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Abstract

I. Brief History of Mechanical Theorem-Proving

Can we build a machine to prove theorems? Man has been trying to
construct such a machine since before the creation of the first
digital computers. Indeed, mechanical theorem-proving has played a
fundamental role in the history of computer science and artificial
intelligence: work in metamathematics by Herbrand, Godel, Church,
Turing and others laid much of the foundations of computer science;
early work on theorem-proving and symbolic logic by Newell, Shaw,
Simon, McCarthy and others helped create the field of artificial
intelligence; the work of J.A. Robinson and others on resolution led
to new ways to look at many artificial intelligence problems. The
successes and failures of mechanical theorem-proving still influence
artificial intelligence work today.

In this lecture the speaker will try to acquaint the audience
with the past and present answers to the question "How can we build a
machine to prove theorems?" In addition it will be shown how
mechanical theorem-proving ideas have been applied to such topics as
data base retrieval, problem solving, the design and implementation
of non-deterministic programming languages, and the program
correctness problem.

IT A Tour through a Working Theorem-Prover

We will look at the operation and abilities of the
theorem-prover being developed by Boyer and Moore at SRI
International. The system deals with a quantifier free first-order
logic based on recursive functions. The system provides the user with
a schematic way of axiomatizing "new" inductively defined types,
(e.g. integers and lists), a facility for recursively defining new
concepts, and an automatic theorem-prover.

The theorem-prover contains a large amount of built-in knowledge
about how to use definitions and previously proved theorems, common
ways to generalise conjectures and, most importantly and uniquely,
how and when to appeal to the principle of mathematical induction. In
essence, the theorem-prover is a codification of the techniques
humans use when presented with certain kinds of theorems arising
frequently in computer science and discrete mathematics.
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The lecture will consist primarily of a detailed look at how the
system proves a particular theorem and why it chooses to make the
"moves" it makes. The formal logic and proof techniques are
completely described in A Computational Logic by Boyer and Moore
(Academic Press, 1979).

III Program Verification

Today the most active application for mechanical theorem-proving
is in the area of program reliability. Given a precise formal
statement of what a program is supposed to do, it is relatively easy
to transform the question "Is this program correct?" to the question
"Are these formulae theorems?". The latter question can then be
submitted to a mechanical theorem-prover.

There are a variety of ways to transform the former question
into the latter. One way is to transform the program into a
mathematical function from one machine state to another. Another way
is to define an interpreter for the language. Still another way is to
annotate the program with "input/output" assertions and "invariants"
and to generate formulae that express the idea that the invariants
and output specifications are true whenever they are encountered,
provided the input specifications were true initially.

The lecture will illustrate all these techniques using a simple
programming language. The lecture concludes with a discussion of the
verification condition generator written by Boyer and Moore for a
subset of both FORTRAN 66 and FORTRAN 77. We will discuss the
verification conditions generated for a particular FORTRAN program
and how these formulae are proved by the Boyer-Moore theorem-prover.
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I HISTORY

How does one prove theorems? How can we build a machine to prove
theorems?

Because mechanical theorem-proving has its roots in mathematics,
and because mathematicians and philosophers have long asked the
questions above, it is difficult to put a date on when mechanical
theorem-proving was born. For example, the idea of mechanical proof,
in the sense that we think of it today, would not have surprised
Leibniz (1646-1716) who, on the one hand perfected and presented to
the Royal Society, London, a mechanical binary adder (also capable of
multiplication, division and square root computations) and on the
other hand believed that all reasoning could be reduced to an
"algebra of thought".

In the early 20th century formal axiomatic systems were
developed. Such systems are characterized by a set of "well-formed
formulae™, a set of "axioms" and a set of "inference rules" with
which one may deduce "theorems" from the axioms and previously
deduced theorems. A "proof" of some formula p is just a finite
sequence of formulae, the last of which is p and each of which is
either an axiom or is derived from the preceding formulae by a rule
of inference.

For example, here is a proof of the formula (-A v A) in the
logic of Russell and Whitehead from Prinecipia Mathematica.

Proof of (-A v A).

1« (Q + R) » ((PvQ -+ (PvR) Axiom 4
2. (Q » 4) =+ ((~-Av Q== (-AvaA) Subst into 1
3. (Q 2 4A) » ((A »Q~+ (-AvA) Def of " "

4., ((AvA) - A) -((A-» (AvA)) - (-AvA))  Subst into 3

5. (P vP) 4P Axiom 1
6. (AvaAa) =A Subst into 5
7. (A =+ (A vA)) =(-AvA) M.P. 4 and 6
8. Q@ ~(Pv Q) Axiom 2
9. A (A v A) Subst into 8
10. (-A v A) M.P. 7 and 9
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It is easy to determine whether a sequence of formulae is a
proof; theorem-proving is the art of discovering a proof -- if any --
for a given formula.

The 1920's and 1930's saw the careful study of formal axiomatic
systems, primarily to clarify the then extensive debates between the
various schools of thought on how the newly uncovered paradoxes in
the foundations of mathematics might be remedied. Hilbert proposed to
formalize classical mathematics (e.g., arithmetic) in logic and
undertake the proof of its consistency via constructive means.
Starting in the 1920's, this program was undertaken by Hilbert,
Ackermann, von Neumann, Herbrand and others. Among the interesting
results was Herbrand's Theorem (1930), which is a constructive
version of a theorem proved earlier by Skolem [3"] that suggests a
mechanical means for finding a proof when it exists.

In 1931, Goedel showed that there exist formal sentences of
arithmetic that are true (in the intended interpretation) but
unprovable. Furthermore, he showed that if arithmetic is consistent
then its consistency cannot be proved in arithmetic. In a certain
sense, this undermined Hilbert's program. However, thanks in large
part to Hilbert and his school, the formal study of formal proofs had
been born.

During this same period, Church, Turing, and Goedel (the latter
following a suggestion by Herbrand) developed what turned out to be
the equivalent notions of lambda-definable, Turing computable, and
general recursive functions. These developments led, in 1936 and
1937, to the demonstrations that there were no decision procedures
for arithmetic or first-order predicate calculus. It is perhaps
ironic that the concepts that eliminated the hope that perfect
theorem-provers could be built simultaneously formed part of the
theoretical foundations for the development of the device that makes
imperfect theorem-provers realizable and perhaps practical.

Among the first heuristie mechanical theorem-provers physically
realized was the Logic Theory Machine, programmed in the mid-50's by
Newell, Shaw and Simon. The Logic Theory Machine constructed proofs
in the propositional calculus using the axioms and rules of inference
of Principia Mathematica. A sucecinet description of the Logic Theory
Machine and its capabilities i1s provided in Computers and Thought

r131.

The Logic Theory Machine attacked its problems in much the same
way a human might attack them, when limited to the axioms, rules of
inference and previously proved theorems of Principila Mathematica.
The program contained four "methods" or "heuristics"™ for decomposing
the given problem into "simpler" subproblems (e.g., instances of the
axioms). An executive routine selected the methods to be tried and
the subproblems to be worked on.
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It should be observed that the authors of this early program
were not so much concerned with answering the question "Is this
propositional formula a theorem?" as they were the question "How does
one go about solving hard problems?" Judged by its ability to answer
the former question, the logic Theory Machine was not impressive. It
was able to prove only 38 of the 52 propositional theorems in Chapter
2 of Principia. By contrast, Wang's algorithm [36], published in
January, 1960 and based on the "semantic" idea of attempting to
construct an assignment for falsifying a formula, was able to
announce the validity of all of the propositional theorems in

Principia.

But the Logiec Theory Machine was a significant contribution to
the infant field of "artificial intelligence" and was the first
program to confront the hard problem that is unavoidable in the
nonpropositional case: how does one choose which of many alternatives
to pursue? The Logic Theory Machine inspired several other early AI
programs, notably Gelernter's Geometry Theorem Proving Machine and
Slagle's Symbolic Automatic Integrator for elementary calculus
problems. (Both Gelernter's and Slagle's programs are landmarks of AI
and mechanical theorem-proving and are described in Computers and

Thought, [137).

However, many researchers were more interested in the "ends"
than the "means" and launched a no-holds barred attack on the problem
of building a program to determine if a propositional formula, and
more generally, a first-order formula, was a theorem or, equivalently
(thanks to Goedel), valid.

