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Abstract 

The use of augmented transition network grammars for the 
analysis of natural language sentences is described. 
Structure-building actions associated with the arcs of the grammar 
network allow for the re-ordering, restructuring and copying of 
constituents necessary to produce deep-structuring representations of 
the type normally obtained from a transformational analysis, and 
conditions on the arcs allow for a powerful selectivity which can 
rule out meaningless analyses and take advantage of semantic 
information to guide the parsing. The advantages of this model for 
natural language analysis are discussed in detail and illustrated by 
examples. An implementation of an experimental parsing system for 
transition network grammars is briefly described. 

1. Preface 

La te in the fall of 1968, in order to provide mechanical input 
for a semantic interpreter, I began constructing a parsing program 
based on the notion of a recursive transition network grammar, a 
model very much like a finite-state transition graph except for the 
presence of non-terminal as well as terminal symbols and labels on 
the arcs. A non-terminal label causes a recursive application of the 
transition network to recognize a construction of the type indicated 
by the label before the transition so labelled is permitted. This 
model, which is weakly equivalent to a non-deterministic pushdown 
store automaton, occurred to me as a natural representation of the 
type of grammar that one would get if one carried the use of the 
Kleene * operator and bracketed alternatives in the right-hand sides 
of context-free grammar rules (a notation used by many linguists) to 
its logical conclusion by permitting arbitrary regular expressions as 
the right-hand sides of rules. One could then merge all of the rules 
with a given non-terminal symbol as their left-hand side and could 
represent this rule either by its regular expression or alternatively 
by an equivalent finite state transition graph (over the total 
vocabulary of terminal and non -terminal symbols). It is this la·tter 
form of representation which I have called a recursive transition 
network. In the course of this implementation, I learned that a 
similar approach to natural language analysis had been used by 
Thorne, Bratley and Dewar (1968) and by Bobrow and Fraser (1969). My 
approach is in effect a generalization and formalization of these 
earlier parsers and provides a number of additional capabilities. 
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In addition to many advantages for efficient context-free 
recognition and improved strong generative power, the transition 
network model also provides a convenient means for incorporating 
syntactic and semantic conditions for guiding the parsing and for 
performing transformations and relocations of constituents. This is 
done by associating arbitrary conditions and structure building 
actions with the arcs of the network. This augmented network is a 
kind of "transducer" , whose effects are to make changes in the 
contents of a set of registers associated with the network and whose 
transitions can be conditional on the contents of those registers. 
Registers can be used to hold pieces of syntactic structure whose 
position and function in the syntactic structure being built might 
not yet have been determined. 

Experience wi th the parSing system has shown it to be an 
extremely powerful system -- capable of performi ng the equivalent of 
transformational analys is in little more time than that customarily 
required for context-free analysis alone. In addition, the system i s 
conveni e n t for the designer of the grammar and facilitates 
experim ents with various types of structural representations and 
various pars ing strategies . 

1.1 Motivation 

One of the ear ly models for natural language grammars was the 
finite-state transitiongraph corresponding to a finite-state machi ne 
that accepted (or generated) the sentences of a language. In t his 
model, the grammar is represented by a network of nodes and direc ted 
arcs connecting them. Th e nodes correspond to states in a 
finite-state machine, and the arcs represent transitions from state 
to sta te. Each arc is labelled with a symbol whose input can cause a 
transition from t he state at the tail of the arc to the state at its 
head. This model has the attractive feature that the sequences of 
words which make up a sentence can be read off direct ly by following 
the paths through the grammar fro m the initial state to some final 
state. Unfortunat ely, t he model is grossly i nade quat e for the 
representation of such grammars because of its failure to capture 
many of the regularities of s uch grammars. The most notabl e of these 
is the pushdown mechanism that permi ts one to suspend the processing 
of a constituent at a given level while u sing the same mechanism to 
process an embedded constituent. 

