
NOTATIONS AND PHYSICAL COMPONENTS USED IN THE DESCRIPTION, DESIGN,

AND TEACHING OF COMPUTING STRUCTURES

C. Gordon Bell

Rapporteurs: Mr. J. G. Givens

Mr. J. F. Dunn

Abstract: Two notations, PMS and ISP, have been developed in order

to describe computer structures. PMS (for Processors, Memories, and

Switches) is a notation for showing the structure of physical

information processing components in terms of information flow

attributes. ISP (for Instruction - set Processor) is a notation

for defining the behaviour of the components in terms of register

transfers. A set of Register Transfer Modules (RTM's) has been

developed which uses the notations. In three lectures, Professor

Bell described the modules and notations and discussed their

relationship to the description, analysis, and design of digital

systems. Finally, he discussed briefly the integration of hardware

into a computer science curriculum, such as has taken place at

Carnegie-Mellon University.

Lecture

In response to Professor Randell's introduction, Professor Bell

began with a few words about the book he and Allen Newell wrote (2)

and said he was going firstly to discuss physical tools for teaching

about machines. His lectures would move from physical detail towards

notation and philosophy. Unlike Professors Barton or Lampson,

Professor Bell was more concerned with teaching about the past and

present, since he could not foresee the future of technology, and

since the future is an evolution. His lectures discuss three topics:

(i) Register Transfer Modules: A physical set of Modules for

designing digital systems;

(ii) Notations for describing computers, as discussed in Bell

and Newell's book and used therein to describe about forty

machines:

105.

PMS (Processors, Memories, and Switches) describes the

physical interconnection of a digital system, while ISP

(Instruction-set Processor) ' is used to describe the

behaviour of the instruction set of a computer, i.e . to

describe formally what the machine does (ISP could replace

conventional programming reference manuals).

(iii) The Integration of Hardware into a computer science

curriculum.

Register Transfer Modules (RTM) Trademark of Digital Equipment

Corporation -- RTMs are marketed under the name PDP-16.

Register Transfer Modules oc cupy a medium level of logical design

capability, having registers and register operations; they are below the

level of components such as proc,essors, secondary memories, disk control­

lers, and so on, but not at such a low level as 'and' and 'or' gates,

flip flops, etc. In 1967 Carnegie-Mellon University applied for an

equipment grant to use in teaching, intending to use Clark's

Macromodules were a few years late in arriving and five to ten times

more expensive than anticipated , they were impractical for teaching.

Therefore, I set out to design a set of Modules for teaching. However,

they are of academic interest and commercial use as well. (They were

not designed solely for teaching purposes because of the limited market.)

They are described in detail in an article (1). There were three

influences behind the design: the greatest was that technology had

only certain things with which to build, but also I had may own

prejudice about design, and most of the principles were carried over

from earlier machines on which I worked, like the PDP-6 and PDP-10.

The other influence was my conviction about the teaching of logical

design. While teaching about combinational and sequential circuits -

switching circuits - has become a really reputable academic pastime, I

believe that switching circuits are almost totally irrelevant to

computer design and I want the modules to reflect this. Some earlier

texts do use register transfer concepts, in fact, but in a very limited

way. The basic requirements, then were:-

(i) The absence of switching circuits in design.

(ii) A representation which was similar to the physical structure.

Whilst a conventional state diagram is fine for an initial

design, is altered all of the logic is affected to a high

degree. Hence I do not regard it as a useful design tool.

106.

(iii) Effective use of technology - nobody seemed to be making

effective use of the new components, except to increase

density.

The applications of register transfer modules are: special purpose

digital systems; the computer-related area; and, least constraining, for

teaching. The size of the problem covered is one of perhaps ten to one

hundred control states and ten to one thousand words of read/write or read

only memory, of speed say 200 nanoseconds to 1 microsecond per register

transfer operation. Logic interconnection rules and TTL logic technology

are used; the word length to encode an integer may be 8, 12 or 16 bits.

So we arrive at a fairly small system. It is not worth competing with

mini-computers, but in fact 'using this technology a mini-computer can be

packaged easily. In fact, an RTM implementation costs less than a

poorly packaged (or aged) mini-computer.

Figure 0 includes some key modules. There are four module types:

K-control for controlling all interaction between other Modules; M-memory

for holding data; DM-data operations with memory (e.g., an accumulator);

T-transducers for getting data in and out of the system (e.g. analogue

devices, Teletypes).

A system has two parts: the data part (consisting of M, DM, and T

modules), (and the control part (K Modules). The control part of a

system, costing about $5 per control step, causes an operation such as

~A+B, and C are registers, to take place in the data part using an

evoke module, K. evoke. There is also feedback from the data part to

the control part. A Kb control (K. branch) causes a particular operation

to take place depending on the value of a Boolean input to it. It is

quite useful that we can write out these 'K's in flow chart notation,

such as:

107.

if bool ean
is true

Ke

1
A ,- B+C for K. evoke/K. e

1
I .
">lbOOlean

Kb for K. branch/K.b
if boo lean

i s false
'IV

where these also are physical component s, and interconnecting

lines represent wires.

We are now in a po s ition to build an actual computer (fig. 0).

All the data-type Modul es are interconnect ed by means of a bus in t he

upper right of th e f i gure, and there i s a hidden bus controller K. bus.

Consider the operation P ~ A. A signal is sent from an evoke, Ke, to

the first GPA, cau s ing it to send the value of r egi ster A (t h e accumulator)

on to the bus; t he sec ond GPA is signalled to receive a value from the

bus and place it in register P (the program counter). The hidden bus

controller, K. bus, s ignals when the transfer over the data bus is

complete.

All transfers of information take place v i a t he data bus. A

register l holds an instruction, a s obtained from memory . Consider a

16-bit word s i ze, when an instruction has a 3-bit opcode (i<15:13» and

an 11 -bit address (i<1 0:0». This leaves two spare bits ("for expansion").

