
THREE LECTURES ON THEOREM-PROVING AKD PROGRAM VERIFICATION 

J Strother Moo~e 

Rapporteur: Mr. R. Millichamp 

Abstract 

I. Brief History of Mechanical Theorem-Proving 

Can we build a machine to prove theorems? Man has been trying to 
construct such a machine since before the creation of the first 
digital computers. Indeed, mechanical theorem-proving has played a 
fundamental role in the history of computer science and artificial 
intelligence: work in metamathematics by Herbrand, Godel, Church, 
Turing and others laid much of the foundations of computer science; 
early work on theorem-proving and symbolic logic by Newell, Shaw, 
Simon, McCarthy and others helped create the field of artificial 
intelligence; the work of J.A. Robinson and others on resolution led 
to new ways to look at many artificial intelligence problems. The 
successes and failures of mechanical theorem-proving still influence 
artificial intelligence work today. 

In this lecture the speaker will try to acquaint the audience 
with the past and present answers to the question "How can we build a 
machine to prove theorems?" In addition it will be shown how 
mechanical theorem-proving ideas have been applied to such topics as 
data base retrieval, problem solving, the design and implementation 
of non-deterministic programming languages, and the program 
correctness problem. 

II A Tour through a Working Theorea-Prover 

We will look at the operation and abilities of the 
theorem-prover being developed by Boyer and Moore at SRI 
International. The system deals with a quantifier free first-order 
logic based on recursive functions. The system provides the user with 
a schematic way of ax iomati zing "new" inductively defined types, 
(e.g. integers and lists), a facility for recursively defining new 
concepts, and an automatic theorem-prover. 

The theorem-prover contains a large amount of built-in knowledge 
about how to use definitions and previously proved theorems, common 
ways to generalise conjectures and, most importantly and uniquely, 
how and when to appeal to the principle of mathematical induction-. In 
essence, the theorem-prover is a codification of the techniques 
humans use when presented with certain kinds of theorems arising 
frequently in computer science and discrete mathematics. 
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The lecture will consist primarily of a detailed look at how the 
system proves a particular theorem and why it chooses to make the 
"moves" it makes. The formal logic and proof techniques are 
completely described in A Computational Logic by Boyer and Moore 
(Academic Press, 1979). 

III Prograa Verification 

Today the most active application for mechanical theorem-proving 
is in the area of program reliability. Given a precise formal 
sta tement of what a program is supposed to do, it is relatively easy 
to transform the question "Is this program correct?" to the question 
"Are these formulae theorems?". The latter question can then be 
submitted to a mechanical theorem-prover. 

There are a variety of ways to transform the former question 
into the latter. One way is to transform the program into a 
mathematical function from one machine state to another. Another way 
is to define an interpreter for the language. Still another way is to 
annotate the program with "input/output" assertions and "invariants" 
and to generate formulae that expre ss the idea that the invariants 
and output specifications are true whenever they are encountered , 
provided the input specifications were true initially. 

The lecture will illustrate all these techniques using a simple 
programming language. The lecture concludes with a discussion of the 
verification condition generator written by Boyer and Moore for a 
subset of both FORTRAN 66 and FORTRAN 77. We will discuss the 
verification conditions generated for a particular FORTRAN program 
and how these formulae are proved by the Boyer-Moore theorem-prover. 
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I HISTORY 

How does one prove theorems? How can we build a machine to prove 
theorems? 

Because mechanical theorem-proving has its roots in mathematics, 
and because mathematicians and philosophers have long asked the 
questions above, it is difficult to put a date on when mechanical 
theorem-proving was born. For example, the idea of mechanical proof, 
in the sense that we think of it today, would not have surprised 
Leibniz (1646-1716) who, on the one hand perfected and presented to 
the Royal Society, London, a mechanical binary adder (also capable of 
multiplication, division and square root computations) and on the 
other hand believed that all reasoning could be reduced to an 
"algebra of thought". 

In the early 20th century formal axiomatic systems were 
developed. Such systems are characterized by a set of "well-formed 
formulae", a set of "axioms" and a set of "inference rules" with 
which one may deduce "theorems" from the axioms and previously 
deduced theorems. A "proof" of some formula p is just a finite 
sequence of formulae, the last of which is p and each of which is 
either an axiom or is derived from the preceding formulae by a rule 
of inference. 

For example, here is a proof of the formula (-A v A) in the 
logic of Russell and Whitehead from Principia Mathematica. 

Proof of (-A v A). 

1 • (Q ... R) ... «P v Q) ... (P v R» Axiom 4 

2. (Q ... A) ... « -A v Q) ... (-A v A» Subst into 

3. (Q ... A) ... «A ... Q) ... (-A v A» Def of " " 
4. «A v A) ... A) ... «A ... (A v A» ... (-A v A» Subst into 3 

5. (P v P) ...P Axiom 

6. (A v A) ... A Subst into 5 

7. (A ... (A v A» ... (-A v A) M.P. 4 and 6 

8. Q ... (P v Q) Axiom 2 

9. A "'(A v A) Subst into 8 

10. (-A v A) M.P. 7 and 9 
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It is easy to determine whether a sequence of formulae is a 
proof; theorem-proving is the art of discovering a proof -- if any -­
for a given formula. 

The 1920's and 1930's saw the careful study of formal axiomatic 
systems, primarily to clarify the then extensive debates between the 
various schools of thought on how the newly uncovered paradoxes in 
the foundations of mathematics might be remedied. Hilbert proposed to 
formalize classical mathematics (e.g. , arithmetic) i n logic and 
undertake the proof of its consistency via constructive means. 
Starting in the 1920's, this program was undertaken by Hilbert, 
Ackermann, von Neumann, Herbrand and others . Among the interesting 
results was Herbran d 's Theorem (1930), which is a constructive 
version of a theorem proved earlier by Skolem r3~J that suggests a 
mechanical means for finding a proof when it exists. 

In 1931, Goedel showed that there exist formal sentences of 
arithmetic that are true (in the intended interpretation) but 
unprovable. Furthermore, he showed that if arithmetic is consistent 
then its consistency cannot be proved in arithmetic. In a certain 
sense, this undermined Hilbert's program. However, thanks in large 
part to Hilbert and his school, the formal study of formal proofs had 
been born. 

During this same period, Church, Turing, and Goedel (the latter 
following a suggestion by Herbrand) developed what turned out to be 
the equivalent notions of lambda - definable, Turing computable, and 
general recursive functions. These developments led, in 1936 and 
1937, to the demonstrations that there were no decision procedures 
for arithmetic or first-order predicate calculus. It is perhaps 
ironic that the concepts that eliminated the hope that perfect 
theorem-provers could be built simultaneously formed part of the 
theoretical foundations for the development of the device that makes 
imperfect theorem-provers realizable and perhaps practical. 

Among the first heuristic mechanical theorem-provers physically 
realized was the Logic Theory Machine, programmed in the mid-50's by 
Newell, Shaw and Simon. The Logic Theory Machine constructed proofs 
in the propositional calculus using the axioms and rules of inference 
of Principia Mathematica. A succinct description of the Logic Theory 
Machine and its capabilities is provided in Computers and Thought 
(131· 

The Logic Theory Machine attacked its problems in much the same 
way a human might attack them, when limited to the axioms, rules of 
inference and previously proved theorems of Principia Mathematica. 
The program contained four "methods" or "heuristics" for decomposing 
the given problem into "simpler" subproblems (e.g., instances of the 
axioms). An executive routine selected the methods to be tried and 
the subproblems to be worked on. 
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It should be observed that the authors of this early program 
were not so much concerned with answering the question "Is this 
proposi tional formula a theorem?" as they were the question "How does 
one go about solving hard problems?" Judged by its ability to answer 
the former question, the logic Theory Machine was not impressive. It 
was able to prove only 38 of the 52 propositional theorems in Chapter 
2 of Principia. By contrast, Wang's algorithm [36], published in 
January, 1960 and based on the "semantic" idea of attempting to 
construct an assignment for falsifying a formula, was able to 
announce the validity of all of the propositional theorems in 
Principia. 

But the Logic Theory Machine was a significant contribution to 
the infant field of "artificial intelligence" and was the first 
program to confront the hard problem that is unavoidable in the 
nonpropositional case: how does one choose which of many alternatives 
to pursue? The Logic Theory Machine inspired several other early AI 
programs, notably Gelernter's Geometry Theorem Proving Machine and 
Slagle's Symbolic Automatic Integrator for elementary calculus 
problems. (Both Gelernter's and Slagle's programs are landmarks of AI 
and mechanical theorem-proving and are described in Computers and 
Thought, r 13]). 

However, many researchers were more interested in the "ends" 
than the "means" and launched a no-holds barred attack on the problem 
of building a program to determine if a propositional formula, and 
more generally, a first-order formula, was a theorem or, equivalently 
(thanks to Goedel), valid. 

