
.,
I

AUTOMATIC PROGRAMMING: PAST, PRESENT AND FUTURE

J. Darlington

Rapporte ur: Mr. S. Jones

Abstract

The aim of automatic programming is to produce systems that can
take over many of the tasks presently performed by programmers . Thus
work in this area draws on and has influence on work in Artificial
Intelligence and more traditional Computer Science .

Early efforts at producing programs automatically grew out of
work on automatic theorem proving and relied on the use of first
order predicate logic to specify the input-output bebaviour of the
required program. Later work has realised the importance of th e
specification process and widened the scope of both the specification
languages and deductive mechanisms used. Program transformation grew
out of the recognition that programs could serve as specifications if
they were written for maximum clarity instead of efficiency, and
represents a more flexible app roach to the automat i c programming
problem.

This l ecture will survey the work done in these areas, describe
some of the more s uc cessful approaches in more detail and try to
evaluate the l essons learnt. We will discuss what difficulties need
to be overcome, and make predictions of the impact this work will
have on Computer Science and Artificial Intelligence.

Introduction

Writin g programs is a task requiring intelligence . It is
therefore a l egitimate domain for artificial intelligence workers to
investigate and has the advantage of being an area where they
themselves are often domain experts. The ability to develop and
modify programs or plans to cope with unforeseen eventualities is
also an essential capability for an i ntelligent entity.

In these talks I will discuss some recent research directed
towards developing systems to produce programs automatically. Much of
t raditional computer science, f or example the development of high
level languages and compilers, can be classified as automatic
programming, but for the purposes of these talks I will take a narrow
view of the term a nd concentrate on work that at least originated
within the artificial intelligence sphere. It is c y thesis that
although thi s work has not produced automatic sys~ems that co me
anywhe r e near the compe tence of the average programmer (and is not

23

likely to unless dramatic advances are made) it has provided
revealing insights into the programming process and has developed
te c hniques and systems tha t promise to dramatically increase
programmer productivity and alter the skills and techniques he needs
in such a way as to require a fundamental c hange in the way
programming is taught.

Early at tempt s at automatic programming were based on the
application of the resolution-based theorem provers developed during
the late sixties. Work in t his di rection was genera lly abandoned
during the 70's with the growing disillusionment with the power of
the theorem provers available. Program transformation, an alternative
that offers a more flexible approach and requires less theorem
proving effort, g rew in f avo ur during the late 70's. Logic
Programming was also deve loped in the 70's a nd is based on the
realisation that first-order predicate calculus could be used
directly as a programming language, given s ui table theorem provers.
Work in these latter two areas is still acti ve and in my opinion
represents the most promising approaches to automatic programming to
date.

In these talks I will concentrate on givi ng a flavour of some of
,the work going on in these areas and try to indicate how I think this
will alter the nature of programming. In doing this I will be
ignoring sUbstantial res earch efforts that are contributing to the
automatic programming effort. In particular I will say nothing about
work in the natural language specification of programs.

1. Autoaatic prograaaing using resolution- based tbeore. provers

The development of the resoluti on principle in the middle
sixties, (Robinson 1965), stimulated much work in the development of
mechanical theorem provers and led to them being applied to the
problem of synthesising programs from specifications.

The resolution principle offers a method for demonstrating the
unsatisfiability of a set of sentences of first-order predicate
logic, provided the sentences are arranged i n a special way known as
clausal form (Robinson 1965) . Thus, to prove that a theorem is
logically implied by a set of axioms, the negation of the theorem is
added to the axioms and this set put into clausal form. If the
theorem prover is able to prove the unsatisfiability of this set then
the theorem logically follows from the axioms. It was soon realised
that such theorem provers could be used in a constructive way, that
is as well as proving sentences of the form 3 x p(x) from a set of
sentences S, they could also be modified to produce an instance of
the x that exists . This was made possible by the answer extraction
process (Green 1969). With proper formalisation the answer extraction
process can be used for program synthesis. The first stage is to
specify the required program by giving the relation between its input
x and output y, say R(x,y). Using the answer extraction process, a

24

theorem proving system will produce the desired program if it can
prove that the conjecture Vx 3y R(x,y) logically foll ows from the
axioms defining the interpretation of R. The program will consist of
an example of the conjectured y as a composition of primitive
functions.

