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AUTOMATIC PROGRAMMING: PAST, PRESENT AND FUTURE 

J. Darlington 

Rapporte ur: Mr. S. Jones 

Abstract 

The aim of automatic programming is to produce systems that can 
take over many of the tasks presently performed by programmers . Thus 
work in this area draws on and has influence on work in Artificial 
Intelligence and more traditional Computer Science . 

Early efforts at producing programs automatically grew out of 
work on automatic theorem proving and relied on the use of first 
order predicate logic to specify the input-output bebaviour of the 
required program. Later work has realised the importance of th e 
specification process and widened the scope of both the specification 
languages and deductive mechanisms used. Program transformation grew 
out of the recognition that programs could serve as specifications if 
they were written for maximum clarity instead of efficiency, and 
represents a more flexible app roach to the automat i c programming 
problem. 

This l ecture will survey the work done in these areas, describe 
some of the more s uc cessful approaches in more detail and try to 
evaluate the l essons learnt. We will discuss what difficulties need 
to be overcome, and make predictions of the impact this work will 
have on Computer Science and Artificial Intelligence. 

Introduction 

Writin g programs is a task requiring intelligence . It is 
therefore a l egitimate domain for artificial intelligence workers to 
investigate and has the advantage of being an area where they 
themselves are often domain experts. The ability to develop and 
modify programs or plans to cope with unforeseen eventualities is 
also an essential capability for an i ntelligent entity. 

In these talks I will discuss some recent research directed 
towards developing systems to produce programs automatically. Much of 
t raditional computer science, f or example the development of high 
level languages and compilers, can be classified as automatic 
programming, but for the purposes of these talks I will take a narrow 
view of the term a nd concentrate on work that at least originated 
within the artificial intelligence sphere. It is c y thesis that 
although thi s work has not produced automatic sys~ems that co me 
anywhe r e near the compe tence of the average programmer (and is not 
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likely to unless dramatic advances are made) it has provided 
revealing insights into the programming process and has developed 
te c hniques and systems tha t promise to dramatically increase 
programmer productivity and alter the skills and techniques he needs 
in such a way as to require a fundamental c hange in the way 
programming is taught. 

Early at tempt s at automatic programming were based on the 
application of the resolution-based theorem provers developed during 
the late sixties. Work in t his di rection was genera lly abandoned 
during the 70's with the growing disillusionment with the power of 
the theorem provers available. Program transformation, an alternative 
that offers a more flexible approach and requires less theorem 
proving effort, g rew in f avo ur during the late 70's. Logic 
Programming was also deve loped in the 70's a nd is based on the 
realisation that first-order predicate calculus could be used 
directly as a programming language, given s ui table theorem provers. 
Work in these latter two areas is still acti ve and in my opinion 
represents the most promising approaches to automatic programming to 
date. 

In these talks I will concentrate on givi ng a flavour of some of 
,the work going on in these areas and try to indicate how I think this 
will alter the nature of programming. In doing this I will be 
ignoring sUbstantial res earch efforts that are contributing to the 
automatic programming effort. In particular I will say nothing about 
work in the natural language specification of programs. 

1. Autoaatic prograaaing using resolution- based tbeore. provers 

The development of the resoluti on principle in the middle 
sixties, (Robinson 1965), stimulated much work in the development of 
mechanical theorem provers and led to them being applied to the 
problem of synthesising programs from specifications. 

The resolution principle offers a method for demonstrating the 
unsatisfiability of a set of sentences of first-order predicate 
logic, provided the sentences are arranged i n a special way known as 
clausal form (Robinson 1965) . Thus, to prove that a theorem is 
logically implied by a set of axioms, the negation of the theorem is 
added to the axioms and this set put into clausal form. If the 
theorem prover is able to prove the unsatisfiability of this set then 
the theorem logically follows from the axioms. It was soon realised 
that such theorem provers could be used in a constructive way, that 
is as well as proving sentences of the form 3 x p(x) from a set of 
sentences S, they could also be modified to produce an instance of 
the x that exists . This was made possible by the answer extraction 
process (Green 1969). With proper formalisation the answer extraction 
process can be used for program synthesis. The first stage is to 
specify the required program by giving the relation between its input 
x and output y, say R(x,y). Using the answer extraction process, a 
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theorem proving system will produce the desired program if it can 
prove that the conjecture Vx 3y R(x,y ) logically foll ows from the 
axioms defining the interpretation of R. The program will consist of 
an example of the conjectured y as a composition of primitive 
functions. 