Suppose, however, that one added the mechanism of recursion 
directly to the transition graph model by fiat. That is, suppose that 
one took a collection of transition graphs each with a name, and 
permitted not only terminal symbols to be l abels on the arcs but a lso 
non-terminal symbols naming constructions which must be present in 
order for the transition to be followed. The determination of whether 
such a construction was in fact present in a sentence would be done 
by a "subroutine call" to another transition graph (or the same one). 
The resulting mod el of grammar , which we wi ll call a recursive 
transition network, is equivalent in generative power to that of a 
context-free grammar or pushdown stor e automaton, but as we will show 
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allows for grea ter effi c iency of expression, more efficient parsing 
algorithms, and natural extension by "augmentation" to more powerful 
models which allow various degrees of context dependence and more 
flexible structure-building during parsing. We will argue in fact 
that an "augmented" recursive transition network is capable of 
performing the equivalent of transformational recognition without the 
necessit y of a separate inverse transformational component, and that 
this parsing can be done in an amount of time which is comparable to 
that or ordinary context-free recognition. 

1.2 Recursive transition networks 

A recursive transition network is a directed graph with labelled 
states and arcs, a distinguished state called the start state, and a 
distinguished set of states called final states. It looks essentially 
like a non-deterministic finite state transition diagram except that 
the lab els on the arcs may be state names as well as terminal 
symbols. The interpretation of an arc with a state name as its label 
is that the state at the end of the arc will be saved on a pushdown 
store and that control will jump (without advancing the input tape) 
to the state that is the arc label. When a final state is encountered 
then the pushdown store may be "popped" by transferring control to 
the state which is named on the top of the stack and removing that 
entry from the stack. An attempt to pop an empty stack when the last 
input character has just been processed is the criterion for 
acceptance of an input string. The state names that can appear on 
arcs in this model are essentially the names of constructions that 
may be found as "phrases" of the input tape. The effect of a 
state-labelled arc is that the transition that it represents may take 
place if a construction of the indicated type is found as a "phrase" 
of the input at the appropriate point in the input string. 

Figure 1 gives an example of a recursive transition network for 
a small subset of English. It accepts such sentences as "John washed 
the car", "Did the red barn collapse?", etc. It is easy to visualize 
the range of acceptable sentences from inspection of the transition 
network . To recognize the sentence, "Did the red barn collapse", the 
network is started in state S. The first transition is the aux 
transition to state q2 permitted by the auxiliary "did". From state 
q2 we see that we can get to state q, if the next "thing" in the 
input string is an NP. To ascertain if tllis is the case, we call the 
state NP . From state NP we can follow the arc labelled det to state 
q6 because of the determiner "the". From here, the adjective "red" 
causes a loop which returns to state q6, and the subsequent noun 
"barn" causes a transition to state ~7' Since state q7 is a final 
state, it is possible to "pop up' from the NP computation and 
continue the computation of the top level S, beginning in state q3 
which is at the end of the NP arc. From q the verb "collapse" 
permits a transition to the state q4' and sinc~ this state is final 
and "collapse" is the last word in the string, the string is accepted 
as a sentence . 

119 



adj 

~~d~et~ ____ ~ __ n~ _____ ~W 

prep NP 

S is the start sta te 

q q q qs and q10 are the final states 
4, 5' 7' 

Figure 1 A sample transition network 
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The fac t tha t the recursive transition network is equivalent to 
a pushdown store automaton is not difficult to establish. Every 
recurs ive transition network is essentially -a pushdown store 
automaton whose stack vocabulary is a subset of its state set. The 
conv erse fact that every pushdown store automaton has an equivalent 
transition net could be established directly, but can be more simply 
established by noting that every pushdown store automaton has an 
equivalent context-free grammar which has an equivalent recursive 
transition net as we will show. 