In the early years -- the late 50's and early 60's -- the field
was dominated by logicians who pursued quite different approaches to
the theorem-proving problem. Among the early researchers were Wang,
Gilmore, Davis, Putnam, and Prawitz.

Then, in 1965, J.A. Robinson published the paper "A
Machine-Oriented Logic Based on the Resolution Principle" [307. The
resolution principle's simplicity and elegance made it a very
attractive mechanism.

Suppose we wished to prove the following theorem of first-order
predicate calculus:

[YX ¥Y P(X,Y) = Q(Y) & YX'E ¥ P(X,Y)
&
X Q(X) » Q(G(X))]

-

7 X Q(G(G(X)))
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To apply resolution we actually work on the negation of the problem
and attempt to derive a contradiction. The negation of the formula
above is that the first three hypotheses are true and the conclusion
is false. Then we put the conjecture into conjunctive normal form,
using Skolem functions to eliminate the existential quantifiers. The
result is the following conjunction of disjunctions:

-P(X,Y) v Q(Y)
&
P(Z,F(Z))
&

-Q(U) v Q(G(U))
&

-Q(G(G(V)))

Finally, Robinson writes this as a set of clauses. A clause is a set
of literals, each literal being an atom or negated atom.

{-P(X,Y) Q(Y)}
{P(z,F(2))}
{-av) ate(u))}
{ -Q(G(G(V))) )}

Having distilled the problem down to this simple but universal
notation we can now apply the "resolution principle": Consider any
two clauses in the set, rename their variables so they have no
variable in common, and then consider each literal of one clause
against each literal of the other. If the two literals have opposite
signs and there exists a substitution that makes their atoms
identical, instantiate both clauses with the most general such
substitution, delete the two (now complementary) literals from the
two instantiated clauses and union the two resulting sets together.
The resulting clause is a resolvent of the two parent clauses and
should be added to the set of clauses. Repeat this process
indefinitely. Should the empty clause ever be formed, the original
set of clauses was unsatisfiable -- i.e., the original quantified
formula is a theorem.

Perhaps more important than resolution itself was Robinson's
"unification algorithm" which is a way to determine either the most
general substitution that makes two terms identical or that no such
substitution exists. For example, the unification algorithm
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determines that P(X,F(X)) and P(A(),Z) are unified by replacing X by
A() and Z by F(A()), while P(X,F(X)) and P(X,X) have no common
instance.

Here is a resolution proof of the example theorem above:

1. {-P(X,Y) Q(Y)} given
2. {P(Z,F(2))1 given
3. ' { -Q(U) Q(G(u)) 3 given
4. {-Q(G(G(V))) 3 given
5. {Q(F(2))3 resolving 1 & 2
6. {Q(G(F(Z))) 3 resolving 3 & 5
7. {QG(G(F(2)))) ) resolving 3 & 6
8. ¢ } resolving 4 & 7

Despite its simplicity, resolution with factoring =-- a rule
permitting the instantiation of a clause so as to cause two literals
in it to become identical =- is a sound and complete inference
procedure for first-order predicate calculus. For more details the
reader should see [107, 247 or [31 7}

Note how easily a resolution theorem-prover can be implemented.
Clauses may be represented as lists of literals. The basic operation
on a Resolution Logic Machine is:

(1) Choose a clause to factor or two clauses to resolve upon.

(2) Form all possible factors or resolvents and add them to the
set of clauses.

(3) If any clause is empty, report that the original set was
unsatisfiable.

(4) Otherwise, repeat from step(1).

As one might gather from the above description, the only
difficult problem is deciding which clauses to choose in any given
round. This is called the search strategy and 1s the hard problem
confronting the serious implementor of a resolution theorem-proving.

There are two classic search strategies. One, called breadth
first, constructs all the resolvents from anong the initial set S
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before adding them to S to form the new set S', and then iterates on
the set S'. Thus, the so-called "search tree" -- the tree of all
possible resolvents -- is grown in horizontal layers. The other
common variation is called depth first, in which one prefers as a
parent the most recently produced clause. In a depth first search,
long branches of the search tree are grown first.

It is fair to say that very few resolution theorem-provers use
either search strategy in the rigid way they are defined above. It is
also fair to say that resolution is not the only part of
theorem-proving concerned with search strategy. The consideration of
search strategy dominates the implementation of a resolution
theory-prover largely because resolution has distilled the
theorem-proving process down to where there is very little else to
do. But every theorem-proving machine (for sufficiently rich logics)
stands or falls on its ability to make the right choices at the right
time.

To the criticism that resolution was "unnatural" (to many
people) the response was similar to Minsky's later defense of the
attempt to build an intelligent machine (paraphrase) : If you wanted
to build a machine that flies, would you cover it with feathers? If
you wanted to build a machine that thinks, would you use meat? During
the late 60's the vast majority of published work on mechanical
theorem-proving was resolution based.

But saying that the vast majority of the published work was
resolution based is not to say that all the resolution researchers
were working on the same idea. The very simplicity of resolution
encouraged its elaboration. Resolution was restricted, refined, and
extended. There was (in no particular order) unit resolution,
hyperresolution, linear resolution, and paramodulation. There was
linear paramodulation and hyperparamodulation. There was
E-resolution, OL-resolution, Pl1-resolution, SL-resolution,
V-resolution and P-hyperparamodulation.

In short, the late 60's were an exciting time in the history of

mechanical theorem-proving. There were three (causally related)
reasons:

(1) technological improvements brought a tremendous increase in
the computer power available.

(2) the economy boomed and made money available for computer
science research in previously unheard of quantities -- much
of it funnelled through the Advanced Research Projects
Agency (ARPA) of the U.S. Defense Department, and

58



R——

srmcTesssaers

S

(3) Artificial Intelligence emerged as an endeavor that captured
the imaginations of many researchers (and funding agencies)
and, theoretically at least, theorem-proving could solve
many of the hard problems in AI. For example, several
typical AI problems such as natural language understanding,
robotics problem solving, and question answering systems
could be cast in the framework of first-order predicate
calculus problems and solved with sufficient theorem-proving
power.

While resolution theorem-proving did not directly receive very
much of the money channeled to AI, it benefited greatly from the
availability of computer power and the interest in mechanical problem
solving generated by AI

Of course, not all researchers pursued resolution, even in its
heyday. The interested reader should see, for example, the work of
Bledsoe [2 Jon set theory and Bledsoe, Boyer and Henneman [3] on
proofs of limit theorems in real analysis. During this same time, the
field of "symbolic manipulation" matured to the point where programs
were able to aid physicists and engineers in algebraic simplification
and integral calculus. See the review by Moses 287

In the mid-70's the excitement over resolution declined because
researchers began to realize that the paradigm established by
Robinson -- formulate a restriction of resolution and prove that it
is complete -- produced a plethora of theoretical papers but very few
successful mechanical theorem-provers.

Many people attributed this disparity to the "unnaturalness" of
resolution and began to pursue new directions. At about the same
time, new AI programming languages began to catch on (e.g., PLANNER).
For a while in the early T70's controversy raged between those on
opposite sides of the question: "Is it better to use 'declarative' or
'procedural' encodings of knowledge?" This controversy has since died
out, partially because PLANNER and its descendants did not really
solve the hard problems and partially because people like Kowalski
and Hayes successfully argued that predicate calculus could be used
as a programming language and made to perform as well (or badly) as
"eonventional" languages like PLANNER.

In my view, the disparity between the number of publications and
the number of successful implementations was due to inadequate
attention to search strategy. While the search strategy problem was
certainly recognized by all, it was more or less left to the
"hackers" who put together theorem-provers. It 1s certainly safe to
say that most researchers hoped that victory would be achieved
without the invention of messy, ad hoc heuristics. That hope has
waned considerably since the early T0's.
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During the 70's theorem-proving research was supported mainly by
the emerging fields of programming language design and program
verification. The main application in programming language design has
been the implementation of efficient "interpreters" (i.e.,
theorem-provers) for nondeterministic predicate calculus programs.
The interested reader should see Kowalski's article "Predicate
Calculus as a Programming Language" [217, and the work on
implementing such a language by Colmerauer and Roussel of the
University of Maresille [127, [32], and Warren at the University of
Edinburgh [37]. It is interesting to note that in this application
search strategy is often less important than in general purpose
theorem-proving because the user of the theorem-prover can often
constrain the search space by appropriately formulating his
"programs".