In the early years -- the late 50's and early 60 ' s -- the field 
was dominated by logicians who pursued quite different approaches to 
the theorem-proving problem. Among the early researchers were Wang, 
Gilmore, Davis, Putnam, and Prawitz. 

Then, in 1965, J .A. Robinson published the paper "A 
Machine-Oriented Logic Based on the Resolution Principle" [301. The 
resolution principle's simplicity and elegance made it a very 
attractive mechanism. 

Suppose we wished to prove the following theorem of first - order 
predicate calculus: 

[YX YY P(X,Y) .... Q(Y) & YX:it Y P(X, y) 

& 

"x Q(X) -+ Q(G(X))] 

... 
:;rX Q(G(G(X))) 
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To apply resolution we actually work on the negation of the problem 
and attempt to derive a contradiction. The negation of the formula 
above is that the first three hypotheses are true and the conclusion 
is false. Then we put the conjecture into conjunctive normal form, 
using Skolem functions to eliminate the existential quantifiers. The 
result is the following conjunction of disjunctions: 

-P(X,Y) v Q(Y) 

& 

P(Z,F(Z» 

& 

-Q(U) v Q(G(U» 

& 

-Q(G(G(V») 

Finally, Robinson writes this as a set of clauses. A clause is a set 
of literals, each literal being an atom or negated atom. 

(-P(X,Y) Q(Y») 

(P(Z,F(Z») 

(-Q(U) Q(G(U») 

(-Q(G(G(V») } 

Having distilled the problem down to this simple but universal 
notation we can now apply the "resolution principle": Consider any 
two clauses in the set, rename their variables so they have no 
variable in common, and then consider each literal of one clause 
against each literal of the other. If the two literals have opposite 
signs and there exists a substitution that makes their atoms 
identical, instantiate both clauses with the most general such 
substitution, delete the two (now complementary) literals from the 
two instantiated clauses and union the two resulting sets together. 
The resulting clause is a resolvent of the two parent clauses and 
should be added to the set of clauses. Repeat this process 
indefinitely. Should the empty clause ever be formed, the original 
set of clauses was unsatisfiable -- Le . , the original quantified 
formula is a theorem. 

Perhaps more important than resolution itself was Robinson's 
"unification algorithm" which is a way to determine either the most 
general substitution that makes two terms identical or that no such 
substitution exists. For example, the unification algorithm 
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determines that P(X,F(X» and P(A(),Z) are unified by replacing X by 
A() and Z by F(A(», while P(X,F(X» and P(X,X) have no common 
instance. 

Here is a resolution proof of the example theorem above: 

1 • r -P(X,Y) Q(Y) } given 

2. {P(Z,F(Z» } given 

3. (-Q(U) Q(G(U»} given 

4. ( -Q(G(G(V») } given 

5. (Q(F(Z» } resolving 1 & 2 

6. (Q(G(F(Z») } resolving 3 & 5 

7. ( Q(G(G(F(Z»» } resolving 3 & 6 

8. ( } resolving 4 & 7 

Despite its simplicity, resolution with factoring -- a rule 
permitting the instantiation of a clause so as to cause two literals 
in it to become identical -- is a sound and complete inference 
procedure for first-order predicate calculus. For more details the 
reader should see [10 j, [24 J, or [31]. 

Note how easily a resolution theorem-prover can be implemented. 
Clauses may be represented as lists of literals. The basic operation 
on a Resolution Logic Machine is: 

(1) Choose a clause to factor or two clauses to resolve upon. 

(2) Form all possible factors or resolvents and add them to the 
set of clauses. 

(3) If any clause is empty, report that the original set was 
unsatisfiable. 

(4) Otherwise, repeat from step(1). 

As one might gather from the above description, the only 
difficult problem is deciding which clauses to choose in any given 
round. This is called the search strategy and is the hard problem 
confronting the serious implementor of a resolution theorem-proving. 

There are two classic search strategies. One, called breadth 
first, constructs all the resolvents from anong the initial set S 
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before add ing them to S to form the new set S', and then i terates on 
the set S'. Thus, the so-called "search tree" -- the tree of all 
possi ble resolvents -- is grown in horizontal layers. The other 
common variation is called depth first, in which one prefers as a 
paren t the most recently produced c lause. In a depth first search, 
long branches of the search tree are grown first. 

It is fair to say that very few resolution theorem-provers use 
either search strategy in the rigid way they are defined above. It is 
also f air to say that reso lution is not the only part of 
theorem-proving concerned with search strategy. The consideration of 
sear ch strategy domina t es the i mplem entation of a resolution 
theory- prover largely because resol ution has distilled the 
theorem-proving process down to where there is very litt le else to 
do. But every theorem-proving machine (for sufficiently rich logics) 
stands or falls on its ability to make the right choices at the right 
time . 

To th e criticism that resolution was "unnatural" (to many 
people) the response was simila r t o Minsky ' s later defense of the 
att e mp t to build an intelligent machine (paraphrase) : If you wanted 
to build a machine that flies, would you cover it with feathers? If 
you want ed to build a machine that thinks, would you use meat? During 
the lat e 60's the vast majority of pu blished work on mechanical 
theorem-proving was resolution based. 

But saying that the vast majority of the pu blished work was 
resolut ion based is not to say that all the resolution researchers 
were wor king on the same idea. The very simplicity of resolution 
encou raged its elaboration. Resolution was restricted, refined, and 
extended. There was (in no particular order) unit resolution, 
hyperresolution, linear resolution, and paramodulation. There was 
linear para modul atio n a nd hyperparamodu l at ion. There was 
E-res olution, OL-resolution, Pl-reso luti on, SL-resolution , 
V-resolution and P-hyperparamodulation. 

In short, the late 60's were an exciting time in the history of 
mechanical theorem-proving. There were th r ee (causally related) 
reasons : 

(1) technologica l improvements brought a tremendous increase in 
the computer power availabl e. 

(2) the economy boomed and made money available for computer 
science research in previously unheard of quantiti es -- much 
of it funnelled t hrough the Advanced Research Projects 
Agency (ARPA) of the U.S . Defense Department, and 
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(3) Artificial Intelligence emerged as an endeavor that captured 
t he imagi nations of many researchers (and funding agencies) 
and, theoretically at least, theorem-proving could solve 
many o f the hard problems in AI. For examp le , several 
typical AI problems such as natural language understanding, 
robotics problem solving, and question answering systems 
could be cast in the framework of first-order predicate 
calculus problems and solved with sufficient theorem- proving 
power. 

While resolution theorem-proving did not directly receive very 
much of the money channeled to AI, it benefited greatly from the 
availability of computer power and the interest in mechanical problem 
solving generated by AI 

Of course , not a ll researchers pursued resolution, even in its 
heyday. The interested reader s houl d see, for exampl e, the work of 
Bledsoe [2 'J on set theory and Bledsoe, Boye r and Henneman [3 J on 
proofs of l i mit theorems in real analysis. During this same time, the 
field of "symbolic manipulation" matured to t he point where programs 
were able to aid physicists and engineers in algebraic simplification 
and integral calculus. See the review by Moses [ 28]. 

In the mid-70's the excitement over resolution decl ined because 
researchers began to realize that the paradigm established by 
Robinson -- formulate a restriction of resolution and prove that i t 
is complete -- produced a plethora of theoretical papers but very few 
successful mechanical theorem-provers. 

Many people attributed this disparity t o the "unnaturalness" of 
resolution and be gan to pu rs ue new directions. At about the same 
time, new AI programming l anguages began t o catch on (e.g., PLANNER). 
For a while i n the early 70's controversy raged between those on 
opposi te sides of the question: "Is it better to use ' declarative' or 
'procedural' encodings of knowledge?" This controversy has si nce died 
out, parti a lly because PLANNER and its descendants did not real l y 
solve the hard problems and partially because people like Kowalski 
and Hayes successfully argued that predicate calculus could be used 
as a programming language and made to perform as well (or badly) as 
"conventional" languages like PLANNER . 

In my view, t he disparity between the number of publications and 
the number of successful i mplementations was due to inadequate 
attention to search strategy. While the search strategy probl em was 
certainly recognized by all, it was more or less left to t he 
"hackers" who put together theorem-provers. It is certainly safe t o 
say that most researchers hoped that victory would be achieved 
without the invention of messy, ad hoc heuristics . That ho pe has 
waned considerably s i nce the early 70's . 
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During the 70's theorem-proving research was supported mainly by 
the emerging fields of programming language design and program 
verification. The main application in programming language design has 
been the implementation of efficient "interpreters" (i.e., 
theorem-provers) for nondeterministic predicate calculus programs. 
The interested reader should see Kowalski's article "Predicate 
Calculus as a Programming Language" [21J, and the work on 
implementing such a language by Colmerauer and Roussel of the 
University of Maresille [12J, (32J, and Warren at the University of 
Edinburgh (31J. It is interesting to note that in this application 
search strategy is often less important than in general purpose 
theorem-proving because the user of the theorem-prover can often 
constrain the search space by appropriately formulating his 
"programs" . 