As a very simple example, let us consider a program to find the
maximum of two numbers. Thus our input-output relation R between the
input variables x1 and x2 and the cutput variable 7. is

R(x1, x2, z) , (;;=" ,: v <; " ;;2) /\ z2:x1/\z2:x2

and the corresponding ·cheor-em i s

"x1 'll'x2 3z [< z=;c 1 v z=x2)/\ z2:X1/\z2:x2]

Informally the proof proceeds by case analysis. Translating the
theorem into disjunctive normal form (a stage on the way to clausal
form) we have

"\fx1 v x2 :iT z "(z=x1 /\ z2:x1 /\z2:x2)
L

V(z=x2 /\ z2:x1 /\ z2:x2) J

If we assume (u=v) .:> (u2:V) as an axiom we can simplj.fy the above to

Vx1 'll'x2 :i.lz l:(z=x1/\z2:x2) v (z=x2/\ zi<x1) J

Now if x12:x2, letting z be x1 satisfies the first disjunct. On the
other hand if x1<x2 then x22:x1, so letting z be x2 sa tisfies the
second disjunct . The answer extraction process records which
assignments have been made to the out put variable and under what
conditions they were made . Thus in this case the program extracted
would be

if xt>x2 then z := x1 else z := x2 ---- ----
Several program writing systems based on this principle were

written; see Green (1969), Wald inge r (1969) and Waldinger and Lee
(1969). They all managed the synthesis of some small programs but
were limited by the power of the available theorem provers. They also
had a fundamental limitation in that the method was incapable of
producing programs with loops as this would require an application of
mathematical induction, which is not expressible within first order
l og ic. Various methods were proposed to get round this difficulty,
generally by dealing with induction at the meta-level and using a
theorem prover to construct the straight line portions of the program
(see, for example, Manna and Waldinger 197 1). For these reasons, work
in this direction was generally abandoned. Recently, however, Manna
and Waldinger have revived the theorem proving approach based on an
elegant system that allows theorem proving to be carried out on

25

-
I

sentences without putting them into clausal form, and also admits
induction. Manna and Waldinger (1980) describes this system and
contains examples of the synthesis of recursive programs. As yet
there is no implementation for this system although the authors state
that their approach is machine oriented and ultimately intended for
automatic synthesis systems. This system also allows program
transformation (see next section) to be carried on in a theorem
proving framework.

2. Program Transformat ion

The aim of automatic programming is to derive programs
systematically, and hopefully automatically, from a specification. As
we have seen earli e r, initial attempts used predicate logic to
describe the input-output behaviour of the required program and
resolution theorem provers to derive the programs. The major problem
that confronts this approach is the lack of sufficiently powerful
theorem provers to derive anything but the simplest of programs, a
consequence partly of the wide gap between the specification and
target languages.

Program transformation is a hopefully more flexible approach to
the same problem. It arises from the recognition that programs
themselves can be specifications (and specifications can be programs)
if they are written to be as clear and understandable as possible.
This can best be achieved if considerations of efficiency are
initially ignored and the programs written to describe what the
desired result should be and not how it is to be achieved. Given such
a specification the second stage of the transformation approach is to
successively transform the program to more computationally feasible
versions using methods guaranteed to preserve the intent of the
program while improving its efficiency. Two immediate advantages of
this method are that a wider variety of techniques and languages are
available for the specification process and that the degree of
difficulty of the synthesis can be varied continuously in contrast to
the all or nothing behaviour of the theorem proving approach. Another
important advantage of having programs as specifications is that they
can be run, albeit probably very slowly, and thus checked or
verified. The notion that specifications are simple to write and will
be obviously correct only applies to small examples. The science of
writing, understanding and manipulating specifications is going to
become a vitally important activity.