The theorem-proving research supported by program verification
has been both more and less traditional -- more traditional in the
sense that the goal is to mechanize mathematics and less traditional
in the sense that the approaches used are often radically different
from those suggested by resolution. The basic idea -~ as will be
elaborated in the third lecture -- is that it is easy to transform
the question "Is this program correct?" into the question "Are these
formulae theorems?" The formulae are then submitted to a mechanical
theorem-prover for proof. A theorem-prover for program verification
must be good at deriving theorems from a large data base containing
facts that may be instantiated and chained together -- just as the AI
applications demanded. But, in addition, program verification added
some new demands:

(1) The proof of the conjectures produced by program verifiers
often require induction. Why? Because those conjectures
usually involve inductively constructed mathematical objects
(e.g., integers, sequences, trees) and inductively defined
concepts (e.g., addition, permutation, fringe).

(2) Program verification has caused the construction of new
logical theories in which the semantics of program are
expressed.

(3) Program verification aims at putting the theorem-prover in
the hands of a "user" who is considered willing to help the
theorem-prover but who is not logically infallible. For
example, to specify his program the user may need to define
previously unstudied mathematical concepts (e.g., majority
vote). The addition of axioms purported to describe the
properties of such concepts must not be taken lightly.
Experience has shown that users are notoriously bad at
getting the details right when dealing with concepts outside
of their traditional training -- and the accidental
production of an inconsistent set of axioms may lead to
"proofs" of incorrect programs whose specifications do not
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even involve those axioms. On the other hand, experience has
shown that many users have excellent intuitions about why
things are true and can be of great help in guiding the
system to a proof.

Because of these demands theorem-proving research in the 70's has
branched out considerably.

Let me merely list some of the main themes of theorem-proving in

the 70's:

(1)

(2)

(3)

(4)

(5)

(6)

The construction of proof checkers and interactive
theorem-provers. See for example the FOL system of Weyhrauch
[38] or Jutting's description of the use of the AUTOMATH
system to proof check all the Landau's text on the
development of elementary mathematics from Peano axioms to
the reals [207.

The construction of theorem-provers for decidable theories,
such as Presburger arithmetic and "data structures". See for
example the work of Bledsoe [¥7], Shostak [337] and Oppen

r291.

The construction of theorem-provers or proof-checkers for
logics other than first-order predicate calculus. For
example, our work [77] is based on a quantifier free logic
with recursive functions and induction. The Edinburgh LCF
system 167 is based on Scott's logic and Litvintchouk and
Pratt's system is based on modal logic [23].

The application of rewrite rules to simplify formulas and
the study of the theoretical properties of such "rewrite
systems". See the survey paper by Huet and Oppen [ 19].

The study of "metatheoretic extensibility" -- the use of a

theorem-prover to prove the correctness of extensions. See
below and [8].

The further study of resolution and proof procedures
suggested by resolution. See for example the proceedings of
the latest Workshop on Automatic Deduction or Kowalski's

"connection graph" proof procedure suggested by the failure
modes of resolution [227.

Rather than try to summarize each of these fields I will, in my
next lecture, acquaint you with how one state-of-the-art

theorem-prover works and what are the current limits of its
abilities.
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ITI THE BOYER-MOORE THEOREM-PROVER

For the past nine years Bob Boyer and I have been developing an
automatic theorem-prover capable of constructing inductive proofs.
The development of the theorem-prover is being sponsored by NSF Grant
MCS-7904081 and ONR Contract NOOO14-75-C-0816. The theorem-prover
deals with a quantifier free first-order logic. In addition to modus
ponens, instantiation, and substitution of equals for equals, the
logic provides for the axiomatic introduction of new "types" of
inductively constructed objects (e.g., integers, sequences, graphs)
the definition of new mathematical functions (e.g., prime,
permutation, path), and proof by induction on well-founded relations.

The addition of definitional equations purporting to define new
functions raises a difficult problem: how can we insure that the new
axiom actually defines a function? In our logic we require that for
each new definition there exists a "measure" of the arguments of the
function and a well-founded relation such that in every "recursive
call"™ in the body, the measure of the argumennts to the call is
strictly smaller than the measure of the input arguments. This
condition, together with some trivial syntactic requirements, is
sufficient to insure that the new axiom is satisfied by one and only
one function.

For example, consider the idea of computing the "fringe" of a
binary tree. One way to do it is to consider the successive CDR's of
the tree and repeatedly transform subtrees of the form:

N\
|

into the form:

/\
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until a is an atom. Using a LISP-like syntax we express this function
as:

Definition.
(NORMTREE X)

(IF (LISTP X)
(IF (LISTP (CAR X))
(NORMTREE (CONS (CAAR X)
(CONS (CDAR X) (CDR X))))

(CONS (CAR X) (NORMTREE (CDR X))))
(CONS X NIL)).

What measure is going down here? Our system is not capable of
discovering (on its own) such a measure. However, if the user of our
system defines the function:

Definition.
(Ms X)

(IF-(LISTP X)
(TIMES (SQUARE (MS (CAR X))) (MS (CDR X)))
135

which is accepted because the size of the argument gets smaller in
each call, then the system can prove that (MS X) decreases in both of
the recursive calls of NORMTREE in the definition of NORMTREE. Thus,
after the introduction of MS and the proof of the two lemmas
establishing that it decreases, NORMTREE is accepted by our system as
a true definitional equation.

The theorem-prover itself consists of an ad hoc collection of
heuristic proof techniques. The two most important ones are
simplification and the invention of "appropriate" induection
arguments. The system also contains heuristics for eliminating
"undesirable" expressions (e.g., X-Y can be eliminated by replacing X

with I+Y), the use of equality, generalization, and the elimination
of irrelevance.

The simplification routine is driven by conditional rewrite
rules derived from axioms, recursive definitions, and previously
proved theorems. The system contains fairly sophisticated search
strategic heuristics for controlling the expansion of definitions,
backwards chaining to establish hypotheses of rewrite rules,
permutative rewrites, etc.

The induction routine attempts to find an induction argument
that is "appropriate" for the conjecture being proved. Roughly
speaking, it attempts to find an n-way case split and some induction
hypotheses such that when certain of the recursive functions in the
induction conclusion of a given case are expanded, the resulting
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recursive calls are involved in the hypotheses for that case. To
find -- and justify -- the induction argument, the induction routine
analyzes the measures and well Tounded relations justifying the
recursive furnctions in the conjecrture. We have found that the direct
analvsis of these measures and well-=founded relations is simpler than
the analysis of the recursive functions themselves and permits the
system more often to piece together induction arguments "appropriate"
for several functions in the conjecture. The reason for this 1is that
the function definitions frequently contain tests that are irrelevant
to the recursions and these tests obscure the correct choice of
induction cases.

To illustrate how our system proves theorems, let us consider
proving that NORMTREE computes the fringe as defined in the more
traditional way by the recursive function FLATTEN:

Definition.
(FLATTEN X)
(IF (LISTP X)
(APPEND (FLATTEN (CAR X))
(FLATTEN (CDR X)))
(CONS X NIL)),

where APPEND concatenates two lists:

Definition.
(APPEND X Y)
(IF (LISTP X)
(CONS (CAR X)
(APPEND (CDR X) Y))
Y)-

We will prove:
(EQUAL (NORMTREE X) (FLATTEN X)).