The theorem-proving re s earch supported by program verification 
has been both more and less traditional -- more traditional in the 
sense that the goal is to mechanize mathematics and less traditional 
in the sense that the approaches used are often radically different 
from those suggested by resoluti on. The basic idea -- as will be 
elaborated in the third lecture -- is that it is easy to transform 
the question "Is this program correct?" into the question "Are these 
formulae theorems?" The formulae are then submitted to a mechanical 
theorem-prover for proof. A theorem-prover for program verification 
must be good at deriving theorems from a large data base containing 
facts that may be instantiated and chained together -- just as the AI 
applications demanded. But, in addition, program verification added 
some new demands: 

(1) The proof of the conjectures produced by program verifiers 
often require induction. Why? Because those conjectures 
usually involve inductively constructed mathematical objects 
(e.g., integers, sequences, trees) and inductively defined 
concepts (e.g., addition, permutation, fringe). 

(2) Program verification has caused the construction of new 
logical theories in which the semantics of program are 
expressed. 

(3) Program verification aims at putting the theorem-prover in 
the hands of a "user" who is considered willing to help the 
theorem-prover but who is not logically infallible. For 
example, to specify his program the user may need to define 
previously unstudied mathematical concepts (e.g., majority 
vote). The addition of axioms purported to describe the 
properties of such concepts must not be taken lightly. 
Experience has shown that users are notoriously bad at 
getting the details right when dealing with concepts outside 
of their traditional training -- and the accidental 
-production of an inconsistent set of axioms may lead to 
"proofs" of incorrect programs whose specifications do not 
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even involve those axioms. On the other hand, experience has 
shown that many users have excellent intuitions about why 
things are true and can be of great help in guiding the 
system to a proof. 

Because of these demands theorem-proving research in the 70's has 
branched out considerably. 

Let me merely list some of the main themes of theorem-proving in 
the 70' s: 

(1) The construction of proof checkers and interactive 
theorem-provers. See for example the FOL system of Weyhrauch 
(38J or Jutting's description of the use of the AUTOMATH 
system to proof check all the Landau's text on the 
development of elementary mathematics from Peano axioms to 
the reals [20J. 

(2) The construction of theorem-provers for decidable theories, 
such as Presburger arithmetic and "data structures". See for 
exampl e the work of Bledsoe [4' ) Shostak -["33 J and Oppen 
[ 291. 

(3) The construction of theorem-provers or proof-checkers for 
logics other than first-order predicate calculus. For 
example, our work [7J is based on a quantifier free logic 
with rec~rsive functions and induction. The Edinburgh LCF 
system r16J is based on Scott's logic and Litvintchouk and 
Pratt's system is based on modal logic [2jJ. 

(4) The application of rewrite rules to simplify formulas and 
the study of the theoretical properties of sUQ.h "rewrite 
systems". See the survey paper by Huet and Oppen (19J. 

(5) The study of "metatheoretic extensibility" -- the use of a 
theorem-prover to prove the correctness of extensions. See 
below and [8J. 

(6) The further study of resolution and proof procedures 
suggested by resolution. See for example the proceedings of 
the latest Workshop on Automatic Deduction or Kowalski's 
"connection graph" proof procedure suggested by the failure 
modes of resolution [22J. 

Rather than try to summarize each of these fields I will, in my 
next lecture, acquaint you with how one state-of-the-art 
theorem-prover works and what are the current limits of its 
abilities. 
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II THE BOYER-HOORE THEOREM-PROVER 

For the past nine years Bob Boyer and I have been developing an 
automatic theorem-prover capable of constructing inductive proofs. 
The development of the theorem-prover is being sponsored by NSF Grant 
MCS-7904081 and ONR Contract N00014-75-C- 0816 . The theorem-prover 
deals with a quantifier free first-order logic. In addition to modus 
ponens, instantiation, and substitution of equals for equals, the 
logic provides for the axiomatic introduction of new "types" of 
inductively constructed objects (e.g., integers, sequences, graphs) 
the definition of new mathematical functions (e.g . , prime, 
permutation, path), and proof by induction on well-founded relations. 

The addition of definitional equations purporting to define new 
functions raises a difficult problem: how can we insure that the new 
axiom actually defines a function? In our logic we require that for 
each new definition there exists a "measure" of the arguments of the 
function and a well-founded relation such that in every "recursive 
call" in the body, the measure of the argumennts to the call is 
strictly smaller than the measure of the input arguments. This 
condition, together with some trivial syntactic requirements, is 
sufficient to insure that the new axiom is satisfied by one and only 
one func tion. 

For example, consider the idea of computing the "fringe" of a 
binary tree. One way to do it is to consider the successive CDR's of 
the tree and repeatedly transform subtrees of the form: 

into the form: 

* 

/\ 
/\ 

b c 
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until a is an atom. Using a LISP-like syntax we express this function 
as: 

Definition. 
(NORMTREE X) 

= 
(IF (LISTP X) 

(IF (LISTP (CAR X» 
(NORMTREE (CONS (CAAR X) 

(CONS (CDAR X) (CDR X)))) 
(CONS (CAR X) (NORMTREE (CDR X»» 

(CONS X NIL». 

What measure is going down here? Our system is not capable of 
discovering (on its own) such a measure. However, if the user of our 
system defines the function: 

Definition. 
(MS X) 

= 
(IF (LISTP X) 

(TIMES (SQUARE (MS (CAR X») (MS (CDR X») 
1), 

which is accepted because the size of the argument gets smaller in 
each call, then the system can prove that (MS X) decreases in both of 
the recursive calls of NORMTREE in the definition of NORMTREE. Thus, 
after the introduction of MS and the proof of the two lemmas 
establishing that it decreases, NORMTREE is accepted by our system as 
a true definitional equation. 

The theorem-prover itself consists of an ad hoc collection of 
heuristic proof techniques. The t wo most important ones are 
simplification and the i nvention of "appropriate" i nduction 
arguments. The system also contains heuristics for eliminating 
"undesirable" expressions (e.g., X-Y can be eliminated by replacing X 
with I+Y), the use of equality, generalization, and the elimination 
of irrelevance . 

The simplification routine is driven by conditional rewrite 
rules derived from axioms, recursive definitions, and previously 
proved theorems . The system contains fairly sophisticated search 
strategic heuristics for controlling the expansion of definitions, 
backwards chaining to establish hypotheses of rewrite rules, 
permutative rewrites, etc. 

The induction routine attempts to find an induction argument 
that is "appropriate" for the conjecture being proved. Roughly 
speaking, it attempts to find an n-way case split and some induction 
hypotheses such that when certain of the recursive functions in the 
induction conclusion of a given case are expanded, the resulting 
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recursive calls are involved j n t he hypotheses for that case. To 
find -- and justify -- the induction arglli" ent, the induction routine 
analyzes the measures and we j l f ounded relations justifying the 
recursive furl ;} tions i n the conjer> ture. We haye found that the direct 
analysis of these measures and well-founded relations is simpler than 
the analysb of the recursive functions themselves and permits the 
system more often to piece together induction argum;;nts "appropriate" 
for several funct ions in the conjecture. The reason f or this is that 
the function definitions frequently contain tests that are irrelevant 
to the recursions and these tests obscure the correct choice of 
induction cases. 

To illustrate how our system proves theorems, let us consider 
proving that NORMTREE computes the fringe as defined in the more 
traditional way by the recursive function FLATTEN: 

Definition. 
(FLATTEN X) 

= 
(IF (LISTP X) 

(APPEND (FLATTEN (CAR X» 
(FLATTEN (CDR X») 

(CONS X NIL», 

where APPEND concatenates two lists: 

Definition. 
(APPEND X Y) 

= 
(IF (LISTP X) 

(CONS (CAR X) 
(APPEND (CDR X) Y» 

Y) • 

We will prove: 

(EQUAL (NORMTREE X) (FLATTEN X». 