As a very simple example, let us consider a program to find the 
maximum of two numbers. Thus our input-output relation R between the 
input variables x1 and x2 and the cutput variable 7. is 

R(x1, x2, z) , ( ;;=" ,: v <; " ;;2 ) /\ z2:x1/\z2:x2 

and the corresponding ·cheor-em i s 

"x1 'll'x2 3z [< z=;c 1 v z=x2 )/\ z2:X1/\z2:x2] 

Informally the proof proceeds by case analysis. Translating the 
theorem into disjunctive normal form (a stage on the way to clausal 
form) we have 

"\fx1 v x2 :iT z "(z=x1 /\ z2:x1 /\z2:x2) 
L 

V(z=x2 /\ z2:x1 /\ z2:x2) J 

If we assume (u=v) .:> (u2:V) as an axiom we can simplj.fy the above to 

Vx1 'll'x2 :i.lz l:(z=x1/\z2:x2) v (z=x2/\ zi<x1) J 

Now if x12:x2, letting z be x1 satisfies the first disjunct. On the 
other hand if x1<x2 then x22:x1, so letting z be x2 sa tisfies the 
second disjunct . The answer extraction process records which 
assignments have been made to the out put variable and under what 
conditions they were made . Thus in this case the program extracted 
would be 

if xt>x2 then z := x1 else z := x2 ---- ----
Several program writing systems based on this principle were 

written; see Green ( 1969), Wald inge r (1969) and Waldinger and Lee 
(1969). They all managed the synthesis of some small programs but 
were limited by the power of the available theorem provers. They also 
had a fundamental limitation in that the method was incapable of 
producing programs with loops as this would require an application of 
mathematical induction, which is not expressible within first order 
l og ic. Various methods were proposed to get round this difficulty, 
generally by dealing with induction at the meta-level and using a 
theorem prover to construct the straight line portions of the program 
(see, for example, Manna and Waldinger 197 1). For these reasons, work 
in this direction was generally abandoned. Recently, however, Manna 
and Waldinger have revived the theorem proving approach based on an 
elegant system that allows theorem proving to be carried out on 
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sentences without putting them into clausal form, and also admits 
induction. Manna and Waldinger (1980) describes this system and 
contains examples of the synthesis of recursive programs. As yet 
there is no implementation for this system although the authors state 
that their approach is machine oriented and ultimately intended for 
automatic synthesis systems. This system also allows program 
transformation (see next section) to be carried on in a theorem 
proving framework. 

2. Program Transformat ion 

The aim of automatic programming is to derive programs 
systematically, and hopefully automatically, from a specification. As 
we have seen earli e r, initial attempts used predicate logic to 
describe the input-output behaviour of the required program and 
resolution theorem provers to derive the programs. The major problem 
that confronts this approach is the lack of sufficiently powerful 
theorem provers to derive anything but the simplest of programs, a 
consequence partly of the wide gap between the specification and 
target languages. 

Program transformation is a hopefully more flexible approach to 
the same problem. It arises from the recognition that programs 
themselves can be specifications (and specifications can be programs) 
if they are written to be as clear and understandable as possible. 
This can best be achieved if considerations of efficiency are 
initially ignored and the programs written to describe what the 
desired result should be and not how it is to be achieved. Given such 
a specification the second stage of the transformation approach is to 
successively transform the program to more computationally feasible 
versions using methods guaranteed to preserve the intent of the 
program while improving its efficiency. Two immediate advantages of 
this method are that a wider variety of techniques and languages are 
available for the specification process and that the degree of 
difficulty of the synthesis can be varied continuously in contrast to 
the all or nothing behaviour of the theorem proving approach. Another 
important advantage of having programs as specifications is that they 
can be run, albeit probably very slowly, and thus checked or 
verified. The notion that specifications are simple to write and will 
be obviously correct only applies to small examples. The science of 
writing, understanding and manipulating specifications is going to 
become a vitally important activity. 