The proof may be briefly sketched as follows: We induct on X,
using the measure and well-founded relation justifying NORMTREE, we
simplify, using the axioms defining lists and "opening up" certain
recursive function "calls", we rerepresent the variables in the
problem to simplify the conjecture, use our induction hypothesis (and
throw it away to generalize our goal), replace certain terms by
variables, restricted to the range of terms replaced, to generalize
the problem still more, and then perform a second induction. Below is
the complete proof, as discovered and described in English by our
system:
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_PROVE .LEMMA ( CORRECTNESS . OF . NORMT REE
(REWRITE)
(EQUAL (NORMTREE X) (FLATTEN X)))

Give the conjecture the name *1.
We will appeal to induction. Two inductions are suggested by terms in
the conjecture, both of which are unflawed. So we will choose the one
suggested by the largest number of nonprimitive recursive functions.
We will induct according to the following scheme:

(AND (IMPLIES (NOT (LISTP X)) (p X))
(IMPLIES (AND (LISTP X)
(LISTP (CAR X))
(p (CONS (CAAR X)
(CONS (CDAR X) (CDR X)))))
(p X))
(IMPLIES (AND (LISTP X)
(NOT (LISTP (CAR X)))
(p (CDR X)))
(p X))).

The inequalities MS.DECREASES.UNDER.CDR and
MS.DECREASES.UNDER.ROTATION establish that the measure (MS.X)
decreases according to the well-founded function LESSP in each
induction step of the scheme. The above induction scheme generates
the following three new conjectures:

Case 1. (IMPLIES (NOT (LISTP X))
(EQUAL (NORMTREE X) (FLATTEN X))),

which we simplify, unfolding the definition of NORMTREE and FLATTEN,
to:

(TRUE) .

Case 2. (IMPLIES
(AND
(LIZTP X)
(LISTP (CAR X))
(EQUAL (NORMTREE (CONS (CAAR X)
(CONS (CDAR X) (CDR X))))
(FLATTEN (CONS (CAAR X) B
(CONS (CDAR X) (CDR X))))))
(EQUAL (NORMTREE X) (FLATTEN X))),

which simplifies, applying CDR.CONS and CAR.CONS, and opening up
FLATTEN and NORMTREE, to:

(IMPLIES

(AND
(LISTP X)
(LISTP (CAR X))
(EQUAL
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(NORMTREE (CONS (CAAR X)
(CONS (CDAR X) (CDR X))))
(APPEND (FLATTEN (CAAR X))
(FLATTEN (CONS (CDAR X) (CDR X))))))
(EQUAL (NORMTREE (CONS (CAAR X)
(CONS (CDAR X) (CDR X))))
(APPEND (FLATTEN (CAR X))
(FLATTEN (CDR X))))).

This simplifies again, applying CDR.CONS and CAR.CONS, and opening up
the definition of FLATTEN, to:

(IMPLIES
(AND
(LISTP X)
(LISTP (CAR X))
(EQUAL (NORMTREE (CONS (CAAR X)
(CONS (CDAR X) (CDR X))))
(APPEND (FLATTEN (CAAR X))
(APPEND(FLATTEN (CDAR X))
(FLATTEN (CDR X))))))
(EQUAL (NORMTREE (CONS (CAAR X)
(CONS (CDAR X) (CDR X))))
(APPEND (APPEND (FLATTEN (CAAR X))
(FLATTEN (CDAR X)))
(FLATTEN (CDR X))))).

Applying the lemma CAR/CDR.ELIM, we now replace X by (CONS Z V) to
eliminate (CAR X) and (CDR X) and Z by (CONS W D) to eliminate
(CAR Z) and (CDR Z). This generates:

(IMPLIES
(EQUAL (NORMTREE (CONS W (CONS D V)))
(APPEND (FLATTEN W)
(APPEND (FLATTEN D) (FLATTEN V))))
(EQUAL (NORMTREE (CONS W (CONS D V)))
(APPEND (APPEND (FLATTEN W) (FLATTEN D))
(FLATTEN V)))).

-

We now use the above equality hypothesis by substituting:

(APPEND (FLATTEN W)
(APPEND (FLATTEN D) (FLATTEN V)))

for (NORMTREE (CONS W (CONS D V))) and throwing away the equality.
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The result is:

(EQUAL (APPEND (FLATTEN W)
(APPEND (FLATTEN D) (FLATTEN V)))
(APPEND (APPEND (FLATTEN W) (FLATTEN D))
(FLATTEN V))),

which we generalize by replacing (FLATTEN V) by Y, (FLATTEN D) by A,
and (FLATTEN W) by U. We restrict the new variables by appealing to
the type restriction lemma noted when FLATTEN was introduced. This
produces:

(IMPLIES (AND (LISTP Y) (LISTP A) (LISTP U))
(EQUAL (APPEND U (APPEND A Y))
(APPEND (APPEND U A) Y))),

which we will name #*1.1.

Case 3. (IMPLIES (AND (LISTP X)
(NOT (LISTP (CAR X)))
(EQUAL (NORMTREE (CDR X))
(FLATTEN (CDR X))))
(EQUAL (NORMTREE X) (FLATTEN X))),

which we simplify, expanding the definitions of NORMTREE and FLATTEN,
to:

(IMPLIES (AND (LISTP X)
(NOT (LISTP (CAR X)))
(EQUAL (NORMTREE (CDR X))
(FLATTEN (CDR X))))
(EQUAL (CONS (CAR X) (NORMTREE (CDR X)))
(APPEND (FLATTEN (CAR X))
(FLATTEN (CDR X))))).

This simplifies again, applying CDR.CONS, CAR.CONS, and CONS.EQUAL,
and opening up the functions FLATTEN and APPEND, to:

(TRUE) .

So let us turn our attention to:

(IMPLIES (AND (LISTP Y) (LISTP A) (LISTP U))

(EQUAL (APPEND U (APPEND A Y))
(APPEND (APPEND U A) Y))).

which we named *1.1 above. We will appeal to induction. Three
inductions are suggested by terms in the conjJecture.
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They merge into two likely candidate inductions. However, only one 1is
unflawed. We will induct according to the following scheme:

(AND (IMPLIES (NOT (LISTP U)) (p U A Y))
(IMPLIES (AND (LISTP U) (p (CDR U) A Y))
(pUAY))).

The inequality CDR.LESSP establishes that the measure (COUNT U)
decreases according to the well-founded function LESSP in the
induction step of the scheme. The above induction scheme produces two
new goals:

Case 1. (IMPLIES (AND (NOT (LISTP (CDR U)))
(LISTP Y)
(LISTP A)
(LISTP U))
(EQUAL (APPEND U (APPEND A Y))
(APPEND (APPEND U A) Y))).

This simplifies, applying CDR.CONS, CAR.CONS, and CONS.EQUAL, and
expanding the definition of APPEND, to:

(IMPLIES (AND (NOT (LISTP (CDR U)))
(LISTP Y)
(LISTP A)
(LISTP U))
(EQUAL (APPEND (CDR U) (APPEND A Y))
(APPEND (APPEND (CDR U) A) Y))).

which again simplifies, opening up the definition of APPEND, to:
(TRUE)

Case 2. (IMPLIES (AND (EQUAL (APPEND (CDR U) (APPEND A Y))
(APPEND (APPEND (CDR U) A) Y))
(LISTP Y)
(LISTP A)
(LISTP U))
(EQUAL (APPEND U (APPEND A Y))
(APPEND (APPEND U A) Y))),

which simplifies, applying CDR.CONS, CAR.CONS, and CONS.EQUAL, and
opening up the function APPEND, to:

(TRUE).

That finishes the proof of #*1.1, which, consequently, finishes
the proof of #1. Q.E.D.
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Load average during proof: 1.865178

Elapsed time: 14.509 seconds

CPU time (devoted to theorem proving): 7.727 seconds
I0 time: 3.385 seconds

CONSes consumed: 11520

In the proof above the system "discovers" the lemma that APPEND
is associative and proves it by the second induction.

The theorem-prover is automatic in the sense that once it begins
a proof the user contributes nothing. However, it is interactive in
the sense that the user can improve the theorem-prover's behaviour by
"teaching" it important relationships and rewrite rules. This
"teaching" (which might be more appropriately called "memorization by
rote") is accomplished by instructing the theorem-prover to prove
lemmas that "inform" it of new conditional rewrite rules, useful
measures for the justification of recursions and inductions, ete. For
example, had the user previously instructed the system to prove the
associativity of APPEND the system would have used that fact in the
proof above, leading to a substantially simpler proof.

The user of our system does not have to be trusted. That is, as
long as he confines himself to the "rules of the game" (i.e.,
defining new types and functions and proving new lemmas), the
theorem-prover 1is entirely responsible for the validity of any
conjecture it claims is a theorem.