Some typical operations on memory M are shown also in fi g. 0, where

regi sters MA and MB are the memory address registe r and the memo ry buffer

register respectively, and L is the link registe r for the jump and link

(JML) instruction.

Various bit s of i can be used for special purposes, as with t he

'Operat e ' operation (opcode 7). This could be achieved with a manual

evoke; a button is pressed to give a start signal. The entire execute

finishes with a serial merge, which takes control flow back to the f etch

step again.

108 .

At this point Professor Bell showed some physi 0a l modul es.

These are normally mounted on a standard 19" frame with the pre-wired

bus wiring on the back (so that stud.ents do not have to do the bus

wiring themselves). Six evoke units are contained on one plug-in

board. Typically, a computer with 256 memory words may be built

for around $1,000.

Discussion: Barton asked Professor Bell to detail what was contained

on one of his cards.

Bell replied that a GPA contains about sixty integrated

circuits . There is a low level of integration on a

GPA; the only things that are at MSr level are the

four standard ALU chips (four bits at a time) of

thirty two functions, most of which he does not use.

There are also the A and B registers, and the data

paths.

Barton .then asked what the other rcs were on t he card shown.

Bell replied that there are the bus interfaces: rcs to

drive the bus and to receive from it. The card is

filled with input gates so that many evokes can be

done to a single Module. There are about five

transfers into the A and B registers.

Horning asked how many cards were needed and how long it would

take to construct in the laboratory the computer which

Bell

Lauer

Bell

Page

had been discussed.

said that for the control part about eight big cards

(Bt" x st") and 12 small ones with K. evokes and K.

branches. All fit in one 19" x 5t" mounting panel.

The time required to wire a computer is about four

hours (i.e. about one wire per minute). A good

student can get a computer operational in eight hours.

interrupted to ask if that included memory.

said it does; the memory is bipolar.

asked what initial knowledge a typical student possessed

when starting a course: what were Professor Bell's

prerequisites?

109.

Lecture 2

replied that the electrical engineering students had

only programming knowledge. This work occurs in the

second term. It is a lot more natural than working

with 'and' gates. How, he remarked, does one add a

couple of integers with an 'and' gate?

Suchard asked what an ' and' gate meant to a student.

Bell said it was a physical thing, and 'and' gates do not

really interest him at all.

Barton

Bell

wondered if students were told about the details of the

components in the modules.

explained that they learn afterwards, in the second

semester. At this point, these are components just

like 'and' gates.

Michaelson asked if the students were actually given

instruction codes .

replied that they were not; this is part of the design

problem.

Typically, in the first semester, students may

design a device, for example, to monitor the thickness

of a coating on a continuous assembly line and ' display

results of calculations, or the distribution, on the

memory lights - a typical hardwired controller. The

algorithm can be hardwired or an interpreter may be

buil t.

The modules described in the previous lecture are u sed in logical design

within electrical engineering. In the laboratory class, six active lab.

stations and twenty module panels are used. This level of design has been

taught to students, both of computer science and of electrical engineering ,

for a coupl e of years now. We teach this "top down" approach, and the

computer science students, at l east,are happier starting with register

transfer modules and going on to logic problems later.

To illustrate some of the things we do: a simulator was written last

summer before we had the modules, but it u sed quite a bit of computer time.

Using the modules, we can illustrate parallelism, as a parallel branch is

just a wire and the consequent parallel merge is another control.

110.

We can also illustrate synchronism. We show the sharing of common control

logic; a "producer" module can btl linked to a "consumer" module with a

"queue" module, and P and V functions can be demonstrated (though the "busy

waiting" state is satisfactory in our systems of modules since they are not

multiprogramming). Half duplex and full duplex transmission can be

illustrated. Here there are problems of design interaction. We pose

problems where two groups of three people co-operate to design a system

to transmit data to one another: a group works on either end, and a

number is to be sent in both directions.

the transmission later.

Errors can be introduced into

NOTATIONS, as used in Bell and Newell's book.

PMS is used to describe the physical structure of the interconnection

of computer components, and the ISP notation is used for describing

instruction sets. ISP can be used for other purposes, but is not designed

for expressing algorithms generally. These notations were devised in

order to provide methods for describing the machines we have (not those we

don't have yet) as clearly as possible, although there is every indication

that it does the latter too.

PMS for Processors, Memories and Switches.

The primitives of PMS, as well as Xrocessors, ~emories, and ~witches,

are !/controls, Qomputers, !ransducers, ~inks, ~uman (machine operators, etc.),

and ~ata operations. The underlying motivation for PMS was to provide a

fairly casual but formal method of describing parts of machines and

illustrating their structure, and of comparing the structures of different

machines. It is a representation by which one may posit the state of a

design and modify it. Using it, one may check if configurations are

legal and so on.

standards.

Possibly, it could be used in setting definitional

Fig. 1 summarises the iueas of PMS. PMS is defined in Bell and

Newell's book, it deals only with information flows (bits per second).

Now, we can also use it

example, we have D/data

at lower levels (than processors, etc.); for

operation ~ID(AND)I~; we can nicely classify
~

current technology in this way. Is the notation general enough?

:IAND I~ is almost legal PMS! At the other extreme, using PMS, one

can check for what are sometimes called "overruns" (e.g. on a disk,

111.

because of insufficient channel capacity), and check if one has a le gal

configuration.

Fig. 2 shows a simplified computer block diagram of Whirlwind I.

It is a 1949 diagram, but is fairly typical of modern diagrams.

Possibly it has more detail than a modern diagram. This is a

classical block d i agram ; we wanted more detail than that.

Fig. 3 shows fig.2 trans l ated into PMS - it is almost the same

diagram. Note t he all-powerful control and the primary memory.