In this section I will illustrate the nature and potential of
the transformation approach by describing some aspects of my own work
on transformation, work that started in collaboration with R.M.
Burstall in the Department of Artificial Intelligence at Edinburgh
University. Fuller descriptions can be found in Burstall and
Darlington (1977), Darlington (1975) and Darlington (1977). One
important aspect of this work is that I have concentrated on the
transformation of applicative languages. This is for two
interconnected reasons. Firstly, if we are going to manipulate

26

programs as objects it is advantageou s i f they possess respectable
mathematical pr'oper ties, r'efer'entia1 tl"anspar'ency in par'ticu1ar. I
also believe t ha t the pos s ession of the se pr'oper'ties makes the
app1icative languages su per i or' to the mOr'e machine-or'iented
imper'a ti ve languages by being mOr'e expressible, mOr'e compr'ehensib1e
and ther'efor'e better' as specification vehicles. Backus (1979) makes
this point forcibly. Almost all the impor'tant manipulations can be
car'r'ied out within these languages even if the final implementation
is to be in a conventional imper'ative language. Our' wOr'k at Edinbur'gh
led us to develop a pUr'e1y app1icative Or' non-pr'ocedur'a1 language
called NPL (Bur'sta11 1977). This language is used for the initial
specification of OUr' pr'ogr'am and tr'ansfor'mations map pr'ogr'ams in NPL
to pr'ograms in NPL. (NPL is a first order' language. It has now been
developed into a higher-or'der' language called Hope by BUr'sta1l,
MacQueen and Sannel1a (1980). The tr'ansfor'mation techniques apply
equally to NPL Or' Hope).

Pr'ograms in NPL consist of a sequence of r'ecur'sion equations.
Separ'ate equations can be Wr'itten for separ'ate cases of a par'ameter.
Thus, for' example, the factor'ia1 function would be Wr'itten

fact(O) <=

fact(n+1) <= (n+ 1)*fact(n)

and a function to square ever'Y number' of a l ist of number'S, wher'e the
list is constr'ucted using cons and nil (the empty list)

squar'e(ni1) <= nil

square(cons(n,l)) <= cons(nf2,squar'e(1))

Given such a simple language the transformation methodology can
be cOr'r'esponding1y simple : it is detailed in BUr'sta1l and Dar'lington
(1977) and has become known as the 'fold/unfold system'. Unfolding
consists simply of r'ep1acing a function call by its definition, that
is, using an equation in the normal left to r'ight manner'. Folding is
just the opposite: using an eq uation in a r'ight-to-1eft manner',
r'ep1acing an instance of a r'ight-hand side of an equation by the
cOr'r'esponding instance of the left-hand side.

For' example, say we wanted a pr'ogr'am to sum the squar'es of a
list of number'S. Naively, we could Wr'ite this as

1. sumsquares(l)<= sum(square(l))

2. sum(ni1)<= 0

3. sum(cons(n,l))<= n+sum(l)

4. squar'e (nill<= nil

5. squar'e(cons(n,l))<= cons(nf2 ,square(1))

27

To produce an improved version we must consider the various
cases of 1. Firstly, letting 1 be nil, we can instantiate equation 1,
getting

sumsquares(nil) = sum(square(nil))

We can now use equation 4 to unfold square(nil), getting

sumsquares(nil) = sum(nil)

and equation 2 to unfold sum(nil) getting

6. sumsquares(nil) = 0

Returning to equation 1 we now instantiate 1 to cons(n,l) getting

sumsquares(cons(n,l)) = sum(square(cons(n,l)))

Using equation 5 to unfold square(cons(n,l)) we get

sumsquares(cons(n,l)) = sum(cons(n 2,square(l)))

and equation 3 unfolds this further to

sumsquares(cons(n,l)) = n 2+sum(square(l))

Finally, we observe that we can use equation 1 to fold the
sum(square(l)) in the right-hand side of the above, getting

7. sumsquares(cons(n,l)) = n 2+sumsquares(l)

Equations 6 and 7 now provides an alternative to equation 1 as a
program for sumsquares. As we have derived 6 and 7 from the original
by simple equality substitutions we can be sure that our new program
is as correct as the original and we can see that we have made an
improvement in its efficiency. This gain in efficiency has been
achieved by interweaving computations that were kept separate for
reasons of clarity in the original specification. Of course, for this
trivial example, any competent programmer could produce our final
version straight off without any trouble, but consider the more
realistic case of a multipass versus single pass compiler or a file
transaction program where the separate transactions are done one
after another versus a file transaction program that does everything
in a single complicated pass over the file. Both these have exactly
the same structure as our example.