The proof may be briefly sketched as follows: We induct on X, 
using the measure and well-founded relation justifying NORMTREE, we 
simplify, using the axioms defining lists and "opening up" certain 
recursive function "calls", we rerepresent the variables in the 
~roblem to simplify the conjecture, use our induction hypothesis (and 
throw it away to generalize our goal), replace certain terms by 
variables, restricted to the range of terms replaced, to generalize 
the problem still more, and then perform a second induction. Below is 
the complete proof, as discovered and described in English by our 
system: 
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_PROVE.LEMMA(CORRECTNESS.OF.NORMTREE 
(REWRITE) 
(EQUAL (NORMTREE X) (FLATTEN X))) 

Give the conjecture the name *1. 
We will appeal to induction. Two inductions are suggested by terms in 
the conjecture, both of which are unflawed. So we will choose the one 
suggested by the largest number of nonprimitive recursive functions. 
We will induct according to the following scheme: 

(AND (IMPLIES (NOT (LISTP X)) (p X)) 
(IMPLIES (AND (LISTP X) 

(LISTP (CAR X)) 
(p (CONS (CAAR X) 

(p X)) 
(IMPLIES (AND (LISTP X) 

(CONS (CDAR X) (CDR X))))) 

(NOT (LISTP (CAR X))) 
(p (CDR X))) 

(pX))). 

The inequalities MS.DECREASES.UNDER.CDR and 
MS.DECREASES.UNDER.ROTATION establish that the measure (MS.X) 
decreases according to the well-founded function LESSP in each 
induction step of the scheme. The above induction scheme generates 
the following three new conjectures: 

Case 1. (IMPLIES (NOT (LISTP X)) 
(EQUAL (NORMTREE X) (FLATTEN X))), 

which we simplify, unfolding the definition of NORMTREE and FLATTEN, 
to: 

(TRUE) • 

Case 2. (IMPLIES 
(AND 

(LISTP X) 
(LISTP (CAR X)) 
(EQUAL (NORMTREE (CONS (CAAR X) 

(CONS (CDAR X) (CDR X)))) 
(FLATTEN (CONS (CAAR X) • 

(CONS (CDAR X) (CDR X)))))) 
(EQUAL (NORMTREE X) (FLATTEN X))), 

which simplifies, applying CDR.CONS and CAR.CONS, and opening up 
FLATTEN and NORMTREE, to: 

(IMPLIES 
(AND 

(LISTP X) 
(LISTP (CAR X)) 
(EQUAL 
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(NORMTREE (CONS (CAAR X) 
(CONS (CDAR X) (CDR X)))) 

(APPEND (FLATTEN (CAAR X)) 
(FLATTEN (CONS (CDAR X) (CDR X)))))) 

(EQUAL (NORMTREE (CONS (CAAR X) 
(CONS (CDAR X) (CDR X)))) 

(A PPEND (FLATTEN (CAR X)) 
(FLATTEN (CDR X))))). 

This simplifies again, applying CDR.CONS and CAR.CONS, and opening up 
the definition of FLATTEN, to: 

(IMPLIES 
(AND 

(LISTP 
(LISTP 
(EQUAL 

X) 
(CAR X)) 
(NORMTREE (CONS (CAAR X) 

(CONS (CDAR X) (CDR X)))) 
(APPEND (FLATTEN (CAAR X)) 

(APPEND (FLATTEN (CDAR X)) 
(FLATTEN (CDR X)))))) 

(EQUAL (NORMTREE (CONS (CAAR X) 
(CONS (CDAR X) (CDR X)))) 

(APPEND (APPEND (FLATTEN (CAAR X)) 
(FLATTEN (CDAR X))) 

(FLATTEN (CDR X))))). 

Applying the lemma CAR/CDR.E LIM , we now replace X by (CONS Z V) to 
eliminate (CAR X) and (CDR X) and Z by (CONS W D) to eliminate 
(CAR Z) and (CDR Z). This generates: 

(IMPLIES 
(EQUAL (NORMTREE (CONS W (CONS D V))) 

(APPEND (FLATTEN W) 
(APPEND (FLATTEN D) (FLATTEN V)))) 

(EQUAL (NORMTREE (CONS W (CONS D V))) 
(APPEND (APPEND (FLATTEN W) (FLATTEN D)) 

(FLATTEN V)))) • 
• 

We now use the above equality hypothesis by substituting: 

(APPEND (FLATTEN W) 
(APPEND (FLATTEN D) (FLATTEN V))) 

f or (NORMTREE (CONS W (CONS D V))) and throwing away the equality. 
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The result is: 

(EQUAL (APPEND (FLATTEN W) 
(APPEND (FLATTEN D) (FLATTEN V))) 

(APPEND (APPEND (FLATTEN W) (FLATTEN D)) 
(FLATTEN V))), 

which we generalize by replacing (FLATTEN V) by Y, (FLAT~EN D) by A, 
and (FLATTEN W) by U. We restrict the new variables by appealing to 
the type restriction lemma noted when FLATTEN was introduced. This 
prod~ces: 

(IMPLIES (AND (LISTP Y) (LISTP A) (LISTP U)) 
(EQUAL (APPEND U (APPEND A Y)) 

(APPEND (APPEND U A) Y))), 

which we will name ·1.1. 

Case 3. (IMPLIES (AND (LISTP X) 
(NOT (LISTP (CAR X))) 
(EQUAL (NORMTREE (CDR X)) 

(FLATTEN (CDR X)))) 
(EQUAL (NORMTREE X) (FLATTEN X))), 

which we simplify, expanding the definitions of NORMTREE and FLATTEN, 
to: 

(IMPLIES (AND (LISTP X) 
(NOT (LISTP (CAR X))) 
(EQUAL (NORMTREE (CDR X)) 

(FLATTEN (CDR X)))) 
(EQUAL (CONS (CAR X) (NORMTREE (CDR X))) 

(APPEND (FLATTEN (CAR X)) 
(FLATTEN (CDR X))))). 

This simplifies again, applying CDR.CONS, CAR.CONS, and CONS.EQUAL, 
and opening up the functions FLATTEN and APPEND, to: 

(TRUE). 

So let us turn our attention to: 

(IMPLIES (AND (LISTP Y) (LISTP A) (LISTP U)) 
(EQUAL (APPEND U (APPEND A Y)) 

(APPEND (APPEND U A) Y))). 

which we named .1.1 above . We will appeal to induction. Three 
inductions are suggested by terms in the conjecture. 
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They merge into two likely candidate inductions. However, only one is 
unflawed . We will induct according to the following scheme: 

(AND (IMPLIES (NOT (LISTP U)) (p U A Y)) 
(IMPLIES (AND (LISTP U) (p (CDR U) A Y)) 

(p U A Y))). 

The inequality CDR.LESSP establishes that the measure (COUNT U) 
decreases according to the well-founded function LESSP in the 
induction step of the scheme. The above induction scheme produces two 
new goals: 

Case 1. (IMPLIES (AND (NOT (LISTP (CDR U))) 
(LISTP Y) 
(LISTP A) 
(LISTP U)) 

(EQUAL (APPEND U (APPEND A Y)) 
(APPEND (APPEND U A) Y))). 

This simplifies, applying CDR.CONS, CAR.CONS, and CONS.EQUAL, and 
expanding the definition of APPEND, to: 

(IMPLIES (AND (NOT (LISTP (CDR U))) 
(LISTP Y) 
(LISTP A) 
(LISTP U)) 

(EQUAL (APPEND (CDR U) (APPEND A Y)) 
(APPEND (APPEND (CDR U) A) Y))). 

which again simplifies, opening up the definition of APPEND, to: 

(TRUE) 

Case 2. (IMPLIES (AND (EQUAL (APPEND (CDR U) (APPEND A Y)) 
(APPEND (APPEND (CDR U) A) Y)) 

(LISTP Y) 
(LISTP A) 
(LISTP U)) 

(EQUAL ( APPENDU (APPEND A y)) 
(APPEND (APPEND U A) Y))), 

which simplifies, applying CDR.CONS, CAR.CONS, and CONS.EQUAL, and 
opening up the function APPEND, to: 

(TRUE) • 

Tha t finishes the proof of .1.1, which, consequently, finishes 
the proof of .1. Q.E.D. 
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Load average during proof: 1.865178 
Elapsed time: 14.509 seconds 
CPU time (devoted to theorem proving): 7.727 seconds 
10 time: 3.385 seconds 
CONSes consumed: 11520 

In the proof above the system "discovers" the lemma that APPEND 
is associative and proves it by the second induction. 

The theorem- prover is automatic in the sense that once it begins 
a proof the user contributes nothing. However, it is interactive in 
the sense that the user can improve the theorem-prover's behaviour by 
"teaching" it important relationships and rewrite rules. This 
"teaching" (which might be more appropriately called "memorization by 
rote") is accomplished by instructing the theorem-prover to prove 
lemmas that "inform" it of new conditional rewrite rules, useful 
measures for the justification of recursions and indUctions, etc. For 
example, had the user previously instructed the system to prove the 
associativity of APPEND the system would have used that fact in the 
proof above, leading to a substantially simpler proof. 

The user of our system does not have to be trusted. That is, as 
long as he confines himself to the "rules of the game" (i.e., 
defining new types and functions and proving new lemmas), the 
theorem-prover is entirely responsible for the validity of any 
conjecture it claims is a theorem. 