Fig.4 shows how we can describe Whirlwind fair l y accurately in

the same space as the block diagram used. Engineers have compl ained

that there are no boxes round the components.

the primitives with boxes if t hey want to.

I tell them to surround

In Whirlwind there were two parts of primary (program-storing)

memory. The superscripts relate to footnotes and are u sed to clarify

t he diagram . Pc is a central processor (the commonly u sed term CPU is

ambiguous - is t here memory associated with it or not?). There is

some switching, and there are some controls for transducers for I/O.

Note the 5" and 10" cathode ray tubes, one for producing film and one

for visual display. Ther e are two drums and a magnet ic tape drive.

Randell asked what the arrows meant.

Bell They show direct ion of information flow. The

vertical arrows show the connection between the

cathode ray tubes and the light pen and camera.

Most horizontal arrows show information flowing

out of the system .

Michaelson explained that the arrows were not typed very

accurate l y.

Fig.5 shows the official definition of a computer.

primary memory.

Mp is the

Fig.6 shows a conventional func·tional block diagram and the

corresponding PMS notational model. These ar e shown for comparison so

t hat it may be seen what the mapping is. We usually don' t see so much

in a machine structure diagram as we do in fig. 7 because blocks tend to

have only their most important function associated with them. Note,

11 2 .

i.n this figure , that

(i) memories tend to have control associated with them;

(ii) using the notation, we can break components into more and more

details in terms of lower level components;

(iii) how can we say a processor is a primitive? We can, if we are

interested only in the level of processors.

We can go down from the basic C:=Mp - p to as Iowa level as we

want: to 'and' gates - even to circuitsl If we have a computer network

C __ s.---C

C -- ----- C (S is a switching medium or a fixed

link device) we may not want more detail. We need only represent as

much as is necessary for the task of description at hand.

Pig. 8 shows how we can write a decomposition of a component

into SUb-components, which are all well defined. The four switches,

from left to right, select the disk drive, the platter, the track on the

disk, and the word wanted on that tract respectively.

sign means that this is how we define the disk.

The substitution

Randell asked how the difference between a normal disk and one

getting information from 32 parallel tracks would be

Bell

shown.

The timing would show. The information flow into

the device, as a bit rate, could be evaluated, and

one would see 32 times the information rate if the

disk was operating in parallel while otherwise it

would be the same. The attributes of the switch give

the transmission width.

Pig. 9 shows an illustration of the conventions we use for

abbreviating parameters to save writing: we have aliases for names.

In the case of memory, we must distinguish primary memory from secondary

memory and so forth

Pig. 10 shows the essential structure of the PDP-8 multiprocessor

system. On to the basic computer structure are added a display processor

and another processor called a LINC processor; there is also a secondary

memory, a console, and a transducer. The LINC processor has its own

113 .

secondary memory . The two independent line s are for data flow and control

flow, but we need not show this much detail in our - initial diagram. Fig.

11 shows on a page all the characteristics of the PDP-8 LINC computer .

Now, to illustrate a large computer, fig . 12 shows part of the

"IBM 6600" . There is a larg~ central processor, etc. , there are also

ten I/O computers which ' switch to a fairly l arge periphery . Fig.13 shows

the same but provides more detail, e.g. how fast the machine is. We see ,

in the top part, ten smaller memories (peripheral processor memorie s)

connected t o ten processors, and t he barrel, the processor state

associated with a processor. The barrel has ten 'words each of 51 bits,

with access time 100 nanosec onds per word. There are various types of

swi tches to the periphe ry, and two controls called the read pyramid and

the write pyramid f or transferring state to the central computer.

In the CDC 6500, there are two processors. Fig.13 ignored all

activity associated with the central processors. This is given in the

footnote (fig.14) which defines the central processors and gives some

important attribute values. We see some important characte r istics of

that machine and get an idea of tho amount of data flow and hence what

it can process.

Fig . 15 shows the basic N('CDC 7600) . N denotes that t he machine

is really a network of computers ; the "'" denotes a manufacturer's name

or the proper name of a component . This machine is a derivative of the

6600 and 6500; it has fifte en peripheral processing computers connected

to fast channels and also one single p'rocessor connected into primary

memory.

Fig.16 shows t he footnote to fig .15 ; we s ee what we expect to get

from the central processor. It ' s a fairly fast one; 27! nanoseconds

per word, a 16 word processor state, and a 60-bit word. In note 4', the

peripheral processing units are defined: a pair of smal l but fast

memories connected to a single address per instruction pr oc'essor.

Finally, fig.17 shows how machines are mapped into a general model.

Discussion Page said that Professor Bell had a notation with which he

could describe quite c ompac tly machines of the present

and the past . How much history did Professor Bell f ee l

it was worth while to present in a course?

114 _

Bell asked to defer answering.

Randell complimented Professor Bellon his notation, whose main

importance is the concepts of the classification which

Bell

lie behind it. Since the notation is two-dimensional,

the engineers' request for boxes struck Professor Randell

as an eminently reasonable one.

commented that line printers do not have boxes in their

character sets, and said that boxes never struck him as

being important. In fact, he remarked, he would like

three dimensions, but it is hard enough to get books

published without the need for stereoscopic glasses in

each book. He went on:

PHS is more than just a way of describing older machines. We're

really designing with it now. A hard part of design is trying to

generate enough alternatives. Engineers tend to like their first design -

not the one they're happiest with, but the only one they look at. With

some way of describing what you've got you can generate more alternatives.

I am tired of people re-inventing all the old concepts. The purpose of

Bell and Newell's book was to get the point of view across where when we

start talking about a new computer we are starting at a reasonably high

level. A surprising number of 'new' machine ideas related to microprogramming

were in either Ace or Atlas; I'd like people to read about these machines.