NPL also allows the use of set and logic constructs as the
right-hand side of equations. In Hope these can be defined directly
as second order functions. This enables one to write specifications
of programs even more succinctly, as in the definition of prime:

28

prime(n) <= forall m : 1<m, not(div(m,n))

div(m,n) <= exists n1 : 1<n1, n1*m=n

The fold/unfold system can be used to transform such programs to
more conventional recursions and hence to efficient programs; see
Darlington (1975) . Note that the use of such set and logic constructs
allows one to write original specifications that are unrunnable in
that they involve searches through infinite sets. In this case we
more often speak of program synthesis rather than program
transformation although there is no sharp distinction between the
two.

Manna and Waldinger (1975) describe an implemented program
synthesis system that converts program specifications written in
first order predicate calculus augmented with set constructs to
runnable programs. This is achieved by directly manipulating the
specification as in transformation and Manna and Waldinger
independently developed a rule similar to folding which they called
recursion introduction. This system achieved the synthesis of several
small programs fully automatically.

2.2. The manipulation of abstract data types

Data abstraction is an important technique in program
development. The techniques of equational specification (Guttag 1976)
allow one to specify the behaviour of an abstract type independently
of any implementation. The combination of an equational language and
transformation system allows one to exploit this techn i que to the
full. Thus an abstract data type can be specified equationally within
NPL or Hope and programs written solely in terms of the abstract data
type can be run and tested before any implementation for the abstract
data type is considered. (Occasionally equational specifications for
the abstract data type will be in a form that do not guarantee
termination. These specifications can still be run however and
information gathered about the abstract program). When the programmer
is satisfied of the correctness of his abstract program he can use
transformation to synthesise implementations for the abstract
operations that are guara~teed correct. To do this he need only
specify, via a representation function mapping concrete objects to
abstract objects, how he wishes to represent his abstraction and
implementations for all the abstract functions can be synthesised.
Darlington (1977) contains details of how this is achieved and
examples of successful semi-automatic syntheses.

2.3. Applications of Transformation

Given that we have methods available to manipulate programs
there are various ways we can employ them.

29

(i) Derivation of programs

There is a wide spectrum of ways that transformation can be used
in the production of correct and e fficient programs. At the extremes
are its use as a purely pen and paper discipline, and the artificial
intelligence dream o f a fully automatic syst em into which
specifications are fed and out of which drop efficient programs. More
realistic uses lie somewhere in between, leaving most of the
intellectual initiative with the us er but providing systems to
relieve him of the book-keeping tedium, and providin g ways to
structure and re cord his thinking. Th e systems des cr ibed in
Darlington (1977) and Manna and Waldinger (1975) are examples of t he
artificial intelligence kind, while the systems described in Feather
(1979) and Bauer et al (1977) are of the intermediate variety.
Feather's system has achieved the transformation derivation of
several substantial programs including a compiler for a simple block
structured language and the text formatter from Kernighan and Plauger
(1976).

(ii) Algorithm understanding

Transformation can be used to increase our understanding of the
nature of algorithms or classes of algorithms. Systematic derivation
of algorithms from their specifications can expose the main ideas or
concepts behind them and the interrelationships between similar
algorithms. Examples of this can be found in Darlington (1978), Clark
and Darlington (1980), de Roever et al (1979) and Schmidt (1978).

(iii) Algorithm communication

Given that we have developed structured methods for recording
transformations we can communicate algori thms in an understandable
but completely formal way as specification plus transformation.

(iv) Program modification and maintenance

A terrible proportion of the overall programming effort is spent
in modifying and maintaini ng existing software. Transformation offers
a way of improving this position. Programs would be recorded as a
specification plus a structured description of the transformation
used to derive the program. Modifications would be restricted to the
specification which hopefully would be understandable and modular
enough to make this an easier and less-error prone exercise than at
present. The transformation plan can then be rerun to produce a
suitably modified program.

Hopefully moderate modifications to the specifications will not
totally invalidate the transformation and the overall effort will be
reduced and program reliability vastly increased. Darlington and
Feather (1979) record some early experiments along these lines.