In this section I will illustrate the nature and potential of 
the transformation approach by describing some aspects of my own work 
on transformation, work that started in collaboration with R.M. 
Burstall in the Department of Artificial Intelligence at Edinburgh 
University. Fuller descriptions can be found in Burstall and 
Darlington (1977), Darlington (1975) and Darlington (1977). One 
important aspect of this work is that I have concentrated on the 
transformation of applicative languages. This is for two 
interconnected reasons. Firstly, if we are going to manipulate 
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programs as objects it is advantageou s i f they possess respectable 
mathematical pr'oper ties, r'efer'entia1 tl"anspar'ency in par'ticu1ar. I 
also believe t ha t the pos s ession of the se pr'oper'ties makes the 
app1icative languages su per i or' to the mOr'e machine-or'iented 
imper'a ti ve languages by being mOr'e expressible, mOr'e compr'ehensib1e 
and ther'efor'e better' as specification vehicles. Backus (1979) makes 
this point forcibly. Almost all the impor'tant manipulations can be 
car'r'ied out within these languages even if the final implementation 
is to be in a conventional imper'ative language. Our' wOr'k at Edinbur'gh 
led us to develop a pUr'e1y app1icative Or' non-pr'ocedur'a1 language 
called NPL (Bur'sta11 1977). This language is used for the initial 
specification of OUr' pr'ogr'am and tr'ansfor'mations map pr'ogr'ams in NPL 
to pr'ograms in NPL. (NPL is a first order' language. It has now been 
developed into a higher-or'der' language called Hope by BUr'sta1l, 
MacQueen and Sannel1a (1980). The tr'ansfor'mation techniques apply 
equally to NPL Or' Hope). 

Pr'ograms in NPL consist of a sequence of r'ecur'sion equations. 
Separ'ate equations can be Wr'itten for separ'ate cases of a par'ameter. 
Thus, for' example, the factor'ia1 function would be Wr'itten 

fact(O) <= 

fact(n+1) <= (n+ 1)*fact(n ) 

and a function to square ever'Y number' of a l ist of number'S, wher'e the 
list is constr'ucted using cons and nil (the empty list) 

squar'e(ni1) <= nil 

square(cons(n,l)) <= cons(nf2,squar'e(1)) 

Given such a simple language the transformation methodology can 
be cOr'r'esponding1y simple : it is detailed in BUr'sta1l and Dar'lington 
(1977) and has become known as the 'fold/unfold system'. Unfolding 
consists simply of r'ep1acing a function call by its definition, that 
is, using an equation in the normal left to r'ight manner'. Folding is 
just the opposite: using an eq uation in a r'ight-to-1eft manner', 
r'ep1acing an instance of a r'ight-hand side of an equation by the 
cOr'r'esponding instance of the left-hand side. 

For' example, say we wanted a pr'ogr'am to sum the squar'es of a 
list of number'S. Naively, we could Wr'ite this as 

1. sumsquares(l)<= sum(square(l)) 

2. sum(ni1)<= 0 

3. sum(cons(n,l))<= n+sum(l) 

4. squar'e (nill<= nil 

5. squar'e(cons(n,l))<= cons(nf2 ,square(1)) 
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To produce an improved version we must consider the various 
cases of 1. Firstly, letting 1 be nil, we can instantiate equation 1, 
getting 

sumsquares(nil) = sum(square(nil)) 

We can now use equation 4 to unfold square(nil), getting 

sumsquares(nil) = sum(nil) 

and equation 2 to unfold sum(nil) getting 

6. sumsquares(nil) = 0 

Returning to equation 1 we now instantiate 1 to cons(n,l) getting 

sumsquares(cons(n,l)) = sum(square(cons(n,l))) 

Using equation 5 to unfold square(cons(n,l)) we get 

sumsquares(cons(n,l)) = sum(cons(n 2,square(l))) 

and equation 3 unfolds this further to 

sumsquares(cons(n,l)) = n 2+sum(square(l)) 

Finally, we observe that we can use equation 1 to fold the 
sum(square(l)) in the right-hand side of the above, getting 

7. sumsquares(cons(n,l)) = n 2+sumsquares(l) 

Equations 6 and 7 now provides an alternative to equation 1 as a 
program for sumsquares. As we have derived 6 and 7 from the original 
by simple equality substitutions we can be sure that our new program 
is as correct as the original and we can see that we have made an 
improvement in its efficiency. This gain in efficiency has been 
achieved by interweaving computations that were kept separate for 
reasons of clarity in the original specification. Of course, for this 
trivial example, any competent programmer could produce our final 
version straight off without any trouble, but consider the more 
realistic case of a multipass versus single pass compiler or a file 
transaction program where the separate transactions are done one 
after another versus a file transaction program that does everything 
in a single complicated pass over the file. Both these have exactly 
the same structure as our example. 