While the user who abides by the rules need not be trusted, an
intelligent and well-traained user is indispensable in the proof of
difficult theorms because the theorem-prover requires so much
carefully prepared groundwork in the form of previously proved
lemmas. Much of our research is aimed at reducing some of this burden
on the user. However, even at the current rudimentary stage of the
system's development, we have found that we (as human users) are
quite good at the task required of us (i.e., the strategic planning
of proofs encoded in the statement of key lemmas) and are relatively
weak at the tasks already performed by the system (the consideration
of countless nitty-gritty details).

The system has been used to prove the correctness of a wide
variety of programs including:

1) a "toy" expression compiler [7 7}

(2) a recursive descent parser (the theorem-prover established
the required relationship between "printing" and
"reading") [157,

(3) the totality, soundness, and completeness of a decision
procedure for propositional calculus [7],
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(1) the soundness of an arithmetic simplifier now in routine
use in the system [87,

(5) the termination of the TAK function over the positive and
negative integers (using a lexicographic measure
corresponding to "less than" in omega®) [267, and

(6) several working FORTRAN programs including the correctness
of the fastest known string searching algorithm [9].

I will discuss program verification further in the third lecture.

The most difficult theorem proved to date is the existence and
uniqueness of prime factorizations, which was derived entirely from
Peano's axioms [7]. While this theorem is not often involved in the
correctness proofs of real programs (encryption algorithms excepted),
the system's ability to prove it from the ground up is indicative of
the theorem~prover's power.

All of the theorems cited above were proved by the same version
of the theorem-prover from the same initial set of axioms. The axioms
are those defining TRUE, FALSE, IF, and EQUAL, plus the Peano-like
axiomatization of the "data types" involved.

Given that the system has some "learning" (or "rote
memorization") ability, the question arises: "Is it possible to teach
the system new proof techniques that were not anticipated by the
designers of the theorem-prover?" Of course, we wish to preserve the
soundness of the system, i.e., it should not be possible for the user
to render the system unsound by teaching it faulty "proof"
techniques.

Since our system is oriented towards proving properties of
programs, an obvious approach is for the user to write a new
theorem-proving routine to be added to the system, and then have the
trusted version of the system prove the new extension correct before
encorporating it. Can a system which is inherently inadequate (after
all, it is in need of extension) be expected to prove the correctness
of a useful extension? We have investigated this problem and believe
the answer, for our system, is "yes".

One experiment we performed involved the addition of a simple
cancellation routine. Suppose I, J, K and L are nonnegative integers.
It is easy to prove that I+J=I+K iff J=K. This is the traditional
statement of the cancellation law for addition. But note that this
rule cannot be applied to L+J=K+(I+L), because the common term, L,
does not occur as the first addend. While we could prove many
different versions of the cancellation law, no finite number of
rewrite rules can capture the underlying idea: you can cancel any
term occurring as an addend on both sides of an equality. How can we
teach our system this idea?
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We can proceed as follows. Define the function CANCEL on list
expressions that, when given an expression representing an equation
between two PLUS-trees, returns a new expression with all the common
addends deleted, and when given any other expression returns the
input expression. To cancel common addends CANCEL computes the fringe
of the two PLUS-trees, intersects them, subtracts the intersection
from each fringe, and then reconstitutes the remaining lists of terms
as right-associated PLUS-trees and equates them. One must be careful
to keep in mind that the fringes are bags, not sets, and that
duplications have significance (e.g., if A occurs twice on one side
and only once on the other, only one A can be cancelled).

Once CANCEL has been defined it can be used as a new proof
technique provided we can prove the following "metatheorem™: Suppose
X is a list structure representing a term in our logic and MEANING is
the function that assigns values to such list structures, given an
assignment of values to atomic symbols. Then we wish to prove that
under all assignments the MEANING of X is equal to the MEANING of
(CANCEL X) and (CANCEL X) represents a term. That is, we wish to
prove:

(IMPLIES (FORMP X)
(AND (EQUAL (MEANING X A)
(MEANING (CANCEL X) A))
(FORMP (CANCEL X)))).

This theorem can be proved by the current system, after the user
has had the system prove the rudiments of "bag theory" (e.g., that
the difference between two bags is a subbag of the first) and the
fundamental relationships induced by MEANING between bag operations
and arithmetic (e.g., if Y is a subbag of X then the meaning of the
PLUS~tree formed from the bag difference of X and Y is the arithmetic
difference of the MEANING of the PLUS-trees formed from X and Y
individually).

After proving the correctness of CANCEL, the system can use
CANCEL to perform arbitrarily deep cancellations, an ability it did
not have before or during the correctness proofs.

Except for the work on "metatheorems" all of the work described
here is described in complete detail in our book, [7J]. The book
describes our formal theory (assuming only that the reader is
familiar with propositional calculus and equality) and all of the
proof techniques used by our program. The techniques are illustrated
with many substantial examples worked by the program. The techniques
are described in sufficient detail to permit a student to use them to
discover proofs as well as to program a computer to reproduce our
results. The work on metatheorems mentioned here i1s described in
complete detail in [87.
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Discussion

Professor Paul: Is the strategy used in the proof influenced
by the definition of the function?

Dr. Moore: Yes. The definition is used to find a good
induction.

Professor Paul: This may not lead to the most efficient proof.

Dr. Moore: Yes but this doesn't matter because we are not
interested in the efficiency of the solution.

Professor Paul: I don't believe that the theorem prover would
find a new and exciting solution. Interactions with the user may give
it enough insight to help it through.

Dr. Moore: In finding a solution the theorem proven may well
produce alternative forms of the original definition, and thereby
help the user.

Professor Katzenelson: Can you give any figures for execution
times and program size?

Dr. Moore: On a KL-10 NORMTREE takes 7.7 seconds (the KL-10 has
a speed of 1.6 MIPS) while the hardest case may take 7 minutes. The
compiled code takes TOK words, and we have found no proof that
requires more than 36K words of free space. Any new facts stored take
no space due to a virtual memory system that is used. The information
is put on disec.

Professor Dijkstra: Can you describe how the system has
evolved over ten years?

Dr. Moore: The system at Edinburgh proved everything from
scratch, it did not use previously proved theorems. All inductions
were structured, and heuristic rewrite rules were used.

Professor Dijkstra: How do you maintain the consistency of the
system?

Dr. Moore: Most of the system's time is spent proving theorems.
We look for heuristics which would make the proof of a theorem
easier. If the system is modified it will be asked to prove all the
theorems used publicly. This is good because a modification may Jjust
cause the search space to shift, which may in turn lead previously
proved theorems to fail.
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ITII  PROGRAM VERIFICATION

One important application of mechanical theorem-proving is
formal program verification. Formal program verification is a
relatively new approach to the program reliability problem in which
programs are formally specified and proved to meet those
specifications.

There are many different approaches to program verification, but
they have one thing in common: they reduce the questions "Is this
program correct?" to the question "Are these formulae theorems?"
Since the objective is the elimination of errors, the process of
generating and proving the formulae must be mechanized.

In this talk I will illustrate several program verification
methods and use them to derive conjectures proved by the
theorem-prover described above. Three methods will be explained: the
functional method, the interpreter method, and the inductive
assertion method. Each will be applied to the same "toy" problem.
Then I will briefly discuss and illustrate how we are using our
theorem-prover to prove the correctness of ANSI FORTRAN programs,
where we handle such difficult problems as aliasing, global COMMON,
and arithmetic overflow.

A. A Toy Example

Let us consider a simple assembly language program to sum the
numbers from 1 to I:

0 MOVE AC, O jset AC to O

1 SKIPNE I sskip next if I not O
2 STOP sstop

3 ADD AC, I sset AC to AC+I

y SUBI I, 1 jset I to I-1

> JUMP 1 $jump to instruction 1

We wish to prove that when this program is executed the final
value of AC is (i*i+1)/2 where i is the initial value of I. We assume
i is a nonnegative integer.