Still, the constant re-invention of ideas works for some reason; maybe

there are some new ideas?

Randell "He who forgets the past is forced to relive it!"

Lecture 3

Whether or not our notations will be of any use depends on what

'tricks' we can do with them. In the case of PHS, we can classify the

set of components, which helps in design work. Designers operate better

if they've got a well defined set of components that they understand.

When marketing, also, it helps if units can be well defined and labelled

with a name all too often just to catch people's imagination and

attention. For example, names like multiplexor, channel, and so on

catch on and are better than numbers.

With regard to the use of PHS inside an actual computer, we are

115.

doing three things: we are putting the data structure of PMS into a

machine, we are operating on this data structure and asking questions

about it, and we are performing calculations on the structure; this is

the real test of the notation. Fig.18 shows how we can print on a

typewriter or oscilloscope the relationship of the components . It shows

the kind of relationship that happens to be there. Now, given that we

have a computer structure in our machine, we'd like to know something of

its reliability, and fig.19 shows how we are able to specify various

paths through the structure and obtain the overall reliability. This is

a good way to look at reliability. Currently, for a multiprocessor/

multimemory structure with a certain amount of I/O, it is possible to

compute the cost and, in closed form, the performance of the system.

Fig. 20 shows how we can plot quality, cost, and performance per unit cost

as a function of the number of memories. We're trying to develop this

for interactive use.

ISP for Instruction-set Processor. (Fig.21).

ISP is for describing the instruction sets of current machines, and

also machines of the next few years at least. Its purpose is to define

a computer (i.e. an instruction set) as seen by a program or programmer.

Its primitives are memory, instruction formats, and so on. Its use is

in the description, comparison, and formal specification of instruction

sets, and it may be interpreted by machine.

It is desirable to be able to define a machine and its instructions

precisely. In Bell and Newell's book, we described ten to fifteen

machines using ISP. Since then, the ISP specification of a fairly large

mini-computer has been produced and this specification has been placed in

the programming manual. It is not in lieu of the programming manual, but

as an experiment to in¥estigate its usefulness. ISP tends to be fairly

good for doing design work.

Incidentally, we didn't have the ISP of System/360 when we wrote

the book. We thought it would be too difficult to work out. Since

then, I've had the opportunity to start a project to work out the ISP

of the 360, which is still not yet completed. It is a very difficult , task

to get the ISP of a machine of that scale. I have a great deal more

respect for the 360 after trying to do that task. It is very difficult

when one has access only to the programming manual.

116.

Barton

Bell

asked what Professor Be l l t hough t of the APL de script ion of the 360.

It's a very impress ive job of describing the 360. We've referred

to the APL description from time to time when we've come across something

not in the manual, but it is very difficult, even for someone fully

conversant with APL, to extr act instruction descriptions from the APL

definition, and we want our notation to be used by people to understand

what a machine is. As a 360 user, I couldn't make use of the APL

description, but I want our language to be of use. More functions or

procedures in the description would have helped.

Randell suggested that it was the structure of the APL that was the

difficulty.

Bell I agree. It's too homogeneous. For example, ~ tend to define

say floating point arithmetic in four or five steps. We .ught say

FAD ~ (F ~ F + (sf] M [ea]

where the r sf' defines a data step signifying the use of a particular

kind of single precision floating point number, and later on we have to

define rsfl, etc. In this way. one can see simply all one normally

needs to imow, but one can obtain greater detail if one wants to.

Now, let's take a small 12-bit machine and go through the definition

of it (Fig.22). Note the use of italics to provide comments. The

first stage in these ISP definitions, which are fairly highly stylised,

is the definition of the central processor state, the memory which must

be saved between starts and stops at the console switches. We could go

at a lower level than we do , by clock pulse, but the definition is assumed

to be for a program or a programmer who doesn't see the clock pulse. We

have a 12-bit accumulator. We use a range marker to denote the range of

digits within a registe r or memory cell. The notation AC<O:ll~ implies

binary notation; for decimal we would have AC< ••• ~".

memory we have the array declaration MrO:7777B1<O:11~.

For primary

These

declarations are like memory declarations in Fortran or Algol. Then

we define the subarrays: memory is divided into pages, and so on, and

finally we have the state bits and the console and data switches.

Fig. 23 shows the instruction format, defined in the same way. We

name the bits in the instruction format as we think people will want them

named. Compare this to the usual familiar box diagram (fig.24).

117.

Unfortunately, I think these box diagrams are better for showing instruction

formats, and often use these boxes as comments!

dimensional representation in many cases.

It's hard to beat a two

However, when defining what the instructions do there is not much

advantage in going to two dimensions. Fig.26 shows the instruction

interpretation process as conditional statements: if a then b is written

as a ~ b (actually as a ~ b in these diagrams). The only reserved word

in the language is "next" execute the next statement sequentially. So

the first two statements are executed in parallel, and then the next after

these in sequence. The instruction is picked up from the memory location

pointed to by the program counter, the program counter is incremented,

and the instruction is executed: "fetch execute". Once the instruction

is fetched, it is executed, and fig.27 shows what the instructions do.

For AND(:= op = 0) ~ (AC ~ AC AM [z] we may just write AND ~ (AC ~ AC ~ M

Cz] - a shorthand, when we don't care what the opcode is. Being in a

particular state when given a particular opcode, the machine executes a

particular instruction. Note that all the operation statements are in

paral,lel; hopefully only one operation will be executed.

Suchard asked what the symbol meant.

Bell denotes concatenation. We allow concatenation both on the

left hand side and on the right hand side of a statement. The L in the

diagram is a 1-bit register used in the two's complement add instruction.

Fig. 28 defines the micropragammed operate instruction set, in

which the remaining bits of the instruction are used to define the

instruction.