NPL also allows the use of set and logic constructs as the 
right-hand side of equations. In Hope these can be defined directly 
as second order functions. This enables one to write specifications 
of programs even more succinctly, as in the definition of prime: 
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prime(n) <= forall m : 1<m, not(div(m,n)) 

div(m,n) <= exists n1 : 1<n1, n1*m=n 

The fold/unfold system can be used to transform such programs to 
more conventional recursions and hence to efficient programs; see 
Darlington ( 1975) . Note that the use of such set and logic constructs 
allows one to write original specifications that are unrunnable in 
that they involve searches through infinite sets. In this case we 
more often speak of program synthesis rather than program 
transformation although there is no sharp distinction between the 
two. 

Manna and Waldinger (1975) describe an implemented program 
synthesis system that converts program specifications written in 
first order predicate calculus augmented with set constructs to 
runnable programs. This is achieved by directly manipulating the 
specification as in transformation and Manna and Waldinger 
independently developed a rule similar to folding which they called 
recursion introduction. This system achieved the synthesis of several 
small programs fully automatically. 

2.2. The manipulation of abstract data types 

Data abstraction is an important technique in program 
development. The techniques of equational specification (Guttag 1976) 
allow one to specify the behaviour of an abstract type independently 
of any implementation. The combination of an equational language and 
transformation system allows one to exploit this techn i que to the 
full. Thus an abstract data type can be specified equationally within 
NPL or Hope and programs written solely in terms of the abstract data 
type can be run and tested before any implementation for the abstract 
data type is considered. (Occasionally equational specifications for 
the abstract data type will be in a form that do not guarantee 
termination. These specifications can still be run however and 
information gathered about the abstract program). When the programmer 
is satisfied of the correctness of his abstract program he can use 
transformation to synthesise implementations for the abstract 
operations that are guara~teed correct. To do this he need only 
specify, via a representation function mapping concrete objects to 
abstract objects, how he wishes to represent his abstraction and 
implementations for all the abstract functions can be synthesised. 
Darlington (1977) contains details of how this is achieved and 
examples of successful semi-automatic syntheses. 

2.3. Applications of Transformation 

Given that we have methods available to manipulate programs 
there are various ways we can employ them. 
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(i) Derivation of programs 

There is a wide spectrum of ways that transformation can be used 
in the production of correct and e fficient programs. At the extremes 
are its use as a purely pen and paper discipline, and the artificial 
intelligence dream o f a fully automatic syst em into which 
specifications are fed and out of which drop efficient programs. More 
realistic uses lie somewhere in between, leaving most of the 
intellectual initiative with the us er but providing systems to 
relieve him of the book-keeping tedium, and providin g ways to 
structure and re cord his thinking. Th e systems des cr ibed in 
Darlington ( 1977) and Manna and Waldinger (1975) are examples of t he 
artificial intelligence kind, while the systems described in Feather 
(1979) and Bauer et al (1977) are of the intermediate variety. 
Feather's system has achieved the transformation derivation of 
several substantial programs including a compiler for a simple block 
structured language and the text formatter from Kernighan and Plauger 
(1976). 

(ii) Algorithm understanding 

Transformation can be used to increase our understanding of the 
nature of algorithms or classes of algorithms. Systematic derivation 
of algorithms from their specifications can expose the main ideas or 
concepts behind them and the interrelationships between similar 
algorithms. Examples of this can be found in Darlington (1978), Clark 
and Darlington (1980), de Roever et al (1979) and Schmidt (1978). 

(iii) Algorithm communication 

Given that we have developed structured methods for recording 
transformations we can communicate algori thms in an understandable 
but completely formal way as specification plus transformation. 

(iv) Program modification and maintenance 

A terrible proportion of the overall programming effort is spent 
in modifying and maintaini ng existing software. Transformation offers 
a way of improving this position. Programs would be recorded as a 
specification plus a structured description of the transformation 
used to derive the program. Modifications would be restricted to the 
specification which hopefully would be understandable and modular 
enough to make this an easier and less-error prone exercise than at 
present. The transformation plan can then be rerun to produce a 
suitably modified program. 

