
Harvard University, December. (Available from ERIC as ED-037-733;
also from NTIS as Microfiche PB-203-527).

Wood s, W. A. (1970). "Transition Network Grammars for Natural Language
Analysis", CACM, Vol. 13, No. 10, October.

Wood s, W. A. (1973). "An Exper imental Parsing System for Transition
Network Grammars", presented at the Symposium in Natural Language
Processing, Courant Institute of Mathematical Sciences, New York
University, December. In Natural Language Processing, R. Rustin
(Ed.), Algorithmics Press. (Also BBN Report No. 2362, May 1972).

Woods, W.A. (1975). "Syntax, Semantics and Speech", in D.R. Reddy
(Ed.), Speech Recognition: Invited Papers at the IEEE Symposium, New
York: Academic Press. (Also as BBN Report No. 3067).

134

Woods, W.A. (1977). "A Personal View of Natural Language
Understanding", SIGART, Special Issue, February.

Woods, W.A. (1978). "Semantics and Quantification in Natural Language
Question Answering", in Advances in Computers, Vol. 17. Academic
Press, New York. (Also Report No. 3687, Bolt Beranek and Newman Inc.,
1977) .

Wood s, W. A. (1979). "Semantics for a Question Answering System", New
York: Garland Publishing Inc.

Woods, W.A. (1980). "Cascaded ATN Grammars", in American Journal of
Computational Linguistics, Vol . No.1, January-March 1980.

Woods, W.A., Kaplan, R.M. and Nash-Webber, B.L. (1972). "The Lunar
Sciences Natural Language Information System: Final Report", BBN
Report No. 2378, Bolt Beranek and Newman Inc., Cambridge, Ma., June.
Available from NTIS as N72-28984).

135

."