30

. I

2.4 The ruture or transrormation and its inrluence on
programming teaching

Program transformation is not going to do away with the craft of
programming unless startling advances are made in th e area of
combinatorics. However, I do believe that it offers an opportunity
for dramatically improving the programmer's productiv~ty and if
adopted will bring about changes in his role and the tra ining he
receives. His job will become more that of a problem sp~cifier and
algorithm engineer. Students should be taught the techniques of
writing and evaluating specifications in a variety of high leve l
formalisms, and the principle and practice of developing efficient
programs from them. Not only would this be of benefit as a way o f
pro g ramming, but I believe that it has the great advantage that
algorithm study and computational complexity can be taught in a ve r y
concrete and practical way, and that it provides a valuable
unification of the art of program development and the science of
algorithm study and complexity. I feel that it is important t hat
students are taught to regard programs as first-rate mathematica l
objects, about which precise statements can be made and which can be
manipulated formally.

The progra mmer of the future is going to have a lot more
au tomated tools at his disposal for the design and evaluation of
programs. These will not remove the need f or him to be intelligent
and well trained, but properly used should increase his pr oduc tivity
a nd relia bility. Any course in programming s houl d involv e an
appreciation of the potentialities and pitfalls of such systems.

One of the safest predictions to make is that the range of
appl i cations of computers is going to increase and that a lot of
potential users will be experts in the area of application rather
than skilled programmers. Transformation can help to avoid some o f
the pitfalls that this entails. A general specification language such
as NPL or predicate logic can be extended to provide specia l ised
specification languages that would allow t hese domain exper t s to
express their requirements in their own terms. Simila r ly
tra n sformation systems can be extended to achieve t he effic i ent
implementation of these specifications. I foresee the role of the
applications programmer changing to t he design of extensions t o
s pecification languages and transformation systems, and that
particu l ar applica t ion programs will be produced much more rel i ably
at the point of use.

3. Logic Progra .. ing

The resolution based theorem provers discussed earlier were
employed to derive programs from specifications written in first
order predicate calculus. The programs thus derived were in a
separate language. Recent developments have changed the emphas is
somewhat with t he growing real i sation that predicate logic itsel f can

31

I

.I

I

I

1

be used as a programming language by giving it a procedural
interpretation and that theorem provers can be used as interpreters
for logic programs.

In the clausal form of predicate logic, simple assertions are
expressed by clauses

Father(Zeus,Ares) +-

Mother(Hera,Ares) +-

Father(Ares,Harmonia) +-

Mother(Semele, Dionisius) +-

Father(Zeus,Dionisius) +-

etc.

Here Father (x, y) states that x is the father of y and Mother (x, y)
states that x is the mother of y.

Clauses can also express general conditional propositions

Female(x) +- Mother(x,y)

Male(x) +- Father(x,y)

Parente x;y) +- Mother(x,y)

Parent(x,y) +- Father(x,y)

These state that:

x is female if x is mother of y,

x is male if x is father of y.

x is parent of y if x is mother of y, and

x is parent of y if x is father of y.

The arrow +- is the logical connective "if", "x" and "y" are variables
representing any individuals; "Zeus", "Ares", etc. are constant
symbols representing particular individuals; "Female", etc. are
predicate symbols representing relations among individuals. Variables
in different clauses are distinct even if they have the same names.

A clause can have several Joint conditions or several
alternative conclusions. Thus :

32

I

. '

Grandparent(x, y) ... Parent(x, z), Parent(z,y)

Male(x), Female(x)'" Parent(x,y)

Ancestor(x, y) ... Parent(x,y)

Ancestor(x, y) ... Ancestor(x, z), Ancestor(z,y)

where x, y and z are variables, state that for all x, y, and z :

x is the grandparent of y if x is parent of z and z is
parent of y;

x is male or x is female if x is parent of y;

x is ancestor of y if x is parent of y, and

x is ancestor of y if x is ancestor of z and z is ancestor
of y.

Problems to be solved are represented by clauses whioh are
denials.

The clauses

... Grandparent(Zeus, Harmonia)

... Anoestor(Zeus ,x)

... Male(x), Ancestor(x, Dionisius)

where x is a variable state that :

Zeus is not grandparent of Harmonia,

for no x is Zeus ancestor of x, and

for no x is x male and is x an ancestor of Dionisius.