While the user who abides by the rules need not be trusted, an 
intelligent and well-traained user is indispensable in the proof of 
difficult theorms because the theorem-prover requires so much 
carefully prepared groundwork in the form of previously proved 
lemmas. Much of our research is aimed at reducing some of this burden 
on the user. However, even at the current rudimentary stage of the 
system's development, we have found that we (as human users) are 
quite good at the task required of us (i .e., the strategic planning 
of proofs encoded in the statement of key lemmas) and are relatively 
weak at the tasks already performed by the system (the consideration 
of countless nitty-gritty details). 

The system has been used to prove the correctness of a wide 
variety of programs including: 

(1) a "toy" expression compiler (7), 

(2) a recursive descent parser (the theorem-prover established 
the required relationship between "printing" and 
"reading") [15J, 

(3) the totality, soundness, and completeness of a decision 
procedure for propositional calculus (7J' 
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(4) the soundness of an arithmetic simplifier now in routine 
use in the system (8J, 

(5) the termination of the TAK function over the positive and 
negative integers (using a lexicographic measure 
corresponding to "less than" in omega3) [26J, and 

(6) several working FORTRAN programs including the correctness 
of the fastest known string searching algorithm [9J. 

I will discuss program verification further in the third lecture. 

The most difficult theorem proved to date is the existence and 
uniqueness of prime factorizations, which was derived entirely from 
Peano's axioms [7]. While this theorem is not often involved in the 
correctness proofs of real programs (encryption algorithms excepted), 
the system's ability to prove it from the ground up is indicative of 
the theorem- prover' s power. 

All of the theorems cited above were proved by the same version 
of the theorem- prover from the same initial set of axioms. The axioms 
are those defining TRUE, FALSE, I F, and EQUAL, plus the Peano-like 
axiomatization of the "data type s" invo lved. 

Given that the sys t e m has some "learning" (or "rote 
memorization") ability , the question arises: "Is it possible to teach 
the system new proof techniques that were not antlcipated by the 
designers of the theorem-prover?" Of course, we wish to preserve the 
soundness of the system, i.e., it should not be possible for the user 
to render the system unsound by teac hing it faulty "proof" 
techniques. 

Since our system is oriented towards proving properties of 
programs, an obvious approach i s for the user to write a new 
theorem-proving routine to be added to the system, and then have the 
trusted version of the system prove the new extension correct before 
encorporating it. Can a system which is inherently inadequate (after 
all, it is in need of extension) be expected to prove the correctness 
of a useful extension? We have investigated this problem and believe 
the answer, for our system, is "yes". 

One experiment we performed involved t he addition of a simple 
cancellation routine. Suppose I, J, K and L are nonnegative integers. 
It is easy to prove that I+J =I+K iff J=K. This is the traditional 
statement of the cancellation law for addition. But note that this 
rule cannot be applied to L+J=K+(I+L), because the common term, L, 
does not occur as the first addend. While we co uld prove many 
different versions of the cancellation law, no finite number of 
rewrite rules can capture the underlying idea: you can cancel any 
term occurring as an addend on both sides of an equality. How can we 
teach our system this idea? 
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We can proceed as follows . Define the function CANCEL on list 
expressions that, when given an expression representing an equation 
betwe e n two PLUS-trees, returns a new expression with all the common 
adde nds deleted, and when given any other expression returns the 
inpu t expression. To cancel common addends CANCEL computes t he fringe 
of the two PLUS-tr ees, intersects t hem, s ubt racts the i ntersection 
from each fringe, and then reconstitutes the remaining lis ts of terms 
as right-associated PLUS-trees and equat es them. One must be careful 
to keep in mind that the f r inges are bags, not sets, and that 
duplications have significance (e.g., if A occurs twice on one side 
and only once on the other, only one A can be cancelled). 

Once CANCEL ha s been defined it can be used as a new proof 
technique provided we can prove t he following "metatheorem" : Suppose 
X is a list structure representing a term in our logic and MEANING is 
the function tha t assigns values t o such list structures, given an 
assignment of values to atomic symbols. Then we wish to prove that 
under all assignments the MEANING of X is equal to the MEANING of 
(CANCEL X) and (CANCEL X) rep resents a term. That is , we wish to 
prove: 

(IMPLIES (FORMP X) 
(AND (EQUAL (MEANING X A) 

(MEANING (CANCEL X) A» 
(FORMP (CANCEL X»». 

This theorem can be proved by the current system, after the user 
has had the system prove the rudiments of "bag th eory" (e. g ., that 
the difference between two bags is a sub bag of the first) and the 
fundamental relationships induced by MEANING between bag operations 
and arithmetic (e. g ., if Y is a subbag of X then the meaning of the 
PLUS-tree formed from the bag difference of X and Y is the arithmetic 
difference of the MEANING of the PLUS-trees formed from X and Y 
individually) • 

After proving the correc tness of CANCEL , the system can use 
CANCEL to perform arbitrarily deep cancellations , an ability it did 
not have before or during the correctness proofs . 

Except for the work on "metatheorems" all of the work described 
here is described in complete deta i l in our book, (7]. The book 
describes our formal theory (assuming only that the reader is 
familiar with propositional calculus and equality) and all of the 
proof techniques used by our program . The techniques are illustrated 
with many substantial examples worked by the program. The techniques 
are described in sufficient detail to permit a student to use them to 
discover proofs as well as to program a computer to reproduce our 
results . The work on metatheorems mentioned here is described in 
complete detail in (8]. 
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Discussion 

Prof'essor Paul: Is the strategy used in the proof influenced 
by the definition of the function? 

Dr. Moore: Yes. The definition is used to find a good 
induction. 

Prof'essor Paul: This may not lead to the most efficient proof. 

Dr. Moore: Yes but this doesn't matter because we are not 
interested in the efficiency of the solution. 

Professor Paul: I don't believe that the theorem prover would 
find a new and exciting solution. Interactions with the user may give 
it enough insight to help it through. 

Dr. Moore: In finding a solution the theorem proven may well 
produce alternative forms of t he original definition, and thereby 
help the user. 

Prof'essor Katzenelson: Can you give any figures for execution 
times and program size? 

Dr. Moore: On a KL-10 NORMTREE takes 7.7 seconds (the KL-10 has 
a speed of 1.6 MIPS) while the hardest case may take 7 minutes. The 
compiled code takes 70K words, and we have found no proof that 
requires more than 36K words of free space. Any new facts stored take 
no space due to a virtual memory system that is used. The information 
is put on disc. 

Prof'essor Dijkstra: Can you describe how the system has 
evolved over ten years? 

Dr. Moore: The system at Edinburgh proved everything from 
scratch, it did not use previously proved theorems. All inductions 
were structured, and heuristic rewrite rules were used. 

Prof'essor Dijkstra: How do you maintain the consistency of the 
system? 

Dr. Moore: Most of the system's time is spent proving theorems. 
We look for heuristics which would make the proof of a theorem 
easier. If the system is modified it will be asked to prove all the 
theorems used publicly. This is good because a modification may just 
cause the search space to shift, which may in turn lead previously 
proved theorems to fail. 
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III PROGRAM VERIFICATION 

One important application of mechanical theorem-proving is 
formal program verification. Formal program verification is a 
relatively new approach to the program reliability problem in which 
programs are formally specified and proved to meet those 
specifications. 

There are many different approaches to program verification, but 
they have one thing in common: they reduce the questions "Is this 
program correct?" to the question "Are these formulae theorems?" 
Since the objective is the elimination of errors, the process of 
generating and proving the formulae must be mechanized. 

In this talk I will illustrate several program verification 
methods and use them to derive conjectures proved by the 
theorem-prover described above. Three methods will be explained: the 
functional method, the interpreter method, and the inductive 
assertion method. Each will be applied to the same "toy" problem. 
Then I will briefly discuss and illustrate how we are using our 
theorem-prover to prove the correctness of ANSI FORTRAN programs, 
where we handle such difficult problems as aliasing, global COMMON, 
and arithmetic overflow. 

A. A Toy Example 

Let us consider a simple assembly language program to sum the 
numbers from 1 to I: 

a MOVE AC, 0 ;set AC to 0 
1 SKIPNE I ;skip next if I not 0 
2 STOP ;stop 
3 ADD AC, I ;set AC to A~I 
4 SUBI I, 1 ;set I to 1-1 
5 JUMP 1 ;jump to instruction 1 

We wish to prove that when this program is executed the final 
value of AC is (i*i+1)/2 where i is the initial value of I. We assume 
i is a nonnegative integer. 