1.3 ius-ented transition networks 

It is well known (cf. Chomsky 1964) that the strict context-free 
grammar model is not an adequate mechanism for characterizing th e 
subtleties of natural languages. Many of the conditions which must be 
sat isfied by well-formed English sentences require some degree of 
agreement between different parts of the sentence which mayor may 
not be adjacent (indeed which may be separated by a theoretically 
unbound ed numb er of intervening words). Context-sensitive grammars 
could take care of the weak generation of many of these 
constructions, but only at the cost of losing the linguistic 
significance of the "phrase structure" assigned by the grammar (cf. 
Postal 1964) . Moreover, t he unaided context-free grammar model is 
unable to show the systematic relationship that exists between a 
declarati ve sentence and its corresponding question form, between an 
active sentence and its passive, etc. Chomsky's theory of 
transformational grammar (Chomsky 1965), with its distinction between 
the surface structure of a sentence a nd its deep structure, answers 
these objections but falls victim of inadequacies of its own (cf. 
Schwarcz 1967, or McCawley 1968). In this section we will describe a 
model of grammar based on the notion of a recursive transition 
network which is capable of performing the equivalent of 
transf ormational recognition without the need for a separate 
transformational component, a nd which meets many of the objections 
that hav e been raised against the traditional model of 
transformational grammar. 

The basic recursive transition network model as we have 
described it is weakly equivalent to the context-free grammar model 
and differs in strong equivalence only in its ability to characterize 
unbounded branching, as in structures of the form : 

The major features which a transformational grammar adds to those of 
the context-free grammar are the abilities to move fragments of the 
sent~nce structure around (so that their positions in the deep 
structures are different from those in the surface structure), to 
copy and delete fragments of sentence structure, and to make its 
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actions on constituents gene r al ly de pendent on t he contexts in which 
those constituents occur. We can a dd equivalent facilitie s to the 
transition network model by add ing t o eac h a r c o f the transition 
network an arbitrary condition which must be satisfi ed in order for 
the arc to be followed, and a set of structure building actions to be 
executed if the arc is followed. We call this version of the model an 
augmented transition network . 

The augmented transi t ion network builds up a partial structural 
description of the sentence as it proceeds fro m state to state 
through the network. The pieces of this partial description are held 
in registers which can c ontain a ny r ooted tree or list of rooted 
trees, and which are au to ma tical l y pushed down when a recursive 
application of the transi tion network is called for, and restored 
when the lower level ( rec ursive ) compu t ation i s completed. The 
structure-building actions on the ar c s spe c ify changes in the 
contents of these registers i n terms of their previous contents, the 
contents of other regist e r s, t he cu r rent input symbol, and/or the 
resul ts of lower level computations. I n addition 'to holding pieces of 
substructure that will eventually be i ncor porat ed into a larger 
structure, the registers may also be us ed t o hold flags or other 
indicators tc be interrogated by conditi ons on the arcs . 

Each final state of the augmented network has associated with it 
one or more conditions which must be satisfied in order for that 
state to cause a "pop" - i.e. to r e turn from a lower level 
computation to the next higher one, or tc complete the analysis when 
the end of the string is encountered. Paired with each of these 
conditions is a function which computes the value to be returned by 
the computation. A distinguished reg i ste r denoted by., which 
contains the current input word when a word is be i ng scanned, is set 
to the result of the lower level computation when the network returns 
tc the arc which called for the recursive computation. 

1.3.1 Representation or augaented newtorks 

To make the discussion of augmented transition networks more 
concrete, we give in figure 2 a spec ification of a language in which 
an augmented transition network can be represented . The specification 
is given in the form of an extended context- f r ee grammar in which a 
vertical bar separates alternative ways of rorming a construction and 
the Kleene star operator (.) i s used a s a s uper s cript to indicate 
arbitrarily repeatable constituents. The non- t erminal symbols of the 
grammar consist of English de scriptions enclosed in angle brackets, 
and all other symbols except the vert i cal bar and the superscript • 
are terminal symbols (includi ng the parentheses, which indicate list 
structure). The • which occurs as an alternative right-hand side for 
thhee rule for the construction form, however, is a terminal symbol 
and is not tc be confused with the superscrip t .'s which indicate 
repeatable constituents. The first line of the figure says that a 
transition network is represented by a left parenthesis, followed by 
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an arc set, followed by any number of arc sets (zero or more), 
followed by a right parenthesis. An arc set in turn consists of a 
left parenthesis, followed by a state name, followed by any number of 
arcs, followed by a right parenthesis, and an arc can be anyone of 
the four forms indicated in the third rule of the grammar. The 
remaining rules are interpreted in a similar fashion • 

• <transi tion network > -+ «arc set> <arc set> ) 