A typical problem-solver (or theorem-prover) reaots to a denial
by using other clauses to try to refute the denial. If the denial
contains variables, then it is possible to extract from the refutation
the values of the variables which account for the refutation and
represent a solution of the problem to be solved. In this example,
different refutations of the second denial find different x's of which
Zeus is the ancestor.

x = Ares, x = Harmonia, x = Dionisius •

33

I

Clausal form has the same expressive power as the standard
formulation of predicate logic. All variables xl, ••• ,xk which occur
in a clause C are implicitly governed by universal quantifiers
",xl' ..• , ",xk (for all xl and ••• and for all xk). Thus C is an
aboreviation for ",xl • •. ",xk C.

The existential quantifier g x (there exists an x) is avoided by
using constant symbols or function symbols to name individuals. For
example, the clauses

Father (dad(x), x) ~ Human (x)

Mother (mum(x), x) ~ Human (x)

state that for all humans x, there exists an individual, called dad
who is father of x, and there exists an individual, called mum(x) who
is mother of x.

If we restrict the clausal form so that at most one conclusion
is allowed on the left hand side of the arrow we have the Horn clause
subset of logic. Theorem provers exist that execute logic programs in
Horn clause form with efficiency comparable to conventional language
interpreters. Horn clauses are a relational version of the first
order recursion equations introduced earlier. Thus the familiar
factorial function becomes

(F1) Fact(o,s(o» ~

(F2) Fact(s(x),u) ~ Fact(x,v), Times(s(x),v,u)

Regard the terms o,s(o), s(s(o), •.• as the numerals 0,1,2 ••. and
read Fact(x,y) as stating that the factorial of x is y and Times
(x, y, z) that x times y is z. Given a program (or set of clauses)
for computing the Times relation, (F1) and (F2) constitute a program
for computing the factorial relation . To compute the factorial of 2
we add to the program the clause.

(F3) ~ Fact (s(s(o», x)

which states that no x is the factorial of 2. This contradicts (F1)
and (F2) which logically imply that the factorial of 2 is 2. There
exist efficient proof procedures which detect this contradiction and
compute the factorial of 2.

The language PROLOG based on the procedural interpretation of
Horn clauses was designed and implemented by Colmerauer and Roussel
in Marseilles (Colmerauer et al 1975) . A PROLOG compiler for the PDP
10 has been written that compares in efficiency with compiled pure
LISP (Warren et al 1978). Similarly a PROLOG interpreter for the IBM
370 has been shown to compare with PASCAL for runtime efficiency
(Roberts 1977).

34

3.1 Program Synthesis in logic

The fact that logic has a well defined model theory and proof
semantics means that program transformation or synthesis can be
easily carried out on logic programs. Any new t heorem that can be
derived from the statements of a logic program is valid in the sense
that its incorporation into the program will not change the meaning
of the program but may improve its behaviour.

The various forms of logic - standard form, unrestr i cted clausal
form, and Horn clause form - represent a hierarchy of specification
levels. As we descend this hierarchy expressive power is sacrificed
to achieve more efficient interpretive theorem provers. Transitions
between forms and re-arrangements within a form are (onlyl) logical
deductions that cannot change a program's meaning but may
dramatically increase its performance. Bibel (1976), Clark and Sickel
(1971) and Clark and Darlington (1980), and Hogger (1979) show how
transformation of logic programs can be achieved.

There is another dimension along which program transformation
can be carried out on logic programs. A logic program will in general
be non-deterministic and will be interpreted by a back-tracking
theorem prover. Different control strategies will result in varying
degrees of efficiency. Thus the performance of a given logic program
can be improved, without its meaning being changed, by providing
extra control information or annotations that act as advice to the
theorem prover as to the best order to go about things. This thesis,
that "algorithm = logic + control", is forcibly made by Kowalski
(1979) and has been incorporated in the language IC-PROLOG (Clark and
MacCabe 1979). The same idea of improving the behaviour of a program
by providing control annotations has been applied to recursion
equations by Schwartz (1977).

3.2 Logic Prograaming conclusion

Logic provides a flexible, very high level programming language.
Because of its relational and non-deterministic nature it has many
applications outside the range of conventional languages, for example
as a data base query language and in expert systems. It has been
applied to many large scale problems, particularly in Hungary where
several important programs, including a drug interaction program,
have been written in PROLOG.

I feel that the use of logic based programming languages is
bound to grow and that they should be included in any computer
science syllabus. Again it puts programming on a sound mathematical
basis and provides links between the fields of programming,
artificial intelligence and mathematical logic.