Hopefully moderate modifications to the specifications will not 
totally invalidate the transformation and the overall effort will be 
reduced and program reliability vastly increased. Darlington and 
Feather (1979) record some early experiments along these lines. 
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2.4 The ruture or transrormation and its inrluence on 
programming teaching 

Program transformation is not going to do away with the craft of 
programming unless startling advances are made in th e area of 
combinatorics. However, I do believe that it offers an opportunity 
for dramatically improving the programmer's productiv~ty and if 
adopted will bring about changes in his role and the tra ining he 
receives. His job will become more that of a problem sp~cifier and 
algorithm engineer. Students should be taught the techniques of 
writing and evaluating specifications in a variety of high leve l 
formalisms, and the principle and practice of developing efficient 
programs from them. Not only would this be of benefit as a way o f 
pro g ramming, but I believe that it has the great advantage that 
algorithm study and computational complexity can be taught in a ve r y 
concrete and practical way, and that it provides a valuable 
unification of the art of program development and the science of 
algorithm study and complexity. I feel that it is important t hat 
students are taught to regard programs as first-rate mathematica l 
objects, about which precise statements can be made and which can be 
manipulated formally. 

The progra mmer of the future is going to have a lot more 
au tomated tools at his disposal for the design and evaluation of 
programs. These will not remove the need f or him to be intelligent 
and well trained, but properly used should increase his pr oduc tivity 
a nd relia bility. Any course in programming s houl d involv e an 
appreciation of the potentialities and pitfalls of such systems. 

One of the safest predictions to make is that the range of 
appl i cations of computers is going to increase and that a lot of 
potential users will be experts in the area of application rather 
than skilled programmers. Transformation can help to avoid some o f 
the pitfalls that this entails. A general specification language such 
as NPL or predicate logic can be extended to provide specia l ised 
specification languages that would allow t hese domain exper t s to 
express their requirements in their own terms. Simila r ly 
tra n sformation systems can be extended to achieve t he effic i ent 
implementation of these specifications. I foresee the role of the 
applications programmer changing to t he design of extensions t o 
s pecification languages and transformation systems, and that 
particu l ar applica t ion programs will be produced much more rel i ably 
at the point of use. 

3. Logic Progra .. ing 

The resolution based theorem provers discussed earlier were 
employed to derive programs from specifications written in first 
order predicate calculus. The programs thus derived were in a 
separate language. Recent developments have changed the emphas is 
somewhat with t he growing real i sation that predicate logic itsel f can 
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be used as a programming language by giving it a procedural 
interpretation and that theorem provers can be used as interpreters 
for logic programs. 

In the clausal form of predicate logic, simple assertions are 
expressed by clauses 

Father(Zeus,Ares) +-

Mother(Hera,Ares) +-

Father(Ares,Harmonia) +-

Mother(Semele, Dionisius) +-

Father(Zeus,Dionisius) +-

etc. 

Here Father (x, y) states that x is the father of y and Mother (x, y) 
states that x is the mother of y. 

Clauses can also express general conditional propositions 

Female(x) +- Mother(x,y) 

Male(x) +- Father(x,y) 

Parente x;y) +- Mother(x,y) 

Parent(x,y) +- Father(x,y) 

These state that: 

x is female if x is mother of y, 

x is male if x is father of y. 

x is parent of y if x is mother of y, and 

x is parent of y if x is father of y. 

The arrow +- is the logical connective "if", "x" and "y" are variables 
representing any individuals; "Zeus", "Ares", etc. are constant 
symbols representing particular individuals; "Female", etc. are 
predicate symbols representing relations among individuals. Variables 
in different clauses are distinct even if they have the same names. 

A clause can have several Joint conditions or several 
alternative conclusions. Thus : 
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Grandparent(x, y) ... Parent(x, z), Parent(z,y) 

Male(x), Female(x)'" Parent(x,y) 

Ancestor(x, y) ... Parent(x,y) 

Ancestor(x, y) ... Ancestor(x, z), Ancestor(z,y) 

where x, y and z are variables, state that for all x, y, and z : 

x is the grandparent of y if x is parent of z and z is 
parent of y; 

x is male or x is female if x is parent of y; 

x is ancestor of y if x is parent of y, and 

x is ancestor of y if x is ancestor of z and z is ancestor 
of y. 