We will consider three different methods of attaching semantics 
to this program. It is advantageous in all three cases to first 
introduce the recursive function that sums the integers from M to N: 

(SIGMA M N) 
= 

(IF (LESSP M N) 
(PLUS N (SIGMA M (SUB1 N))) 
0). 
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For example, (SIGMA 3 7) is 7+6+5+4. It is also worthwhile proving 
the general result that (SIGMA 0 I) is (1*(1+1))/2. This is proved by 
the theorem-prover described above, using induction on I. Having 
proved this lemma, it is now sufficient to establish that our 6-line 
assembly program computes (SIGMA 0 I). 

B. The Functional Method 

The first method we will consider, often called the "functional" 
or "McCarthy" method (25], is to view one's program as a mathematical 
function from input states to output states and to prove the 
correctness of the resulting function. 

Formally speaking, states are n-tuples specifying the values of 
the global and local variables of the program. In general, each loop 
in the program is transformed into a recursively defined function on 
states. 

Consider the assembly language program above. The state is given 
by <I,AC>. The program has one loop, starting at the SKIPNE 
instruction at locati on 1. Provi ded I is not zero, the program sets 
AC to AC+I, decrements I, and repeats. When I is zero, the program 
hal ts. Since we are interested only in the final value of AC and not 
that of I we transform this loop into a function from I and AC to the 
final value of AC: 

Definition. 
(LOOP I A) 

= 
(IF (ZEROP I) 

AC 
(LOOP (DIFFERENCE I 1) 

(PLUS AC I))). 

Since the program enters the loop after setting AC to 0, the entire 
program is functionally equivalent to (LOOP I 0). 

As McCarthy noted, such a transformation can be carried out 
mechanically. The transformation mechanism is an encoding of a 
semantics of the source language. For more details see (25], [27], 
and (5]. The admission of LOOP as a function in our logic establishes 
the termination of the program. The conjecture we wish to prove is 
that (LOOP I 0) is equal (SIGMA 0 I). As often is the case, it is 
easier to prove the following more general fact about LOOP: 

(EQUAL (LOOP I AC) 
(PLUS AC (SIGMA 0 I))), 

for all numeric AC. The proof of this generalization is 
straightforward by induction on I and can be constructed by the 
theorem-prover described above. 
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C. The Interpreter Method 

A second method for formalizing the properties of a program is 
to specify formally an interpreter for the programming language. This 
is akin to "denotational semantics" (11 J. 

In this case we must specify the "hardware" that runs our 6-line 
program. We will do so by writing a recursive function, EXEC, that 
takes three arguments: the program counter, pc; a memory, mem, 
mapping integer addresses to their values; and a clock, clk, that 
ticks once every time we execute a jump instruction. The clock is 
used to make EXEC a total recursive function. EXEC is an accurate if 
somewhat simple formalization of the idea of a stored program 
computer. Each instruction is a list containing an "opcode" and some 
"arguments" and will occupy one location in memory. In our example, 
the program will be loaded into memory locations 0 through 5, we will 
use locations 6 and 7 for the variables I and AC. 

EXEC operates as follows. If the clock is 0, EXEC returns an 
error signal. Otherwise, EXEC fetches the contents of location pc in 
mem and decodes it as an instruction, obtaining the opcode, op, and 
two operands arg1 and arg2. If op is STOP, EXEC returns the final 
memory configuration. Otherwise, EXEC determines new values for pc, 
mem, and clk based on op and the operands and recurses on those new 
values. For example, if op is JUMP, EXEC recurses, replacing pc by 
arg1 and decrementing clk. If op is ADD, EXEC recurses replacing pc 
by pc+ 1 and mem by 

(SET arg1 
(PLUS (GET arg1 mem) (GET arg2 mem» 
mem). 

Thus, after executing (ADD arg1 arg2) the "new" memory is that 
obtained by adding the contents of address arg1 to that of address 
arg2 in the old memory and then setting the contents of address arg1 
to that sum. (GET and SET are defined functions that operate on 
finite sequences denoting the contents of successive memory 
locations.) The other opcodes used in our program are handled 
similarly. 

Once EXEC is defined we can state the correctness of our program 
as the following conjecture: 
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(IMPLIES (AND (EQUAL ·MEM 
(APPEND '((MOVEI 7 0) 

(SKIPNE 6) 
(STOP) 
(ADD 7 6) 
(SUBI 6 1) 
(JUMP 1)) 

REST) ) 
(EQUAL I (GET 6 MEM)) 
(NOT (LESSP CLK I))) 

(EQUAL (GET 7 (EXEC 0 MEM CLK)) 
(IF (ZEROP CLK) 

(GET 7 MEM) 
(SIGMA 0 I)))) 

This formul a says: If locations 0-5 of MEM contain the program 
in question and if I is the contents of location 6 in MEM and is less 
than or equal to CLK, then the value of location 7 in the memory 
obtained by executing the program starting at pc 0 in MEM with CLK is 
(SIGMA 0 I). (If CLK is zero, then the value of location 7 after 
execution is the original value of location 7 . ) 

This conjecture can be proved by our theorem-prover. The proof 
requires that the system first prove a lemma: provided there is 
sufficient time on the clock, EXEC computes the sum of AC and (SIGMA 
o I) if started at location 1 (instead of location 0). 

D. The Inductive Assertion Approach 

We now move on to an illustration of the "inductive assertion" 
or "Floyd/Hoare" method [14], (18 J. The basic idea is to attach to 
the input, output, and every loop of the program an assertion that 
describes the state of the machine each time execution reaches the 
annotated point. One may then analyze the finite number of execution 
paths between any two assertions and generate a set of formulas 
called "verification conditions" that establish that each assertion 
holds each time it is encountered. The verification condition 
generator ("vcg") is an encoding of a sematics of the programming 
language. 

The annotation of our example program above is as follows. 
Suppose K is the initial value of I . The "input assertion" is T; that 
is, we put no constraints on I initially . The "output assertion," at 
the STOP instruction at location 2, is tha t AC is equal to (SIGMA 0 
K). The "loop invariant", at the SKIPNE instruction at location 1, is 
that AC is equal to (SIGMA I K) and I ~ K. By exploring the paths 
through the program (using some formal s pecification of the effects 
of each instruction) we generate three verification conditions to 
prove: 
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(1) The loop assertion is true when first encountered: 

(AND (EQUAL a (SIGMA K K» 
(LESSEQP K K». 

This is just the loop assertion with I replaced by its 
initial value, K, and AC replaced by O. 

(2) If the loop assertion holds and we go around the loop, 
then the loop assertion holds for the new values of I 
and AC: 

(IMPLIES (AND (EQUAL AC (SIGMA I K» 
(LESSEQP I K) 
(NOT (ZEROP I») 

(AND (EQUAL (PLUS AC I) 
(SIGMA (DIFFERENCE I 1) K» 

(LESSEQP (DIFFERENCE I 1) K»). 

(3) If the loop assertion holds and we exit the loop, then 
the output assertion holds. 

(IMPLIES (AND (EQUAL AC (SIGMA I K» 
(LESSEQP I K) 
(ZEROP I» 

(EQUAL AC (SIGMA OK»). 

These three formulae establish that when the program terminates 
AC is (SIGMA a K). They do not establish termination, although that 
can be done by a similar path analysis. These verification conditions 
can be proved by our theorem-prover. 

E. Comparisons 

The three program verification methods sketched are more 
striking in their similarities than in their differences. 

First, it should be noted that the introduction of SIGMA 
simplifies the conjectures produced by all three methods. A more 
commonly used specification style - at least when the inductive 
assertion method is chosen - is to restrict oneself to "primitives" 
such as addition, multiplication, and division built into the system. 
In this example this makes the verification conditions more difficult 
to prove because one is simultaneously grappling with the fundamental 
mathematical fact that (SIGMA a I) is (I*(I+1»/2 and with a 
particular algorithm for computing (SIGMA a I). 

Second, all three methods require some creative step beyond the 
mere specification of the input/output relation. In the functional 
method, this creative step is the generalization of: 
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(EQUAL (LOOP I 0) (SIGMA a I))) 

to 

(EQUAL (LOOP I AC) (PLUS AC (SIGMA a I))). 

In the interpreter method, the creative step is the statement of the 
lemma that when EXEC starts executing at location 1 and runs to 
normal completion, the answer is (PLUS AC (SIGMA a I). In the 
inductive assertion method, the creative step is the invention of the 
loop invariant that AC is (SIGMA I K). 

It should be noted that with the functional and interpreter 
methods the creativity occurred after the problem had been cast 
mathematically and while a proof was being sought. That is, the 
creative steps were just generalizations in the mathematical sense: 
given to prove p we decided to prove q, where q implies p. In the 
inductive assertion method, we were obliged to think about q before 
the problem could be stated without reference to the program text. 
Thus, when the former methods are applied, this creative aspect of 
the problem is just a theorem-proving problem; when the inductive 
assertion method is applied, this creative step is generally regarded 
as a specification problem. 