35

1

4. Conclusion

As I stated in the introduction the goal of totally automating
the programmer's skills still lies far in the future. However unless
one denies the possi bi 11 ty of producing artificial intelligence one
must admit that it is an area worthy of continuing work. In the short
term this work has produced useful i nsights into programming.

The approaches that I have concentrated on, trans forma tion and
logic programming, can both be character ised as attempting to put
programming languages onto a sound mathematical footing. Of course
many other approaches to program design share the same aims but the
approaches I have outlined differ in using existing mathematical
formalisms as languages and i n providing a formal calculus in which
the derivation of programs can be stated, offering the opportunity of
machine processing. Whether these ideas will become widely adopted
depends on many factors, some of them outside scientific
consideration. However, certain trends are in their favour . Software
is now produced in such a costly and unreliable way that the much
heralded explosion in the use of computers will be disastrous unless
we radically change our habits. The declining cost of hardware that
is making such an expansion possible is also making parallel
processing a possibility. The applicative languages are i deal for
such implementations. In fact the data flow languages (for example,
Arvind and Gostelow (1977) and Gurd and Watson (1978)) are either
openly functional or imperative languages restricted to behave
functionally. The declining cost of hardware also means that we can
afford to be more liberal in providing systems to assist programming.
Of course no amount of hardware can overcome a basically exponential
process but I believe that dramatic advances in program reliability
and useability are possible in a short time scale.

Discussion

Prof'essor Katzenlson pointed out that a global analysis of a
program is usually necessary in order to improve it. He wondered why
there had been no mention of this technique in the improvement of NPL
programs.

Dr. Darlington explained that NPL is a purely applicative
language, and for that reason no global analysis is necessary. This
is in contrast to SETL.

Prof'essor Katzenelson then enquired whether any more had been
done on optimising storage strategy in NPL programs. Dr. Darlington
agreed tha t this would be a necessary final step to producing a good
program. A complete analysis can be made within the recursion
equation structure, though it has not been done yet. Again no global
analysis would be required.

36

Professor Michaelson asked whether any large numerical
problems had been tackled within the applicative framework.
Dr. Darlington replied that he intended to, but had not done so
yet.

Professor Dijkstra expressed his doubt about what can be
achieved by transformation systems of the kind which Dr. Darlington
had described; for example, whether such a system could derive the
logarithmic form of the Fibonacci function. This doubt is based on
the observation that the most efficient forms of algorithms often
rely on mathematical theorems (sometimes rather deep theorems), and
hence the transformation from a simple program to an efficient form
must embody the power of a theorem prover. Even with external
guidance the transformation path could be very long if it exists at
all.

In reply Dr. Darlington stated that he believed such systems
ro be of practical value in program development, even if it were
necessary for the programmer ro provide advanced forms of guidance.

Professor Paul, quoting Dr. Darlington's remark that logic
programming "unifies logic, programming and artificial intelligence",
asked whether logic programming was likely to have any impact soon on
general programming styles.

Dr. Darlington reported that programmers with Prolog
experience claim a great change in their own style, and that they
believe logic programming will have more widespread impact soon.

Dr. Henderson pointed out that recursion equation languages
seem very unnatural to conventional programmers - and Prolog will
seem even more so. This will present a problem for the spread of
logic programming.

References

Arvind and Gostelow, K. (1977). "A computer capable of exchanging
processing elements for time", Information Processing 77, B.
Gilchrist (Ed) North Holland, New York, pp. 849-857.

Backus, J. (1978). "Can programming be liberated from the van Neumann
style? A functional style and its algebra of programs", Turing
Lecture, CACM 21, (8), pp. 613-641.

Bauer, F.L., Partsch, H., Pepper, P. and Wossner, H. (1977). "Notes
on the project CIP: outline of a transformation system", TUM-INFO -
7729, Technische Universitat Munchen.

Bibel, W. (1976). "Syntheses of strategic definitions and their
control", Bericht Nr. 7610, Abt. Mathem, Techn. Munchen.

37

Burstall, R.M. (1977). "Design considerations for a functional
programming language", Prec . of Infotech State of the Art Conference,
Copenhagen, pp. 45-57.