In fact, figures 22, 23, and 25 to 28 provide the complete definition

of this machine in two text pages, and people find this description is as

precise as the programming manual. Whether I would want it to replace

the programming manual I don't know. While I was drawing up the ISP,

however, I found errors in the programming manual!

Discussion Suchard asked about the difference about left- and

right- pointing arrows.

replied that the arrows "~,, in the diagrams should really

have been It II, meaning l! ... ~ It was a mistake

not to separate them more, typographically,

118.

Seitz

Bell

asked if th e lSI' des cr i ption would he l p one to des i gn tha t.

machine.

said that it provides a convenient description for helping

a designer t o express his thoughts on paper. ISP has

been used in design situations, and some designers

constantly use it. It is very good for expressing

microprogram activity.

Michaelson remarked that this sort of thing struck him as being the

unintelligent part of the design, and asked if it helped

to teach students real design.

pointed out that ISP helps to show the state of a design at

one time, and transformations could be made in it - just

like state diagrams, Karnaugh maps, and other abstract

representations. He concluded that apprenticeship was,

unhappily, the only way he knew to learn design, though

the Open University's television methods were potentially

great.

Michaelson commented that this was at variance with Professor

Barton's comments, and asked Professor Barton for his

opinion.

Barton replied that his feeling about apprenticeship was that it

must not be used to force students to copy the methods used

by their instructors, and Professor Bell agreed with this.

COMPUTING AT CARNEGIE-MELLON UNIVERSITY

I shall now discuss where all this fits into the educational

programme. There are about forty full-time Ph.D candidates in the

Computer Science department. We have about five students each year

in the Ph.D and Master's programme in Electrical };ngineering and about

thirty students each uear in the undergraduate Computer Engineering

programme. The Register Transfer Modulf>s are used by electrical

engineering undergraduates. In the electrical engineering department,

we use the programme outlined in a report (4) by a COSINE committee,

which discusses computer engineering with electrical engineering.

In the Computer Science department we are not trying to provide

computer designers - it looks as though Manchester can produce all the

world needs! and do a good job of it too. In another sens e , there

119

is no choice, because ours is a computer science department - all our

students are interested in operating systems and programming languages.

That is the environment. Our whole programme consists of four "core"

courses. I teach a semester "core tl course, and try to produce

graduates able to operate in a computer science environment. Assuming

that students are going to be programming primarily, then I'm trying

to teach them not to be frightened of the hardware so that they can

challenge the engineer. I am continually annoyed with my fellow

engineers, who are so pessimistic when discussing the possibility of

some slight change to a machine. We are trying to teach our people

to sort out when things are expensive and when they're not. We're

trying to teach them to know how to read the rules of the game and maybe

to play it. I think it's important to provide this defence mechanism,

and also to teach another type of machine - a physical machine as

opposed to mathematical, and language defined machines. This gives

insight into the kinds of machine that one is working with.

trying to eliminate the hardware/software barrier.

We are

Discussion Page said that this ,;as indeed a v ery powerful argument

and asked if one should not neglect, even at

greater cost, also putting into the course a study

of the simulation of machines.

Bell replied that he did not want to spend too much time

on that aspect. A student on this course would by

this time have simulated a simple machine.

Professor Bell commented that while it is fairly

simple to write a simulator, it is on the whole

very badly done and ca.n waste a great deal of

computer time. He supposed that students coming

into this background have not been exposed to

much of an engineering training, and so he liked

to teach them about time, information, space, and

cost. Problems can then be posed concerning

minimising time, cost, and so on in circuits.

Students should be encouraged to know,

fundamentally, what components exist at various

levels (though this is fairly technology dependent),

and how to manipulate, analyse, synthesise, and

120.

/

References

judge them. Students should be able to form various

structures appropriate to the level of these components,

and in some cases they are asked to write programs to

generate structures;

educational as well.

this is very interesting and very

These are the sort of things which

are done in Professor Bell's department. When his

students come out, they should have the attitude that

they ~ design, no matter how theoretical their course

has been. In some areas, notably mechanical devices

such as disk files and tape drives, we badly need

theoretical help!

1. C. GORDON BELL and JOHN GRASON: "The Register Transfer Module Design

Concept" (Computer Design, May 1971, pp 87-94).

2. C. GORDON BELL and ALLEN NEWELL: "Computer Structures: Readings and

Examples" (McGraw-Hill, 1971).

3. W.A. CLARK et al: "Macromodillar Computer Systems" (Proceedings of t he

1967 SJCC, pp 337-401 (6 papers).

4. CLARENCE L. COATES, JR. et al: "An Undergraduate Computer Engineering

Option for Electrical Engineering" (Proceedings of the

IEEE, Vol.59, 6(June 1971), pp 854-860).

121

I MA-I'; .ud I I K nu .. _ "'Ok~START I I K. bo.o. ~

I l (;PA A.8 f--
P -p. 1

f--GPA: P,l

I ' -MB I ,~.1tn';o ~·f.l"" U.n,f" flO"'" I--
I I f I '-0 KIY.

MA_ ;(10 .0 > "',mo< ' Mil. 1,18

I I
I T yP<! l---

I I K· ... ~~~L!!~h _.,
Ktw_-8 _ wf\' ,

op : ",(IS: U)

,"0 .00 l:sz DO' JM$ JMP W" 1 ~;:·
1opoOI lop° 1) 1",,-21 1011- 31 1",,041 top'SI 101>"61 I 8u.- A I

8 -Atll - .. B-kl~
hu~oul" ... 1

1 , , Kc. ' '~? r. :0"'-01'" "

r -A_A'II A-AAS 0·- 8' 1 I(.. ",1"'''\10 K« ,(3) 0... . < 15 ~ ..

1 '-=
p- i (10.0 > 1';01 ,(10) _11._0

." •

+. 1,1 8 - 8 Ku , (9) .. 1\ - -."