For our 6-line assembly language program, the theorems generated 
by the functional method are the easiest to prove, with the inductive 
assertion method second and the interpreter method a distant third. 
Of course, nothing in general should be inferred from this ranking. 

For example, applying the functional method to messier programs 
- especially programs manipulating large global data structures -
often produces unmanageably large recursive equations; in such cases 
the inductive assertion method can often be used to segment the 
program and isolate side-effects. 

On the other hand, the interpreter method has an elegance the 
other two lack because our program was proved correct with respect to 
a formal programming language sematics defined entirely within the 
logic itself rather than in some extralogical axioms or ad hoc 
program transformations. Furthermore, the interpreter method as it 
was applied here dealt with a problem neither of the other two 
methods could possibly handle: the instructions were being fetched 
from a memory that was being modified by the execution of the 
program. While the program does not happen to modify itself, 
consideration of that possibility vastly complicates the proof. When 
the hardware method is formalized so that the program is in "read 
only" memory (Le., a memory held constant in the EXEC recursion) the 
interpreter-based proofs are no more complicated than the inductive 
assertion style proofs. 
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F. Toys v. Reality 

The preceding sketches were meant to summarize several different 
approaches to program verification and to illus trate the role of 
theorem-proving in each of the~. However, all t hree sketches dealt 
with a toy problem. We did not describe a useful programming 
language. We ignored many difficult problems of programming language 
design (e.g., data structures, subroutine calls, aliasing). We 
ignored many difficult problems of programming language 
implementation (e.g., arithmetic overflow, array bounds violations, 
undefined variables). In short, the toy problem discussed hert bear 
about as much resemblance to real programming problems as E=Mc does 
to a nuc lear power plant. Ra ther than attempt to describe how these 
problems can be dealt with I will simply "advertise" and illustrate 
how we have dealt with them in the context of one real programming 
language . 

We have implemented a verification condition generator for a 
subset both of FORTRAN 66 [35] and FORTRAN 77 [1 J. While constraints 
are placed on the language that are not found in the ANSI 
specifications, our language is a true subset in the sense that a 
processor that correctly implements either FORTRAN correctly 
implements our language . The development of the FORTRAN verification 
condition generator was supported by ONR Contract N00014-75-C-0816. 

Unusual features of our system -- aside from our choice of 
FORTRAN and our use of a quantifier free specification language -­
include a syntax checker that enforces all our syntactic restrictions 
on the language, the thorough analysis of aliasing, the generation of 
verification conditions to prove termination, and the generation of 
verification conditions to ensure against such run-time errors as 
array-bound violations and arithmetic overflow. 

Although our syntax checker and verification condition generator 
handle programs involving finite precision real arithmetic, we have 
not yet formalized the semantics of those operations and hence cannot 
mechanically verify programs that operate on REALs. 

We define our subset precisely in [9] and specify the 
verification conditions we generate. The following description of our 
work is extremely informal. 

The input to our verification condition generator must include 
not only the subprogram (function or subroutine) to be verified, but 
also all subprograms referenced somehow by the candidate subprogram. 
Each referenced subprogram must have been previously specified and 
verified. 
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The FORTRAN statements in our subset 

Arithmetic assignment 
Logical assignment 
GO TO assignment 
Unconditional GO TO 
Assigned GO TO 
Computed GO TO 
Arithmetic IF 
CALL 
RETURN 
CONTINUE 
STOP 
PAUSE 
Logical IF 

are : 

DO 
DIMENSION 
COMMON 
INTEGER 
REAL 
DOUBLE PRECISION 
COMPLEX 
LOGICAL 
EXTERNAL 
Statement function 
FUNCTION 
SUBROUTINE 
END 

Our subset does not include the following FORTRAN 77 
statements: 

BACKSPACE 
BLOCK DATA 
Block IF 
CHARACTER 
Character assignement 
CLOSE 
DATA 
ELSE 
ELSEIF 
ENDFILE 
ENDIF 
ENTRY 
EQUIVALENCE 

FORMAT 
IMPLICIT 
INQUIRE 
INTRINSIC 
OPEN 
PARAMETER 
PRINT 
PROGRAM 
READ 
REWIND 
SAVE 
WRITE 

For those statements in our subset we enforce all of the 
restrictions of both FORTRAN 66 and 77; furthermore, we enforce some 
additional restrictions. Some of our restrictions are: 

Every expression using infix operators must be fully 
parenthesized. For example, either (A + (B + C» or «A + B) + 
C) must be written instead of A + B + C. The precise order of 
combination affects the analysis of overflow. 

Subroutines and functions may not be passed as arguments 
to subprograms. 

In a CALL statement or function reference, if the actual 
argument is an array, then the corresponding argument must be 
an array of the same number of dimensions. 

Function subprograms may not side-effect their arguments 
or anything in COMMON. 
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No call of a subroutine may pass an entity to a subroutine 
that might violate the strict aliasing restrictions of FORTRAN. 
For example, if a subroutine has two arguments and possibly 
smashes the first, then that subroutine may not be called with 
the same array pas sed in both arguments nor mayan array in 
COMMON be passed as the first argument if the s ubroutine "knows" 
about the COMMON block, even via subprograms. 

While some of our restrictions may appear radical to those 
unfamiliar with the details of the FORTRAN specifications, many of 
the most severe (e.g., prohibition of side- effects in FUNCTIONs and 
aliasing in SUBROUTINEs) are in fact closely related to restrictions 
in both the 1966 and 1977 specifications. Many of the restrictions in 
the ANSI specifications were motivated by the desire to encourage the 
implementation of correct optimizing compilers and -- while the 
restrictions are not as elegantly stated as they might have been -­
it could be argued that FORTRAN 66 was several years ahead of its 
time. In ["9J we compare our restrictions to those of the ANSI 
specifications. All of our restrictions are enforced by our system in 
the sense that programs violating these restrictions are rejected by 
the verification condition generator. 

We make the following claim about our system. If a FORTRAN 
subprogram is accepted by our syntax checker, the verification 
condi tions are proved, and the program can be loaded onto a FORTRAN 
processor that meets the ANSI specification of FORTRAN and satisfies 
certain parameterized constraints on the accuracy of arithmetic, then 
any invocation of the program in any environment satisfying the input 
condi tion of the program will terminate without run-time errors and 
produce an environment satisfying the output condition of the 
program. 

We have used the theorem - prover to prove the verification 
conditions produced for several working FORTRAN programs, including a 
FORTRAN implementation of the Boyer-Moore fast string searching 
algorithm, and several subprograms performing "big number" arithmetic 
operati~~s on arrays of integers regarded as numbers in a large base 
(e.g., 2 ). 

G. A FORTRAN Example 

In a 1977 Communications of the ACM article [6J, we describe an 
algorithm for finding the first occurrence of one character string, 
PAT in another, STR. The algorithm is currently the fastest known way 
to solve this problem on the average. Our algorithm has two unusual 
properties. First, in verifying that PAT does not occur within the 
first i characters of STR the algorithm will typically fetch and look 
at fewer than i characters. Second, as PAT gets longer the algorithm 
speeds up. That is, the algorithm typically spends less time to find 
long patterns than short ones. In this section we briefly describe 
the verification of a FORTRAN version of the algorithm. A more 
complete description may be found in t9]. 
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The idea behind the algorithm is illustrated by the following 
example. Suppose we are trying to find PAT in STR and, having scanned 
some initial part of STR and failed to find PAT, are now ready to ask 
whether PAT occurs at the position marked by the arrow below: 

PAT: EXAMPLE 
STR: LET US CONSIDER A SIMPLE EXAMPLE 

- - t -

Instead of focusing on the left-hand end of the pattern (i.e., 
on the "E" indicated by the arrow) the algorithm considers the 
right-hand end of the pattern. In particular, the algorithm fetches 
the "I" in the word "SIMPLE". Since "I" does not occur in PAT, the 
algorithm can slide the pattern down by seven (the length of PAT) 
without missing a possible match. Afterwards, it focuses on the end 
of the pattern again, as marked by the arrow below. 

PAT: EXAMPLE 
STR: LET US CONSIDER A SIMPLE EXAMPLE 

- t 

In general, as the next step would suggest, the algorithm slides 
PAT down by the number of characters that separate the end of the 
pattern from the last occurrence in PAT of the character, c, just 
fetched from STR (or the length of PAT if c does not occur in PAT). 
In the configuraion above, PAT would be moved forward by five 
charac ters, so as to align the "X" in PAT with the just fetched "X" 
in STR. 

If the algorithm finds that the character just fetched from STR 
matches the corresponding character of PAT, it moves the arrow 
backwards and repeats the process until it either finds a mismatch 
and can slide PAT forward, or matches all the characters of PAT. 