<arc set>-+ «state> <arc>·) 

<arc> .... (CAT <category name> <test> <action~ <term act» I 

(PUSH <state> <test> <action>· <term act»I 

(TST <arbitrary label> <test> <action>· <term act»I 

(POP <form> <test» 

<action> .... (SETR <register> <form»I 

(SENDR <register> <form» I 

(LIFTR <register> <form» 

<term act> .... (TO <state»I 

(JUMP <state» 

<form> -+ (GETR <register»I 

• 
(GETF <feature» I 

• (BUILDQ <fragment> <register> )1 

(LIST <FORM>·) I 

(APPEND <form> <form» I 

(QUOTE <arbitrary structure» 

Figure 2: Specification of a language 
for representing augmented transition networks 
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execute the actions: (SETR AU:X *), which puts the current word 
"does" into a register named AUX, (SETR TYPE (QUOTE Q», which 
pu ts symbol "Q" into a register named TYPE, and (TO Q2), which 
causes the network to enter state Q2 scanning the next word of 
the sentence "John". 

2. State Q2 has only one arc leaving it, which is a push to state 
NP/. The push will be successful and will return a 
representation of the structure of the noun phrase which will 
then become the value of the special register •. We will 
assume that the representation returned is the expression "(NP 
John)". Now, having recognized a construction of type NP, we 
proceed to perform the ac tions on the arc. The action (SETR 
SUBJ *) causes the value "(NP John)" to be placed in the 
register SUBJ, and the ac tion (TO Q3) causes us to enter the 
state Q3 scanning the next word "like". The register contents 
at this point are: 

TYPE Q 

AUK does 

SUBJ (NP John). 

3. From state Q3, the verb "like" allows a transition to state 
Q4, setting the contents of a register V to the value "like" 
in the process, and the input pointer is advanced to scan the 
word "Mary". 

4. Q4, being a final state could choose to "POP", indicating that 
the string that has been processed so far is a complete 
sentence (according to the grammar of figure 1); however, 
since this is not the end of the sentence, this alternative is 
not succcessful. However, the state also has an arc which 
pushes down to state NP/, and this alternative will succeed, 
returning the value "( N? Ma ry)". The action (SETR VP (BUILDQ 
(VP (V +) .) V» will now take the structure fragment "(VP (V 
+) .)" and substitute the current value of • for the 
occurrence of a • in the fragment and replace the occurrence 
of + with the contents of the indicated register V. The 
resulting structure, "(VP (V like) (N? Mary»" will be placed 
in the register VP, and the action (TO Q5) causes a transition 
to state Q5 scanning beyond the end of the input string. The 
register contents at this point are: 
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5. 

TYPE Q 

AUX does 

SUBJ (NP John) 

v like 

VP (VP (V like) (NP Mary» 

We are now scanning the end of the_ sentence, and since Q5 is a 
final state (i .e., it has a "POP" arc), and the condition T is 
satisfied, the sentence is accepted. The form "BUILDQ 
(S + + + +) TYPE SUBJ AUX VP)" specifies the value to be 
returned as the analysis of the sentence. The value is 
obtained by substituting the contents of the registers TYPE, 
SUBJ, AUX, and VP for the successive instances of the symbol 
"+" in the fragment "( S + + + +)" to give the final sentence 
analysis: 

(S Q (NP John) does (VP (V like) (NP Mary») 

which represents the parse tree: 

~S~ 
Q Y does /VP~ 

John V NP 
I 1 

like Mary 

In ordinary context-free recognition, the structural 
descriptions of sentences are more or less direct representations of 
the flow of control of the parser as it analyzes the sentence. The 
struc tural descr-iptions assigned by the structure building rules of 
an augmented transition network, as we can see from the example, are 
comparatively independent of the flow of control of the algorithm. 
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This is not to say that they are not determined by the flow of 
control of the parser, for this they surely are; rather we mean to 
point out that they are not isomorphic to the flow of control as in 
the usual context-free recognition algorithms. It is possible for a 
constituent that is found in the course of analysis to appear in the 
final structural description several times or not at all, and its 
location may be entirely different from that in which it was found in 
the surface structure. In addition, the structural description 
assigned to a constituent at one point duri ng the analysis may be 
changed or transformed before that structure is incorporated into the 
final structural description of the sentence as a whole. These 
facilities plus the ability to test arbitrary conditions allow the 
equivalent of a transformational deep structure to be constructed 
while the parser is performing transitions that are isomorphic to the 
surface structure of a sentence. 