We will consider three different methods of attaching semantics
to this program. It is advantageous in all three cases to first
introduce the recursive function that sums the integers from M to N:

(SIGMA M N)
(IF (LESSP M N)

(PLUS N (SIGMA M (SUB1 N)))
0).
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For example, (SIGMA 3 7) is T7+6+5+4. It is also worthwhile proving
the general result that (SIGMA O I) is (I®*(I+1))/2. This is proved by
the theorem-prover described above, using induction on I. Having
proved this lemma, it is now sufficient to establish that our 6-line
assembly program computes (SIGMA 0 I).

B. The Functional Method

The first method we will consider, often called the "functional"
or "McCarthy" method [25], is to view one's program as a mathematical
function from input states to output states and to prove the
correctness of the resulting function.

Formally speaking, states are n-tuples specifying the values of
the global and local variables of the program. In general, each loop
in the program is transformed into a recursively defined function on
states.

Consider the assembly language program above. The state is given
by <I,AC>. The program has one loop, starting at the SKIPNE
instruction at location 1. Provided I is not zero, the program sets
AC to AC+I, decrements I, and repeats. When I is zero, the program
halts. Since we are interested only in the final value of AC and not
that of I we transform this loop into a function from I and AC to the
final value of AC:

Definition.
(LOOP I A)

(IF (ZEROP I)
AC
(LOOP (DIFFERENCE I 1)
(PLUS AC I))).

Since the program enters the loop after setting AC to 0, the entire
program is functionally equivalent to (LOOP I 0).

As McCarthy noted, such a transformation can be carried out
mechanically. The transformation mechanism is an encoding of a
semantics of the source language. For more details see [25], [27],
and [57. The admission of LOOP as a function in our logic establishes
the termination of the program. The conjecture we wish to prove is
that (LOOP I 0) is equal (SIGMA 0 I). As often is the case, it is
easier to prove the following more general fact about LOOP:

(EQUAL (LOOP I AC)
(PLUS AC (SIGMA O I))),

for all numeric AC. The proof of this generalization is

straightforward by induction on I and can be constructed by the
theorem~-prover described above.
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C. The Interpreter Method

A second method for formalizing the properties of a program is

to specify formally an interpreter for the programming language. This
is akin to "denotational semantics" [177.

In this case we must specify the "hardware" that runs our 6-line
program. We will do so by writing a recursive function, EXEC, that
takes three arguments: the program counter, pc; a memory, mem,
mapping integer addresses to their values; and a clock, clk, that
ticks once every time we execute a jump instruction. The clock 1is
used to make EXEC a total recursive function. EXEC is an accurate if
somewhat simple formalization of the idea of a stored progran
computer. Each instruction is a list containing an "opcode" and some
"arguments" and will occupy one location in memory. In our example,
the program will be loaded into memory locations 0 through 5, we will
use locations 6 and 7 for the variables I and AC.

EXEC operates as follows. If the clock is 0, EXEC returns an
error signal. Otherwise, EXEC fetches the contents of location pe in
mem and decodes it as an instruction, obtaining the opcode, op, and
two operands argl and arg2. If op is STOP, EXEC returns the final
memory configuration. Otherwise, EXEC determines new values for pc,
mem, and clk based on op and the operands and recurses on those new
values. For example, if op is JUMP, EXEC recurses, replacing pc by
argl and decrementing clk. If op is ADD, EXEC recurses replacing pc
by pc+1 and mem by

(SET argt

(PLUS (GET argl mem) (GET arg2 mem))
mem) .

Thus, after executing (ADD argl arg2) the "new" memory is that
obtained by adding the contents of address argl to that of address
arg?2 in the old memory and then setting the contents of address argl
to that sum. (GET and SET are defined functions that operate on
finite sequences denoting the contents of successive memory

locations.) The other opcodes used in our program are handled
similarly.

Once EXEC is defined we can state the correctness of our program
as the following conjecture:
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(IMPLIES (AND (EQUAL  MEM
(APPEND '((MOVEI 7 0)
(SKIPNE 6)
(STOP)
(ADD 7 6)
(SUBI 6 1)
(JUMP 1))
REST))
(EQUAL I (GET 6 MEM))
(NOT (LESSP CLK I)))
(EQUAL (GET 7 (EXEC O MEM CLK))
(IF (ZEROP CLK)
(GET 7 MEM)
(SIGMA 0 I))))

This formula says: If locations 0-5 of MEM contain the program
in question and if I is the contents of location 6 in MEM and is less
than or equal to CLK, then the value of location 7 in the memory
obtained by executing the program starting at pe O in MEM with CLK is
(SIGMA 0 I). (If CLK is zero, then the value of location 7 after
execution is the original value of location 7.)

This conjecture can be proved by our theorem-prover. The proof
requires that the system first prove a lemma: provided there is
sufficient time on the clock, EXEC computes the sum of AC and (SIGMA
0 I) if started at location 1 (instead of location 0).

D. The Inductive Assertion Approach

We now move on to an illustration of the "inductive assertion"
or "Floyd/Hoare" method 147, [18]. The basic idea is to attach to
the input, output, and every loop of the program an assertion that
describes the state of the machine each time execution reaches the
annotated point. One may then analyze the finite number of execution
paths between any two assertions and generate a set of formulas
called "verification conditions" that establish that each assertion
holds each time it is encountered. The verification condition
generator ("veg") is an encoding of a sematics of the programming
language.

The annotation of our example program above is as follows.
Suppose K is the initial value of I. The "input assertion" is Tj; that
is, we put no constraints on I initially. The "output assertion," at
the STOP instruction at location 2, is that AC is equal to (SIGMA O
K). The "loop invariant", at the SKIPNE instruction at location 1, is
that AC is equal to (SIGMA I K) and I < K. By exploring the paths
through the program (using some formal specification of the effects
of each instruction) we generate three verification conditions to
prove:
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(1) The loop assertion is true when first encountered:

(AND (EQUAL O (SIGMA K K))
(LESSEQP K K)).

This is just the loop assertion with I replaced by its
initial value, K, and AC replaced by O.

(2) If the loop assertion holds and we go around the loop,
then the loop assertion holds for the new values of I
and AC: ’

(IMPLIES (AND (EQUAL AC (SIGMA I K))
(LESSEQP I K)
(NOT (ZEROP I)))
(AND (EQUAL (PLUS AC I)
(SIGMA (DIFFERENCE I 1) K))
(LESSEQP (DIFFERENCE I 1) K))).

(3) If the loop assertion holds and we exit the loop, then
the output assertion holds.

(IMPLIES (AND (EQUAL AC (SIGMA I K))
(LESSEQP I K)
(ZEROP I))
(EQUAL AC (SIGMA O K))).

These three formulae establish that when the program terminates
AC is (SIGMA O K). They do not establish termination, although that
can be done by a similar path analysis. These verification conditions
can be proved by our theorem-prover.

E. Comparisons

The three program verification methods sketched are more
striking in their similarities than in their differences.

First, it should be noted that the introduction of SIGMA
simplifies the conjectures produced by all three methods. A more
commonly used specification style - at least when the inductive
assertion method is chosen - is to restrict oneself to "primitives"
such as addition, multiplication, and division built into the system.
In this example this makes the verification conditions more difficult
to prove because one is simultaneously grappling with the fundamental
mathematical fact that (SIGMA O I) is (I®*(I+1))/2 and with a
particular algorithm for computing (SIGMA O I).

Second, all three methods require some creative step beyond the

mere specification of the input/output relation. In the functional
method, this creative step is the generalization of:
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(EQUAL (LOOP I 0) (SIGMA O I)))
to
(EQUAL (LOOP I AC) (PLUS AC (SIGMA 0 I))).

In the interpreter method, the creative step is the statement of the
lemma that when EXEC starts executing at location 1 and runs to
normal completion, the answer is (PLUS AC (SIGMA O I). In the
inductive assertion method, the creative step is the invention of the
loop invariant that AC is (SIGMA I K).

It should be noted that with the functional and interpreter
methods the creativity occurred after the problem had been cast
mathematically and while a proof was being sought. That is, the
creative steps were just generalizations in the mathematical sense:
given to prove p we decided to prove q, where q implies p. In the
inductive assertion method, we were obliged to think about gq before
the problem could be stated without reference to the program text.
Thus, when the former methods are applied, this creative aspect of
the problem is just a theorem-proving problem; when the inductive
assertion method is applied, this creative step is generally regarded
as a specification problem.