Problems to be solved are represented by clauses whioh are 
denials. 

The clauses 

... Grandparent(Zeus, Harmonia) 

... Anoestor(Zeus ,x) 

... Male(x), Ancestor(x, Dionisius) 

where x is a variable state that : 

Zeus is not grandparent of Harmonia, 

for no x is Zeus ancestor of x, and 

for no x is x male and is x an ancestor of Dionisius. 

A typical problem-solver (or theorem-prover) reaots to a denial 
by using other clauses to try to refute the denial. If the denial 
contains variables, then it is possible to extract from the refutation 
the values of the variables which account for the refutation and 
represent a solution of the problem to be solved. In this example, 
different refutations of the second denial find different x's of which 
Zeus is the ancestor. 

x = Ares, x = Harmonia, x = Dionisius • 
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Clausal form has the same expressive power as the standard 
formulation of predicate logic. All variables xl, ••• ,xk which occur 
in a clause C are implicitly governed by universal quantifiers 
",xl' ..• , ",xk (for all xl and ••• and for all xk ). Thus C is an 
aboreviation for ",xl • •. ",xk C. 

The existential quantifier g x (there exists an x) is avoided by 
using constant symbols or function symbols to name individuals. For 
example, the clauses 

Father (dad(x), x) ~ Human (x) 

Mother (mum(x), x) ~ Human (x) 

state that for all humans x, there exists an individual, called dad 
who is father of x, and there exists an individual, called mum(x) who 
is mother of x. 

If we restrict the clausal form so that at most one conclusion 
is allowed on the left hand side of the arrow we have the Horn clause 
subset of logic. Theorem provers exist that execute logic programs in 
Horn clause form with efficiency comparable to conventional language 
interpreters. Horn clauses are a relational version of the first 
order recursion equations introduced earlier. Thus the familiar 
factorial function becomes 

(F1) Fact(o,s(o» ~ 

(F2) Fact(s(x),u) ~ Fact(x,v), Times(s(x),v,u) 

Regard the terms o,s(o), s(s(o), •.• as the numerals 0,1,2 ••. and 
read Fact(x,y) as stating that the factorial of x is y and Times 
(x, y, z) that x times y is z. Given a program (or set of clauses) 
for computing the Times relation, (F1) and (F2) constitute a program 
for computing the factorial relation . To compute the factorial of 2 
we add to the program the clause. 

(F3) ~ Fact (s(s(o», x) 

which states that no x is the factorial of 2. This contradicts (F1) 
and (F2) which logically imply that the factorial of 2 is 2. There 
exist efficient proof procedures which detect this contradiction and 
compute the factorial of 2. 

The language PROLOG based on the procedural interpretation of 
Horn clauses was designed and implemented by Colmerauer and Roussel 
in Marseilles (Colmerauer et al 1975) . A PROLOG compiler for the PDP 
10 has been written that compares in efficiency with compiled pure 
LISP (Warren et al 1978). Similarly a PROLOG interpreter for the IBM 
370 has been shown to compare with PASCAL for runtime efficiency 
(Roberts 1977). 
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3.1 Program Synthesis in logic 

The fact that logic has a well defined model theory and proof 
semantics means that program transformation or synthesis can be 
easily carried out on logic programs. Any new t heorem that can be 
derived from the statements of a logic program is valid in the sense 
that its incorporation into the program will not change the meaning 
of the program but may improve its behaviour. 

The various forms of logic - standard form, unrestr i cted clausal 
form, and Horn clause form - represent a hierarchy of specification 
levels. As we descend this hierarchy expressive power is sacrificed 
to achieve more efficient interpretive theorem provers. Transitions 
between forms and re-arrangements within a form are (onlyl) logical 
deductions that cannot change a program's meaning but may 
dramatically increase its performance. Bibel (1976), Clark and Sickel 
(1971) and Clark and Darlington (1980), and Hogger (1979) show how 
transformation of logic programs can be achieved. 

There is another dimension along which program transformation 
can be carried out on logic programs. A logic program will in general 
be non-deterministic and will be interpreted by a back-tracking 
theorem prover. Different control strategies will result in varying 
degrees of efficiency. Thus the performance of a given logic program 
can be improved, without its meaning being changed, by providing 
extra control information or annotations that act as advice to the 
theorem prover as to the best order to go about things. This thesis, 
that "algorithm = logic + control", is forcibly made by Kowalski 
( 1979) and has been incorporated in the language IC-PROLOG (Clark and 
MacCabe 1979). The same idea of improving the behaviour of a program 
by providing control annotations has been applied to recursion 
equations by Schwartz (1977). 