Burstall, R .M. and Darlington, J. (1977). "A transformation system
for developing recursive programs". JACM Vol. 24, No.1, pp . 44-67.

Burstall, R.M., MacQueen, D. and Sannella, D. (1980). "Hope, a Higher
order applicative language", Report, Dept. of Computer Science,
Edinburgh University.

Clark, K. and Sichel, S. (1977). "Predicate logic : a calculus for
the formal derivation of programs", Proc. Int. Joint Conf. Artif.
Intell.

Cla rk , K. and Darlington, J. (1980). "Algorithm classification
through synthesis", Computer Journal 23, pp. 61-65.

Clark, K. and McCabe, F.G. (1979). "The control facilities of
IC-PROLOG", Report, Dept. of Computing and Control, Imperial College,
London.

Colmerauer, A., Kanoui, H., Pasevo, R. and Roussel, P. (1972). "Un
systeme de communication homme-machine en francais", Rapport
preliminaire, Groupe de Res. en Intell Artif. U. d'Aix-Marseille
Luminy.

Darlington, J. (1975). "Application of Program Transformation to
Program Synthesis", Prec. of International Symposium on Proving and
Improving Programs, Arc et Senans, France, pp. 133-144.

Darlington, J. (1977). "Program transformation and synthesis:
present capabilities", Report 77/43, Dept. of Computing, Imperial
College, London.

Darlington, J. (1979). "The synthesis of implementations for abstract
data types", Report, Dept. of Computing and Control Imperial College,
London.

Dar ling ton , J. and Feather, M.S. (1979). "A transformational approach
to modification", Report, Dept. of Computing and Control, Imperial
College, London.

Fea ther, M. S. (1979). ,It ZAP' Program transformation system: Primer
and User's manual", DAI Research Report No. 54. Edinburgh.

Gerhart, S.L., Lee, S. -and deRoevar. W.P. (1979). "The evolution of
list copying algorithms", Proc. 6th POPL, Texas, pp . 53-67.

Green, C.C. (1969). "Application of theorem proving to problem
solving", Proc. Int. Joint Conf. on A.!., Washington D.C., pp.
219-239.

38

J

Gurd, J., Watson and Glauert, (1978). "A multi layered data flow
computer architecture", Dept. of Computer Science Rept., Univ. of
Manchester.

Guttag, J.V. (1977). "Abstract data types and the development of data
structures", CACM 20 (6), pp. 306-464.

Hogger, C. (1977). "Deductive synthesis of logic programs", Res.
report Dept. Computing and Control, Imperial College London.

Kernighan, B.W. and Plauger, P.J. (1976). "Software Tools",
Addison-Wesley.

Kowalski, R.A. (1979). "Algorithm = logic + control", CACM 22,7, pp.
424-436.

Manna, Z. and Waldinger, R. (1971). "Towards automatic program
synthesis", CACM 14,3, pp. 151-165.

Manna, Z. and Waldinger, R., (1979). "Synthesis
IEEE Trans. Softw. Eng. SE-5, pp. 294-328.

dreams => programs" ,

Manna, Z. and Waldinger, R. (1980). "A deductive approach to program
synthesis", TOPLAS 2 (1), pp. 90-121.

Schmi tz, L. (1978). "An exercise in program synthesis: algorithms
for computing the transitive closure of a relation", Bericht 7801,
Fachbereich Informatik, Hochschule del" Bundeswehr, Munchen.

Schwartz, J. (1977). "USing annotations to make recursion eq ua t ions
behave", Res. Memo, Dept. of Art. Int., Edinburgh Univ.

Roberts, G. (1977). "An implementation of PROLOG", M.Sc. thesis.
University of Waterloo.

Robinson, J.A. (1965). "A machine-oriented logic based on the
resolution principle", JACM 12 (1), pp. 23-41.

Waldinger, R. (1969). "Constructing programs automatically", Ph.D.
thesis, Carnegie-Mellon Univ.

Waldinger, R. and Lee, R.C.T. (1969). "PROW: a step toward automatic
program writing", Proc. IJCAI, Washington, D.C.

Warren, D., Pereira, L.M. and Pereira, F. (1977). "PROLOG - the
language and its implementation compared with LISP", Proc. Symp. on
AI and Programming languages (SIGPLAN Notices).

39

I