1._ Transformational recognition 

The usual model of transformational grammar is a generative 
model conSisting of a context-free (base) grammar and a set of 
transitional rules which map syntax trees into new (derived) syntax 
trees. The generation of a sentence with such a grammar consists of 
first constructing a deep structure using the base component grammar 
and then transforming this deep structure into a surface structure by 
successive applications of transformations. The terminal nodes (or 
leaves) of the surface structure tree give the final form of the 
sentence. This model of transformational grammar is totally oriented 
toward the generation of sentences rather than their analysis, and 
al though there is clearly an algorithm for the use of such a grammar 
to analyze a sentence--namely the procedure of "analysis by 
synthesis" (Matthews 1962)--the algorithm is so inefficient as to be 
out of the question for any practical application. (The analysis by 
synthesis method consists of applying the rules in the "forward" 
(generative) direction in all possible ways to ge nerate all of the 
possible sentences of the language while looking to see if the 
sentence which you are trying to analyze turns up in the list.) 

Two attempts to formulate more practical algorithms for 
transitional recognition (Petrick 1965., and MITRE 1964) resulted in 
algorithms which were still too time-consuming to be practical for 
the analysis of more than a few test sentences with small sample 
grammars. Both of these algorithms attempt to analyze sentences by 
applying the transformations in reverse, a procedure which is far 
less straightforward than it sounds. The difficulty with simply 
performing the transformations in reverse is twofold . First, the 
transformations operate on tree structures and produce tree 
structures as their values. In the forward direction, they begin with 
the deep structure tree and end with the surface structure tree. In 
order to reverse this process, one needs first to obtain a surface 
structure tree for the input sentence. However, there is no component 
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in the transformational model which characterizes the possible 
surface structures (their only characterization is implicit in the 
changes which can be made in the deep structures by means of the 
transformations). Both the MITRE and the Petrick analysis procedures 
solve this problem by constructing an "augmented grammar" which 
consists of the rules of the original base component grammar plus 
additional rules which characterize the structures which can be added 
by transformations. In the MITRE procedure this "surface grammar" is 
constructed by hand and no formal procedure is available for 
constructing it from the original transformational grammar. In the 
Petrick procedure, there is a formal procedure for obtaining an 
augmented grammar but it will not necessarily terminate unless the 
length of the possible input sentences is first circumscribed (which 
unfortunately reduces the class of sentences that can be accepted to 
a finite set--theoretically analyzable by table lookup). 

In the MITRE procedure, the augmented grammar is used to assign 
a complete "tentative" surface structure which is then subjected to 
inverse transformations. In the Petrick procedure, inverse 
transformations are applied to partially built up surface structures 
and the processes of applying transformations and building structure 
are interwoven. In both systems, the inverse transformations mayor 
may not produce a legitimate deep structure. If they do, then the 
sentence is accepted, but if they do not, then the tentative surface 
structure was spurious and is rejected. There is no way to construct 
a context free surface grammar which will assign all and only 
legitimate surface structures. One must settle for one which will 
assign all legitimate surface structures plus additional spurious 
ones. Moreover, the only way to tell the two apart is to perform the 
inverse transformations and check the resulting "tentative" deep 
structures. 