. r ' - 0 I 1«.: .(8 > "'11.-11..1

P_P' l r-I I Ko;e . (7) _11._1\12

r 1(. St" ,. I I "'ce,<e> _A 11.)(2 I
t h.wu~' lon f",,,,.,, I .P 1)(I I I I(u i< 5 > . P -l

'<kif'"

I e mod", .. without typo. vo ... "mt<I 10'" K

Figure a

PHS - for Processors, Memories and Switches

- purpose : define the structure (inter-

relationship) of computers from various

v i ewpo i n t s (e, g " i n forma t i on f I 01" powe r ,

space)

- primitives:

S(switch),

P(processor) , M(memory) ,

K(control), D(data operation),

L(link), T(transducer, terminal), and

H(human)

- uses: description , comparison , analysis

(e,g " bottlenecks) , spec i fication, design

(e , g" reconfiguration), standards

Figure 1

I

I

ARITHMETIC COt-.'1'ROL
ELEHENT

H 1t Jl
DIGIT TRANSFER RlIS

INPlIT OllTPIIT

Fi~ure 2. Simplified computer hlock diagram
Whirlwind I

Figure 2

Mp J? -T
'," I ' , ". / ,

'-0. K /

Figure 3

STORAGE

Jl 1t

x

rl ---------- T . conso le -

Pc:"--K - S3 K_ T (paper tape; reader jpunch)-

K- T('flexowriter; 10 char/s)­

K-T(CRT; di.play; area:s2 jlOZ in·2)~
K_T(I ight; p.,,)~1

K - T If i 1m; camera)_1

K_S_Hsr*A : B; drum; td:I6-17600 as;]

L 64 ~s/w; 12 • 2048 w; 16 b/w

K_S_HSrO.1,Z,3a,3b; magnetic tape;]-

80(}-IOOO ft: 30 in/sec; (2+1

index) b/cnar; 100 char/in

<H(tOCJgle switch; 8 ~s/w; 32 w; 16 b/w)

2pc(SO kopts; 16 b/w; 1 instruction/w; 1 addressl.l ·nstr"cCi",,;

H.procusor state (J w): technolOCJY: vacuum tube: 1,1i8-
1~6)

3S(fixed: from : Pc; ~: 8 K; concurrency: I)

·Hp(.O: I; ·core; 8 "s/w; 1024 w; 16 b/w; taece .. : 2 us)

c e_
e-

Figur e 4

Mp Pc

Figure 5

T

,.

•

•

r-
Primary memo ry / Arit hmet ic unit/ Te rminal/

~o.t.~

Program memory/ Dat a oper ator/ O ;... Transducer/
~ Ex t

T{input, out · ---)
"p
(e . g. core

t

I
I
I

L

L

(e _ 9- carel 'eade r
(e.g. in teg rated memory)
circ uit 10gi c)

l ine pri n ter)

~ f
Inst r uct ion s I

: I
..... I

Control/K

-- - -- (. -9- int egrat ed
circuit l ogic)

I- __ ~_I
Contro l

Conventiona l Functiona l b lock diagram

"p--- 0 - -- T--- X

I~' : L ___ ~ __ ..!

PHS notation mode l

Figure 6

Oau

0 .1 ~ ~ I

I' ri"',H v
Dol ! .' . b

"" I."CI' on lI,i\l" _' ;(/O O.ll a L.
m(' "" , r) /~r

~

7 ,
~trQr y

cont rol /I'. ("'p)

7
I I I
I I -- - -

___ Oata flow

---(ontro l flow

I
I

At i thme l i,

(0" " 01/ 1((0)

I
I
I
I

tn~truc ti on ~ I
In\tr uct.on

--+
- -- interprete r - -

Addre~\e \
con trol/1<.(P)

Function .. l b l o t .. di.Jgram

H']Or'IH'-, . , , , , , ~ -... ~
Central proceH.or/Pc

Pt'lS d i agram

Figure 7

-

I n l>" t -!')" ' I"' 1

I .. ,m, n .• (-./I

•
~

I npu t - Ou lpu t

COI'I lr o l/I« (I)

,
I
I
I
I
I

___ J

e nv

'--

I
~

e rn a l
ironment

J

M.disk : ..

[,(random> ,(random> '(linm> '(OYoliO> M(wo,d) J

M(function:primary)

M(primary)

M.primary

M.p

Mp

Figure 8

complete specification

drop the attribute, function, since it can
be inferred from the value

use the value outside the parenthesis, con­
catenated with a dot

use an explicitly given abbreviation, namely,
primary/p (only if it is not ambiguous)

drop the concatenation marker (th e dot), if
it is not needed to recove r the two parts
(all components are given by a single capital
letter--here M)

Figure 9

r -" .

I
T.console

Mp-S --Pc - S - T-

L Ms

~ __ ~ __ P.display

'--___ ~._~_ Pc ('LING)

, ,
~r.:"l , ".
" "3

Figure 10

Fi gure 11

-

T-

Ms-

..
I

" .