3.2 Logic Prograaming conclusion 

Logic provides a flexible, very high level programming language. 
Because of its relational and non-deterministic nature it has many 
applications outside the range of conventional languages, for example 
as a data base query language and in expert systems. It has been 
applied to many large scale problems, particularly in Hungary where 
several important programs, including a drug interaction program, 
have been written in PROLOG. 

I feel that the use of logic based programming languages is 
bound to grow and that they should be included in any computer 
science syllabus. Again it puts programming on a sound mathematical 
basis and provides links between the fields of programming, 
artificial intelligence and mathematical logic. 
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4. Conclusion 

As I stated in the introduction the goal of totally automating 
the programmer's skills still lies far in the future. However unless 
one denies the possi bi 11 ty of producing artificial intelligence one 
must admit that it is an area worthy of continuing work. In the short 
term this work has produced useful i nsights into programming. 

The approaches that I have concentrated on, trans forma tion and 
logic programming, can both be character ised as attempting to put 
programming languages onto a sound mathematical footing. Of course 
many other approaches to program design share the same aims but the 
approaches I have outlined differ in using existing mathematical 
formalisms as languages and i n providing a formal calculus in which 
the derivation of programs can be stated, offering the opportunity of 
machine processing. Whether these ideas will become widely adopted 
depends on many factors, some of them outside scientific 
consideration. However, certain trends are in their favour . Software 
is now produced in such a costly and unreliable way that the much 
heralded explosion in the use of computers will be disastrous unless 
we radically change our habits. The declining cost of hardware that 
is making such an expansion possible is also making parallel 
processing a possibility. The applicative languages are i deal for 
such implementations. In fact the data flow languages (for example, 
Arvind and Gostelow (1977) and Gurd and Watson (1978)) are either 
openly functional or imperative languages restricted to behave 
functionally. The declining cost of hardware also means that we can 
afford to be more liberal in providing systems to assist programming. 
Of course no amount of hardware can overcome a basically exponential 
process but I believe that dramatic advances in program reliability 
and useability are possible in a short time scale. 

Discussion 

Prof'essor Katzenlson pointed out that a global analysis of a 
program is usually necessary in order to improve it. He wondered why 
there had been no mention of this technique in the improvement of NPL 
programs. 

Dr. Darlington explained that NPL is a purely applicative 
language, and for that reason no global analysis is necessary. This 
is in contrast to SETL. 

Prof'essor Katzenelson then enquired whether any more had been 
done on optimising storage strategy in NPL programs. Dr. Darlington 
agreed tha t this would be a necessary final step to producing a good 
program. A complete analysis can be made within the recursion 
equation structure, though it has not been done yet. Again no global 
analysis would be required. 
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Professor Michaelson asked whether any large numerical 
problems had been tackled within the applicative framework. 
Dr. Darlington replied that he intended to, but had not done so 
yet. 

Professor Dijkstra expressed his doubt about what can be 
achieved by transformation systems of the kind which Dr. Darlington 
had described; for example, whether such a system could derive the 
logarithmic form of the Fibonacci function. This doubt is based on 
the observation that the most efficient forms of algorithms often 
rely on mathematical theorems (sometimes rather deep theorems), and 
hence the transformation from a simple program to an efficient form 
must embody the power of a theorem prover. Even with external 
guidance the transformation path could be very long if it exists at 
all. 

In reply Dr. Darlington stated that he believed such systems 
ro be of practical value in program development, even if it were 
necessary for the programmer ro provide advanced forms of guidance. 

Professor Paul, quoting Dr. Darlington's remark that logic 
programming "unifies logic, programming and artificial intelligence", 
asked whether logic programming was likely to have any impact soon on 
general programming styles. 

Dr. Darlington reported that programmers with Prolog 
experience claim a great change in their own style, and that they 
believe logic programming will have more widespread impact soon. 

Dr. Henderson pointed out that recursion equation languages 
seem very unnatural to conventional programmers - and Prolog will 
seem even more so. This will present a problem for the spread of 
logic programming. 
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