The second difficulty in this method of analysis is the 
combinatorial explosion of the number of possible inverse 
transformation sequences that can be applied to a given surface 
structure tree. Although many of the transformations when applied in 
the forward direction are obligatory, so that only one possible 
action can be taken, almost all of the inverse transformations are 
optional. The reason for this is that even though a given structure 
looks like it could have been produced by a given forward 
transformation so that the inverse transformation can be performed, 
there is no guarantee that the same structure could not have arisen 
in a transformational derivation in some other way. Therefore both 
the alternative of applying the inverse transformation and that of 
not applying it must both be tried whenever an inverse transformation 
can apply. The number of active paths can grow exponentially with the 
number of transformations applied. Moreover, the forward 
transformations usually don't specify much information about the 
structure which results from applying the transformation (even though 
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the linguist may know a good deal about what the resulting structure 
must be like). For this reason the inverse transformations are not as 
selective as their forward counterparts and many more spurious 
applications of transformations are allowed. That is, whereas most 
forward sequences of transformations will lead to successful surface 
structures, most inverse sequences will not lead to legitimate deep 
structures, and a large amount of unnecessary wasted effort is 
therefore expended on dead end paths. To make matters worse, it is 
not always clear what the stopping conditions on the inverse 
transformational process should be. Some inverse transformational 
sequences could go on forever and it is not clear what set of 
conditions is sufficient to guarantee that a given sequence will not 
eventually lead to a legitimate deep structure. In short, the inverse 
transformational process is an extremely complicated one and is 
impractically ineffic ient to implement. 

1.5 Augmented transition networks for transformational 
recognition 

Kuno (1965) suggested that it should be possible to augment the 
surface structure grammar of a transformational grammar in such a way 
that it "remembered " the equivalent deep structure constructions and 
could build the deep structure of the sentence while doing the 
surface structure parsing, without the necessity of a separate 
inverse transformational component. The model which he proposed at 
that time, however, was not adequate to deal with some of the more 
powerful transformational mechanisms such as the extraposition of a 
constituent fom an arbitrarily deep embedding. The augmented 
transition network, on the other hand, provides a model which is 
capable of doing everything that a transformational grammar can do 
and is therefore a realization of part of the Kuno prediction. It 
remains to be seen whether a completely mechanical procedure can be 
developed to take a transformational grammar in the usual formalism 
and translate it into an equivalent augmented transition network, but 
even if such a procedure is available, it may still be more 
approppriate to use the transition network model directly for the 
original linguistic research and grammar development. The reasons for 
this are several: first, the transition network that could be 
developed by a mechanical procedure from a traditional 
transformational grammar could not be expected to be as efficient as 
that which could be designed by hand. Moreover, the transition 
network model provides a mechanism which satisfies many of the 
objections which have been raised by linguists against the 
transformational grammar as a linguistic model (such as its 
incompatibility with many psycho linguistic facts which we know to 
characterize human language performance). 

A third reason for preferring the transition network model to 
the usual formulation of transformational grammar is the power which 
it contains in its arbitrary conditions and its structure building 
actions. The model is equivalent to a Turing machine in power and yet 
the actions which it performs are "natural" ones for the analysis of 
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languag e. Most linguistic research in the structure of language and 
mechanism of grammar has attempted deliberately to build models which 
do not have the power of a Turing machine but which make the 
strongest possible hypotheses about language mechanisms by proposing 
the least powerful mechanism that can do the job. As a result of this 
approach many variations of the transformational grammar model have 
been proposed with different basic repertories of transformational 
mechanisms. Some have cyclic transformation rules, others do not; 
some have a distinct "post cycle" that operates in a different mode 
after all of the cyclic rules have been applied. There are various 
types of conditions that may be asked, some have ordered rules, some 
have obligatory rules, some have blocking rules, etc. In short there 
is not a single transformational grammar model, there are myriads. 
Moreover these models are more or less incomparable. They do not fall 
wi thin a single general framework so that their relative merits can 
be compared. If one such model can handle some features of language 
and another can handle different features, there is no systematic 
procedure for incorporating them both into a single model. In the 
augment ed transition network model, the possibility exists to add to 
the model whatever facility is needed and seems natural to do the 
job. One can add a new mechanism by simply inventing a new basic 
predicate to use in conditions or a new function to use in the 
structure building rules. It is sti l l possible to make strong 
hypotheses about the types of conditions and actions that are 
required, but when one finds that he needs to accomplish a given task 
for which his bas ic model has no "natural " mechanism, there is no 
problem in extending the augmented transition network model to 
include it. This requires only the relaxation of the restrictions on 
the types of conditions and actions, and no reformulation of the 
basic mode 1. 
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