For our 6-line assembly language program, the theorems generated
by the functional method are the easiest to prove, with the inductive
assertion method second and the interpreter method a distant third.
Of course, nothing in general should be inferred from this ranking.

For example, applying the functional method to messier programs
- especially programs manipulating large global data structures -
often produces unmanageably large recursive equations; in such cases
the inductive assertion method can often be used to segment the
program and isolate side-effects.

On the other hand, the interpreter method has an elegance the
other two lack because our program was proved correct with respect to
a formal programming language sematics defined entirely within the
logic itself rather than in some extralogical axioms or ad hoec
program transformations. Furthermore, the interpreter method as it
was applied here dealt with a problem neither of the other two
methods could possibly handle: the instructions were being fetched
from a memory that was being modified by the execution of the
program. While the program does not happen to modify itself,
consideration of that possibility vastly complicates the proof. When
the hardware method is formalized so that the program is in "read
only" memory (i.e., a memory held constant in the EXEC recursion) the
interpreter-based proofs are no more complicated than the inductive
assertion style proofs.
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F. Toys v. Reality

The preceding sketches were meant to summarize several different
approaches to program verification and to illustrate the role of
theorem-proving in each of them. However, all three sketches dealt
with a toy problem. We did not describe a useful programming
language. We ignored many difficult problems of programming language
design (e.g., data structures, subroutine calls, aliasing). We
ignored many difficult problems of programming language
implementation (e.g., arithmetic overflow, array bounds violations,
undefined variables). In short, the toy problem discussed hegf bear
about as much resemblance to real programming problems as E=Mc” does
to a nuclear power plant. Rather than attempt to describe how these
problems can be dealt with I will simply "advertise" and illustrate
how we have dealt with them in the context of one real programming
language.

We have implemented a verification condition generator for a
subset both of FORTRAN 66 [357 and FORTRAN 77 [17. While constraints
are placed on the language that are not found in the ANSI
specifications, our language is a true subset in the sense that a
processor that correctly implements either FORTRAN correctly
implements our language. The development of the FORTRAN verification
condition generator was supported by ONR Contract NOOO14-75-C-0816.

Unusual features of our system -- aside from our choice of
FORTRAN and our use of a quantifier free specification language =--
include a syntax checker that enforces all our syntactic restrictions
on the language, the thorough analysis of aliasing, the generation of
verification conditions to prove termination, and the generation of
verification conditions to ensure against such run-time errors as
array-bound violations and arithmetic overflow.

Although our syntax checker and verification condition generator
handle programs involving finite precision real arithmetic, we have
not yet formalized the semanties of those operations and hence cannot
mechanically verify programs that operate on REALSs.

We define our subset precisely in [9] and specify the
verification conditions we generate. The following description of our
work is extremely informal.

The input to our verification condition generator must include
not only the subprogram (function or subroutine) to be verified, but
also all subprograms referenced somehow by the candidate subprogram.

Each referenced subprogram must have been previously specified and
verified.
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The FORTRAN statements in our subset are:

Arithmetic assignment DO

Logical assignment DIMENSION

GO TO assignment COMMON
Unconditional GO TO INTEGER

Assigned GO TO REAL

Computed GO TO DOUBLE PRECISION
Arithmetic IF COMPLEX

CALL LOGICAL

RETURN EXTERNAL
CONTINUE Statement function
STOP FUNCTION

PAUSE SUBROUTINE
Logical IF END

Our subset does not include the following FORTRAN 77
statements:

BACKSPACE FORMAT
BLOCK DATA IMPLICIT
Block IF INQUIRE
CHARACTER INTRINSIC
Character assignement OPEN
CLOSE PARAMETER
DATA PRINT
ELSE PROGRAM
ELSEIF READ
ENDFILE REWIND
ENDIF SAVE
ENTRY WRITE
EQUIVALENCE

For those statements in our subset we enforce all of the
restrictions of both FORTRAN 66 and 77; furthermore, we enforce some
additional restrictions. Some of our restrictions are:

Every expression using infix operators must be fully
parenthesized. For example, either (A + (B + C)) or ((A + B) +
C) must be written instead of A + B + C. The precise order of
combination affects the analysis of overflow.

Subroutines and functions may not be passed as arguments
to subprograms.

In a CALL statement or function reference, if the actual

argument is an array, then the corresponding argument must be
an array of the same number of dimensions.

Function subprograms may not side-effect their arguments
or anything in COMMON.
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No call of a subroutine may pass an entity to a subroutine
that might violate the strict aliasing restrictions of FORTRAN.
For example, if a subroutine has two arguments and possibly
smashes the first, then that subroutine may not be called with
the same array passed in both arguments nor may an array in
COMMON be passed as the first argument if the subroutine "knows"
about the COMMON block, even via subprograms.

While some of our restrictions may appear radical to those
unfamiliar with the details of the FORTRAN specifications, many of
the most severe (e.g., prohibition of side-effects in FUNCTIONs and
aliasing in SUBROUTINEs) are in fact closely related to restrictions
in both the 1966 and 1977 specifications. Many of the restrictions in
the ANSI specifications were motivated by the desire to encourage the
implementation of correct optimizing compilers and -- while the
restrictions are not as elegantly stated as they might have been --
it could be argued that FORTRAN 66 was several years ahead of its
time. In 97 we compare our restrictions to those of the ANSI
specifications. All of our restrictions are enforced by our system in

the sense that programs violating these restrictions are rejected by
the verification condition generator.

We make the following claim about our system. If a FORTRAN
subprogram is accepted by our syntax checker, the verification
conditions are proved, and the program can be loaded onto a FORTRAN
processor that meets the ANSI specification of FORTRAN and satisfies
certain parameterized constraints on the accuracy of arithmetic, then
any invocation of the program in any environment satisfying the input
condition of the program will terminate without run-time errors and

produce an environment satisfying the output condition of the
program.

We have used the theorem-prover to prove the verification
conditions produced for several working FORTRAN programs, including a
FORTRAN implementation of the Boyer-Moore fast string searching
algorithm, and several subprograms performing "big number" arithmetic
?peratiqg§ on arrays of integers regarded as numbers in a large base

€.ey 2 .

G. A FORTRAN Example

In a 1977 Communications of the ACM article [67, we describe an
algorithm for finding the first occurrence of one character string,
PAT in another, STR. The algorithm is currently the fastest known way
to solve this problem on the average. Our algorithm has two unusual
properties. First, in verifying that PAT does not occur within the
first i characters of STR the algorithm will typically fetch and look
at fewer than i characters. Second, as PAT gets longer the algorithm
speeds up. That is, the algorithm typically spends less time to find
long patterns than short ones. In this section we briefly describe
the verification of a FORTRAN version of the algorithm. A more
complete description may be found in [9 7).
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The idea behind the algorithm is illustrated by the following
example. Suppose we are trying to find PAT in STR and, having scanned
some initial part of STR and failed to find PAT, are now ready to ask
whether PAT occurs at the position marked by the arrow below:

PAT: EXAMPLE

STR:  LET_US_CONSIDER A SIMPLE EXAMPLE
t

Instead of focusing on the left-hand end of the pattern (i.e.,
on the "E" indicated by the arrow) the algorithm considers the
right-hand end of the pattern. In particular, the algorithm fetches
the "I" in the word "SIMPLE". Since "I" does not occur in PAT, the
algorithm can slide the pattern down by seven (the length of PAT)
without missing a possible match. Afterwards, it focuses on the end
of the pattern again, as marked by the arrow below.

PAT: EXAMPLE

STR:  LET_US_CONSIDER A SIMPLE_EXAMPLE
t

In general, as the next step would suggest, the algorithm slides
PAT down by the number of characters that separate the end of the
pattern from the last occurrence in PAT of the character, c, Jjust
fetched from STR (or the length of PAT if c¢ does not occur in PAT).
In the configuraion above, PAT would be moved forward by five
characters, so as to align the "X" in PAT with the just fetched "X"
in STR.

If the algorithm finds that the character just fetched from STR
matches the corresponding character of PAT, it moves the arrow
backwards and repeats the process until it either finds a mismatch
and can slide PAT forward, or matches all the characters of PAT.