The algorithm must be able to determine efficiently for any 
character c, the distance from the last occurrence of c in PAT to the 
right-hand end of PAT. But since there are only a finite number of 
characters in the alphabet we can preprocess PAT and set up a table 
that answers this question in a single array access. 

The reader is referred to (6 Jfor a thorough description of an 
improved version of the algorithm that can be implemented so as to 
search for PAT through i characters of STR and execute less than i 
machine instructions, on the average . In addition, (6 Jcontains a 
statistical analYSis of the average case behaviour of the algorithm 
and discusses several implementation questions. 

A FORTRAN version of the algorithm is exhibited below. The 
subroutine FSRCH is the search algorithm itself: it takes five 
arguments, PAT, STR, PATLEN, STRLEN, and X. PAT and STR are 
one-dimensional adjustable arrays of length PATLEN and STRLEN 
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respectively. X is the dummy argument into which the answer is 
smashed. The answer is either the index into STR at which the winning 
match is found, or else it is STRLEN+1 indicating no match exists. 

FSRCH starts by CALLing the subroutine SETUP, which preprocesses 
PAT and smashes the COMMON array DELTA1. DELTA1 has one entry for 
each character code in the alphabet. SETUP executes in time linear in 
PATLEN. It initializes DELTA1 as though no character occurred in PAT 
and then sweeps PAT once, from left to right, filling in the correct 
value of DELTA1 for each character occurrence, as though that 
occurrence were the last occurrence of the character in PAT. Thus, if 
the same character occurs several times in PAT (as "E" does in 
"EXAMPLE") then its DELTA 1 entry is smashed several times and the 
last value is the correct one. 

SUBROUTINE FSRCH(PAT, STR, PATLEN, STRLEN, X) 
INTEGER DELTA 1 
INTEGER PATLEN 
INTEGER STRLEN 
INTEGER PAT 
INTEGER STR 
INTEGER I 
INTEGER J 
INTEGER C 
INTEGER NEXT I 
INTEGER X 
INTEGER MAXO 
DIMENSION DELTA1( 128) 
DIMENSION PAT(PATLEN) 
DIMENSION STR(STRLEN) 
COMMON IBLK/DELTA1 
CALL SETUP(PAT, PATLEN) 
I = PATLEN 

200 CONTINUE 
IF «I.GT.STRLEN» GO TO 500 
J = PATLEN 
NEXTI = (1+1) 

300 CONTINUE 
C = STR(I) 
IF «C.NE.PAT(J») GO TO 400 
IF «J.EQ.1» GO TO 600 
J = (J-1) 
I = (1-1) 
GO TO 300 

400 I = MAXO«I+DELTA1(C», NEXTI) 
GO TO 200 

500 X = (STRLEN+1) 
RETURN 

600 X = I 
RETURN 
END 
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SUBROUTINE SETUP(A, MAX) 
INTEGER DELTA1 
INTEGER A 
INTEGER MAX 
INTEGER I 
INTEGER C 
DIMENSION DELTA(128) 
DIMENSION A(MAX) 
COMMON IBLK/DELTA 1 
DO 50 1=1, 128 
DELTA1 (I) = MAX 

50 CONTINUE 
DO 100 1=1, MAX 
C = A(I) 
DELTA1(C) = (MAX- I) 

100 CONTINUE 
RETURN 
END 

To spec ify the input a nd output assertions FSRCH we must 
introduce the mathematical concepts of (a) a sequence being a 
"character string" on a given sized alphabet, (b) the initial 
segments of two strings "matching", and (c) the leftmost match of PAT 
in STR. Below we give the definitions of these mathematical 
functions. 

Definition . 
(STRINGP A I SIZE) 

= 
(IF (ZEROP I) 

T 
(AND (NUMBER (ELT1 A I)) 

(NOT (EQUAL (ELT1 A I) 0)) 
(NOT (LESSP SIZE (ELT1 A I))) 
(STRINGP A (SUB1 I) SIZE))) 

Definition. 
(MATCH PAT J PATLEN STR I STRLEN) 

= 
(IF (LESSP PATLEN J) 

T 
(IF (LESSP STRLEN I) 

F 
(AND (EQUAL (ELT1 PAT J) (ELT1 STR I)) 

(MATCH PAT 
(ADD1 J) 
PATLEN STR 
(ADD1 I) 
STRLEN))) ) 
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Definition. 
(SEARCH PAT STR PATLEN STRLEN I) 

= 
(IF (LESSP STRLEN I) 

(ADD1 STRLEN) 
(IF (MATCH PAT 1 PATLEN STR I STRLEN) 

I 
(SEARCH PAT STR PATLEN STRLEN 

(ADD1 I))))) 

For example, (MATCH PAT J PATLEN STR I STRLEN) determines 
whether the characters of PAT in position J through PATLEN are equal 
to the corresponding characters of STR starting at position I and not 
exceeding STRLEN . MATCH is recursive. Th~b is, provided J ~ PATLEN 
and I ~ STRLEN, MATCH checks that the J character of PAT is equal 
to the Ith character of STR and, if so, requires that there be a 
MATCH starting at positions 1+1 and J+1. The recursive function 
SEARCH is the mathematical expression of the naive string searching 
algorithm. (SEARCH PAT STR PATLEN STRLEN I) is the least i, I ~ i ~ 
STRLEN, such that a MATCH with PAT occurs at position i, or STRLEN+1 
if no MATCH occurs. 

The input specification for FSRCH includes the assertion that 
PAT and STR are both strings on the alphabet from 1 to 128. The 
output assertion for FSRCH is that whenever it exists, X is set to 
(SEARCH PAT STR PATLEN STRLEN 1). The loop invariants for FSRCH are 
expressions in terms of MATCH and SEARCH, asserting that (at label 
200) the winning occurrence of PAT in STR has not yet been found and 
(at label 300) that a partial match has been established between the 
terminal substring of PAT and part of STR . The verification condition 
generator produces some 50 theorems that must be proved to establish 
that these assertions hold, that both SETUP and FSRCH terminate, and 
that no run-time errors occur. For example, the statement, at 
location 400 in FSRCH: 

I = MAXO«I+DELTA1(C)),NEXTI) 

requires that we prove (1) C is defined, (2) C is a legal index into 
DELTA 1 , (3) DELTA1(C) is defined, (4) I is defined, (5) I+DELTA1 (C) 
does not cause an overflow, and (6) NEXTI is defined. The proof that 
I+DELTA1(C) does not cause an overflow requires that we put an 
additional input assertion on FSRCH, namely that the sum of lengths 
of PAT and STR be expressible on our machine. 

Discussion 

Dr. Henderson: If you are working on a contract for someone 
else, how much control do you have over conjectures? 
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Dr . Moore: Historically great control, but clients increasingly 
want total control. Often I have only to give the information that 
allows a particular theorem to be proved, given the program and the 
specification. 

Professor Rogers: What is the largest program you have proved? 

Dr. Hoore: This depends on who is using it. It also depends on 
which point you start from , 1. e. from axi oms or from scratch. The 
largest program is five pages of dense FORTRAN . It has also been used 
to prove the security of the kernal of an operating system . That code 
is about one thousand lines long. 

Hr. Grossman: Is it possible to handle asynchronous programs 
with interrupts? 

Dr. Moore: There are people looking at this. I don't really 
know what the answer i s, I'm more interested in mechanical theorem 
proving. It is fr on tier work to formalise it at all; modal and 
temporal logic come in all the time. 

Dr. Larcombe: Can a theorem prover prove itself correct? 

Dr. Hoore: No, in a certain sense. If a man says he always 
tells the truth, what do you think? What do you think if he says he 
never tells the truth? 

The following proof is conceivable however. Implement a simple 
theorem prover and then extend it . The extended system may be proved 
using the simple one, and the process is repeated until the desired 
theorem prover is produced. The simple system is about a page long 
and so could be proved by getting say ten mathematicians to agree it 
was correct. 

Professor Randell: Has the theorem prover seen much use 
outside SRI? 

Dr. Moore: Both Ford Aerospace and Honeywell use it. I don't 
know how to quantify success, but there is a lot of interest. A 
certain amount of skill is needed to use the theorem prover, so we 
have run courses to teach people what i s necessary. A naive user 
would fail to get a solution from the system where I could succeed, 
because I would be able to reformulate a lemma. 

Professor Randell: The most useful thing the system could say 
when it fails to find a proof is why . 

Dr. Moore : When the theorem prover fails it stops with the 
formula that failed. One can then construct a counter-example from 
which it is possible to generate the input data which causes the 
program to fail. 
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Professor Katzenelson: Does the verification depend on the 
size of the program? 

Dr. Moore: Program verification is very dependent on the 
size of the program. It is difficult to specify large programs and 
the equations you get out are very large. 
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