,----Pc

Mp (60 b / W) c':>,===:::::;,
\. J \ --Cc

Mp(12 b/W)--Pc(#1)--: +-r--_SI~_S_M~ IT I K-

Mp(12 b/w)}-_Pc(H10'}---....I K-
\)

Cio(#1:10)
\..) ~ _______ ~~ ______ -J

periphery

Figure 12

"('hrre), workiM : lOw :
I r'------________ T('Of'ad Start Console)-

",,(10 : ,),- S'--PC{!O:9)-_Stm sr11:12]'r" L{I, .. /w; 12 b/w)­

Lfixed K-STT{1 1 :2; CRT ; display)-

C['O:': ,porIPhe"j LT{kcyboard)-

and Control Pro- K[ReAd Pyramid: bltHer], 7
celsor/PC' 12 b/w: H(workln~ :

(1+2+~+~+5): 12 b/w):

.2 ~s/w)

"[~ri te Pyramid; bUffer:] 7

12 b/w; H(workin9

(5+4+3+2+1) w: 12 b/w:

• 2 ~s/w

"['Extended Core couPlerl--rs(4 K: 16 Ms)-Hs" (/0 : 15)

. 1 ~ s /w: (,0 b/w J I
Mp"(IO:31)_!f_~~c8 l(I2,3.4: to : 'Extended Core Coupled

C('Central) c·

Figure 13

I "p(core; 1.0 ~'/w; "096101: 12 b/w)

·Shhl'll: MUltiplex: .2,,5/101: 12 b/w)

-'c('Per lphera' and Control Processor: 10:9; time lTIultiplex:.llAs/w: I address/ln'tructfon:

12 b/w: Mps('Pro9ram Counter, Accumulator) 1,2 w/lnstruction)

·Mp(core; 1.0 ~s/w; "096 w: (5 x 12) b/w)

·shl_ IM.Iltlplex: 0.1 u.s/w: 60 b/w)

eM,C'htended Core Storaqe/FC~: 3.2 ~s/w : (125952/ R) 101 : (R l<. (60, I parity» b/",)

"See Chapter 39 for operation.

-Only present In CDC 6500

-No C('Central) 'n CDC 6~16: CDC ~SOO and CDC 64no d0 not have K('Scoreboard), separate 0'"
and "('Instruction Sta ck).

Pc('6600: IS, 30 b/lnstructlon: technology:transistor : -- 19M: data : sl,bv.w,sf.df) ,-

Mps(fllp flop: _ 16 w)_S{'Switchboard) O('Shift} , , ,
I ,

s- K{lnterpreted----f(' Scoreboard)

M. worklng

M.,nstruct,oI"nstructlon Stack: 1
content addressable;

flip flop: 8 w: 60 b/~

Figure 14

O('floolean)

OUI: 2: 'Increll'lent)

O('8ranch)

O('Add: 0.3 ~s)

O('lnng Add)

0(,11 :2: MultIply: ~s)

O('Divide: 2.9 LiS}

MS(HO:71'TS --~(M.buffer: cope to "ope tmnR.fePR)

Mp UO: 31)'-S' p,c·

l:~lnput Output Section; j_SCtime multiPlexli ~4 (HI :. 15 :
M{buffer: IS w: 60 b/w): IS C{'PPU) J L
55 ns/w: 60 b/w:

Basic N{'COC 7600)

Figure 15

, pPU)4

IMs('Larqe Core Me""ry/LCM: 1.760 u,s/w: (M/8) kw: (60 x A) b/w)

'Mp('Small Core Memory/SCM: .275 "s/w: 2 kw: 60 b/w)

" S(time multip lexed: 27.5 ns/w: 60 b/w)

4('Peripheral ProcessinQ Unit/PPU) :=

W/instruction:]] Hpr.t'O: 1: 275 ns/w1_S

1
Pc r l addresslinstruction: 1 _2

L2048 w: 12 b/w J LMps (- 2.5 w)

Kio(#O : 7: '10 Channel)--L (to: K)--T I K-Ms I C (Central)

-S

where

'\Pfflip flop: 27.5 ns/wj'-~
I L- 16 w: 60 b/w I
1 I

o (, Long Add)

0(1 Increment)

O('Population Count)

0(' Boolean)

~ (H.workinq: instructio~ I Unterpreter j
M[lnstruction Stack: J

D('Shift)

O('Normal ize)

D('Floating Add)

D('Floatina Multiply)

D('FloatinQ Divide)

P

Hp

Hs

S

T

flip flop: 27.5 ns/w;

12 w: 60 b/w

:=

:=

:=

:=

:=

Figure 16

Processor (e.g. central, input-output, display)

Primary r,.emory (e .g. core, thin film, integrated circuit!

Secondary memory (e .g. tape, disk, drum, magnetic card)

Switch (e.g. multiplexor, crosspoint, bus)

Transducer (e .g. typewriter, line printer, card reader,
display)

Figure 17

•

•

'~'[: ~; - :~~~ - - ~ - --;-.-K- ~ ---·:--: - :-;_:_.~KB U S
I

I --"1 0
I
I
.-~------:----:-:~ :- .-MPRl:-;---------:_._COR[
, I

I --LSI
I
I
•• MS£C:----------.: .• _LCS

I . . .
.-ROT-----·- - -··- · -·.·ORU~

,
I
·"OSK

--MT£RT-:-:· : ----.: ___ TAP£:-: ___ ~ _ : _~ ___ ··O£C

I
I
I
I
;-p----- -- ----:- - :: - .-~C

.DSk('RIL.PRO)

"BACX TO YOU.

-..IBtPL. SI.)
LDADI.a RlLla'RlLIR.LIBI

,
·"'JO

F i gu re 18

sroPPI.a LOAD AT [,YALCOYP IDDlTCPVAL.SVAL)
IIV8" J MD CO.PILI.a
~ PAllIAl ... ,
WCPUUU
.. PUWUWI'
WC I .. ,U
aIL 8 •• '0.610.'1'
IIILI. - _u_l.a WATCUS
.. WIWAL U. V. IIIJJ
..WIWAL U.V. U IIU
".IWAL U. V. U U II
... COMP
_lOR UIJJ

BAS RlLla& 0. 0345610 lOTAL. 0. 03e5600
_lOR ."JJ

BAS BILl .. 0.0 .. 1800 lOTAL. 0.1036800
_lOR lUlU

BAS RILl .. 0.010 .. 00 lOTAL. 0.1843100
_ftR 118111

BAS HILI 161 .. 00 TOTAL. 0.34S'000
_TOR 111111

HAl BlLJa& 0.1075.00 TOTAL. 0.4.31100
_TOR .,UII

lIAS RlLla& .. 1150400 TOTAL . 0.6"1600
.'''1000

Figu re 19

• S C R&TUIBlJ ICnt

~ ..
....
• oO

.....