The algorithm must be able to determine efficiently for any
character ¢, the distance from the last occurrence of ¢ in PAT to the
right-hand end of PAT. But since there are only a finite number of
characters in the alphabet we can preprocess PAT and set up a table
that answers this question in a single array access.

The reader is referred to [6 Jfor a thorough description of an
improved version of the algorithm that can be implemented so as to
search for PAT through i characters of STR and execute less than i
machine instructions, on the average. In addition, [6 Jeontains a
statistical analysis of the average case behaviour of the algorithm
and discusses several implementation questions.

A FORTRAN version of the algorithm is exhibited below. The
subroutine FSRCH is the search algorithm itself: it takes five
arguments, PAT, STR, PATLEN, STRLEN, and X. PAT and STR are
one-dimensional adjustable arrays of length PATLEN and STRLEN
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respectively. X is the dummy argument into which the answer is
smashed. The answer 1is either the index into STR at which the winning
match is found, or else it is STRLEN+1 indicating no match exists.

FSRCH starts by CALLing the subroutine SETUP, which preprocesses
PAT and smashes the COMMON array DELTA1. DELTA1 has one entry for
each character code in the alphabet. SETUP executes in time linear in
PATLEN. It initializes DELTA1 as though no character occurred in PAT
and then sweeps PAT once, from left to right, filling in the correct
value of DELTA1 for each character occurrence, as though that
occurrence were the last occurrence of the character in PAT. Thus, if
the same character occurs several times in PAT (as "E" does in
"EXAMPLE") then its DELTA1 entry is smashed several times and the
last value is the correct one.

SUBROUTINE FSRCH(PAT, STR, PATLEN, STRLEN, X)

INTEGER DELTA1
INTEGER PATLEN
INTEGER STRLEN
INTEGER PAT
INTEGER STR
INTEGER I
INTEGER J
INTEGER C
INTEGER NEXTI
INTEGER X
INTEGER MAXO
DIMENSION DELTA1(128)
DIMENSION PAT (PATLEN)
DIMENSION STR(STRLEN)
COMMON /BLK/DELTA1
CALL SETUP(PAT, PATLEN)
I = PATLEN

200 CONTINUE
IF ((I.GT.STRLEN)) GO TO 500
J = PATLEN
NEXTI = (1+I)

300 CONTINUE
C = STR(I)
IF ((C.NE.PAT(J))) GO TO 400
IF ((J.EQ.1)) GO TO 600
J = (J-1)
I = (I-1)
GO TO 300

400 I = MAXO((I+DELTA1(C)), NEXTI)
GO TO 200

500 X = (STRLEN+1)
RETURN

600 X = I
RETURN
END
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"character string"

SUBROUTINE SETUP(A, MAX)
INTEGER DELTA1
INTEGER A

INTEGER MAX

INTEGER I

INTEGER C

DIMENSION DELTA(128)
DIMENSION A(MAX)
COMMON /BLK/DELTA1
DO 50 I=1, 128
DELTA1(I) = MAX
CONTINUE

DO 100 I=1, MAX

C = A(I)

DELTA1(C) = (MAX-I)
CONTINUE

RETURN

END

To specify the input and output assertions FSRCH we must
introduce the mathematical concepts of (a) a sequence being a
on a given sized alphabet,
segments of two strings "matching", and (c¢) the leftmost match of PAT
in STR. Below we give the definitions of these mathematical

functions.

Definition.
(STRINGP A I SIZE)

(IF (ZEROP 1I)
T

(AND (NUMBER (ELT1 A I))
(NOT (EQUAL (ELT1 A I) 0))
(NOT (LESSP SIZE (ELT1 A I)))
(STRINGP A (SUB1 I) SIZE)))

Definition.

(MATCH PAT J PATLEN STR I STRLEN)

(IF (LESSP PATLEN J)
T
(IF (LESSP STRLEN I)
F

(AND (EQUAL (ELT1 PAT J) (ELT1 STR I))

(MATCH PAT

(ADD1 J)

PATLEN STR

(ADD1 I)

STRLEN))))
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Definition.
(SEARCH PAT STR PATLEN STRLEN I)

(IF (LESSP STRLEN I)
(ADD1 STRLEN)
(IF (MATCH PAT 1 PATLEN STR I STRLEN)
T
(SEARCH PAT STR PATLEN STRLEN
(ADD1 I)))))

For example, (MATCH PAT J PATLEN STR I STRLEN) determines
whether the characters of PAT in position J through PATLEN are equal
to the corresponding characters of STR starting at position I and not
exceeding STRLEN. MATCH is recursive. Thaﬁlis, provided J < PATLEN
and I < STRLEN, MATCH checks that the J character of PAT is equal
to the I'M character of STR and, if so, requires that there be a
MATCH starting at positions I+1 and J+1. The recursive function
SEARCH is the mathematical expression of the naive string searching
algorithm. (SEARCH PAT STR PATLEN STRLEN I) is the least i, I <1 <
STRLEN, such that a MATCH with PAT occurs at position i, or STRLEN+1
if no MATCH occurs.

The input specification for FSRCH includes the assertion that
PAT and STR are both strings on the alphabet from 1 to 128. The
output assertion for FSRCH is that whenever it exists, X is set to
(SEARCH PAT STR PATLEN STRLEN 1). The loop invariants for FSRCH are
expressions in terms of MATCH and SEARCH, asserting that (at label
200) the winning occurrence of PAT in STR has not yet been found and
(at label 300) that a partial match has been established between the
terminal substring of PAT and part of STR. The verification condition
generator produces some 50 theorems that must be proved to establish
that these assertions hold, that both SETUP and FSRCH terminate, and
that no run-time errors occur. For example, the statement, at
location 400 in FSRCH:

I = MAXO((I+DELTA1(C)),NEXTI)

requires that we prove (1) C is defined, (2) C is a legal index into
DELTA1, (3) DELTA1(C) is defined, (4) I is defined, (5) I+DELTA1(C)
does not cause an overflow, and (6) NEXTI is defined. The proof that
I+DELTA1(C) does not cause an overflow requires that we put an
additional input assertion on FSRCH, namely that the sum of lengths
of PAT and STR be expressible on our machine.

Discussion

Dr. Henderson: If you are working on a contract for someone
else, how much control do you have over conjectures?
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Dr. Moore: Historically great control, but clients increasingly
want total control. Often I have only to give the information that
allows a particular theorem to be proved, given the program and the
specification.

Professor Rogers: What is the largest program you have proved?

Dr. Moore: This depends on who is using it. It also depends on
which point you start from, i.e. from axioms or from scratch. The
largest program is five pages of dense FORTRAN. It has also been used
to prove the security of the kernal of an operating system. That code
is about one thousand lines long.

Mr. Grossman: Is it possible to handle asynchronous programs
with interrupts?

Dr. Moore: There are people looking at this. I don't really
know what the answer is, I'm more interested in mechanical theorem
proving. It is frontier work to formalise it at all; modal and
temporal logic come in all the time.

Dr. Larcombe: Can a theorem prover prove itself correct?

Dr. Moore: No, in a certain sense. If a man says he always
tells the truth, what do you think? What do you think if he says he
never tells the truth?

The following proof is conceivable however. Implement a simple
theorem prover and then extend it. The extended system may be proved
using the simple one, and the process is repeated until the desired
theorem prover is produced. The simple system is about a page long
and so could be proved by getting say ten mathematicians to agree it
was correct.

Professor Randell: Has the theorem prover seen much use
outside SRI?

Dr. Moore: Both Ford Aerospace and Honeywell use it. I don't
know how to quantify success, but there is a lot of interest. A
certain amount of skill is needed to use the theorem prover, s0 we
have run courses to teach people what is necessary. A naive user
would fail to get a solution from the system where I could succeed,
because I would be able to reformulate a lemma.

Professor Randell: The most useful thing the system could say
when it fails to find a proof is why.

Dr. Moore: When the theorem prover fails it stops with the
formula that failed. One can then construct a counter-example from
which it is possible to generate the input data which causes the
program to fail.
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Professcr Katzenelson: Does the verification depend on the
size of the program?

Dr. Moore: Program verification is very dependent on the

size of the program. It is difficult to specify large programs and
the equations you get out are very large.
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