....
" ..
".,
".,
ft ...

,,"II

,..,a
"-11
... ,.
"',,.
... "

Q c

Figure 20

ISP - for Instruction-set Processor

- purpose :

set) as

define the computer (instruction­

seen by a program (programmer)

p

- primitives: memory, instruction formats, data

formats, effective address calculation pro­

cess, instruction interpretation process,

and instruction set execution definition

- uses: description, comparison, formal speci ­

fication, interpretation (by machine)

Figur e 21

•

Pc State

AC4): II>

L

PC4): 11>

Run

InterruptJ tate

lOo,4)ulse l: lOo,4)ulseu2: lOo,4)ulseJ+

Mp State
E:rt8ndsd I118mozoy is not included.

"[0:7777 8)4): II>

Page~(0 : 1778)<O:II> :- M[O:177 a]<O:II>

Auto lndex[O:7)<O: II> :- Page...p[IO
a

: 17 a)<O: II>

Po Console State
Ksys for start. stop. continue. examine {load from melll

Oat. sw I tches<o: II>

Figure 22

Instruction Format

Instructlon/l<O:II>

op<O:2> :- 1<0:2>

Indl rectJlI t/lb :- 1<3>

p.ge""OJl 1 tip :- 1<4>

p.geuadd ress<o:6> :- 1<5: II>

this ...,p.ge<O : 4> :- PC'<o:4>

PC'<O:II> :- (PC<O: II> -I)

10...,se lect<o: 5> :- 1<3:8>

lo...,pl..,blt :- 1<11>

lo...,p2..,blt :- 1<10>

i o...,p4..,b 1 t :- 1<9>

sma :- 1<5>

sz. :- 1<6>

snl :- 1<7>

Figure 23

•

! I • I pi address op ~ page , I I

0 3 4 5

• L pageuOwbi t I
j
r
I

indirectwbit

Figure 24

Effective A~ss Calculation Process

z<O:II> :- (

..,Ib zoo;

Ib II (lOS s; ZOO s; 17
S

) ... ("[z"] +-"(z"] + I; next);

Ib "[ZOO]}

z'<O: II> :- h Ib zoo; Ib ... "(ZOO])

z"<O:II> :- (page •. .o. .. blt thls..,pageapage ... sddress;

-pag~O~lt OOpage~sddress)

I
1 1

~ microcQded instruction or instruction bit (e) within an inetructio

Figure 25

,

&

•

Instruction Interpretation Process

Run".., (Interrupt~request " Jnterrup~state) -+ (

instruction ~M[PC); PC ~PC + 1; next

instructlon~execution);

Run" Interrupt~request " Interrupt~state -+ (

H[O] ~ PC; Interrupt~state ~ 0; PC ~ 1)

Figure 26

Instruction Set and Instruction Execution Process

Instruetlonuexeeutlon :- (

and (: -op - 0) (AC 4- AC II H[z]) ;

tad (:- op - I) (LoAC 4- LoAC + H[z]) ;

Isz (:- op - 2) (H[zl] 4- H[z] + I; next

(H[z I] • 01. crc +- pC t 1 U,
deB (:- op - 3) (H[z] 4- AC; AC ~- 0) ;

Jms (:- op - 4) (H[z] PC; next PC +- z + I);

Jmp (:- op - 5) (PC 4- z);

lot (: -op - 6) (

lo pl blt IO pulse...,1 +-1; next

I o....p2ub it I O pu 1 seu2 +- I; next

I oup4ub it I 0....pu 1 se 4 +- I) ;

opr (:- op - 7) Operateuexecution

Figure 27

,

•

~J""at. Instruction :;et
M micl'Op1'Og~d operate in8truc r;"(ln.q: ope rate group I, operate group 2, and e:rtended ari
wtMl:ction 8et"

Oper.t~exec ut l on :- (

cia (,. 1<4>. I) ~ (AC ~ 0);

oprul (,. 1<3> • 0) ~ (

ell (,. kS>' I) ~ (L ~O); next

COlO (, . 1<6> . I) ~ (AC <-~AC);

em) (:- 1<1>- I) (l ..--, l); next

lac (:. 1<11> . I) ~ (LD'\C ~LQI\C + I) ; ne xt

ral (,. 1<8 , 10>.2) ... (LD'\C ~LQI\C X 2 (rotateJ);

rtl (,. 1<8,10>. 3) ... (LOAC ~LOAC X 22 (rotatel);

rar (,. 1<8,10> • 4) ... (LOAC ~ LOAC / 2 (rotate]);

1<8,10>. 5) ~ (LOAC ~ LOAC / 22 (rotatel»;

oprJ (,. 1<3.11> • 10) ~ (

rlr (: .

skip condition Ell (1 <1t> • I) ~ (PC ~ PC + I); next

s~lr condition , . «sm. A (AC < 0» V (sza A (AC

t')sr (:- 1<9> - 1) CAC ..- AC v Oata swl tches) ;

hit (,. 1<10 >. I) ~ (Run ~ 0»;

fAE t:- 1<3,11 >- 11) EAF. ... lnstructton..JIxe cut Ion)

Figure 28

clear AC. Co"",on to all ,

operate group 1

~ clear li",k

u complement AC

u complement L

1.1 incl'ement AC

" rotate left

" rota te tIJ"iCB

" l'Otate right

1.1 rotate twi ce

operate group 2

left

r ight

~) CJ .r:. skip test

.0» " (snl A L»

1.1 "('r" .r.Ji tohes

1.1 ha l t OJ" ,top

optional EAE desoroiptior.

