
TEACHING OF COMPUTER DESIGN TO COMPUTER SCIENCE UNDERGRADUATES 

B. W. Lampson 

Rapporteurs: Mr. E. H. Satterthwaite 

Mr. R. Snowdon 

Teaching of Computer Design ·to Comput e r Science Undergraduates 

Personal experienc e , both in programming and in providing 

liaison between programmers and engineers, suggests that the 

teaching of computer design is an impossible task. The subject 

is much vaguer and mo~e confused than programming, but no one even 

knows how to teach the latter. Thus attention must currently be 

focused upon relatively small insight s , not upon complete solut ions. 

Design as an Interfacing Discipline 

Both computer design and programming are interfacing disciplines. 
A programmer realises an interface between the users of a computing 

system and it s hardware; a computer designer, between classes of 

programs and a collection of components. Unfortunately, both 

disciplines have generally failed to achieve satisfactory matches 

at the ' soft ' sides of the interfaces. The primary cause of this 

failure is that designers do not know and have not tried to learn 

much about what happens at the 'soft' end, i.e. about the users of 

the products they are designing. 

The Design Process 

The activity of computer design includes four phases. 

1) Architecture 

An abstract machine defined, for example, by a programmer's 

reference manual, must be designed. Such an abstract 

specification is what Dijkstra has called a 'pearl'; it 

defines the machine for those who must build upon it, so 

that they need not concern themselves with the ugly details 

of its realization. 

2) Logic Design 

A collection of 'perfect ' components must be chosen and their 

interconnection must be designed for implementing the abstract 

machine. (In some cases, the first two phases are even 

reversed; the archit ecture is implicitly defined by the 

95. 



collection of components which happen to be available). 

3) Physical Realization 

The idealized design must be further developed so that it will 

work with real devices, which are both imperfect (because of 

finite transmission speeds, noise, etc.) and more constrained 

(by the requirements for power, cooling, packaging, etc.). 

This phase must be concerned with the reliability of the actual 

devic e. It poses engineering problems; knowledge and 

techniques from electrical engineering must be applied to obtain 

the full potential of the hardware investment. This phase is 

qualitatively different from logic design, and appears to be 

more difficult, since bad engineering is the most common 

source of faults in the final product. 

4) Maintenance 

The final machine must be designed to be maintainable. 

A striking characteristic of a ll phases of the computer design 

process is the total absence of any formal methods, or even 

meaningful methodologies or canons of good practice. There are a few 

formal schemes for minimization in logic design, but these are largely 

irrelevant in practice. Even in that phase, work is mainly done by 

hand, and decisions are made at the discretion of the designer. The 

lack of a relevant formal foundation presents a serious problem to 

the organizer of a University program in computer design. Since 

it is possible to learn from the mistakes of others, a study of 

history might be helpful. Indeed history and laboratory practice 

are about all that present courses in computer design have to offer. 

Relation to Programming 

Programming and the first two phases of computer design are 

quite similar. Both a computer · architecture and a programming 

language (especially a language designed for direct interpretation) 

define an interface between levels of soft - or hardware. Thus 

there is a fundamental similarity, although computer architecture 

is influenced by the need for physical realization, usually appears 

at the micro level, and is often designed for greater generality. 

A tentative conclusion. is that programmers might be better machine 

architects than engineers. 

96. 



Logic des i gn also i s very similar to low-level machine language 

programming, such as that done in octal, and it is an observabl e fact 

that frequently the same people are good at both. There are some 

conceptual differences; most of these are related to the fact that 

parallelism is currently inexpensive in hardware but expensive in 

software, and do not seem to be fundamental. More significant are 

the practical differences between programming and logic design. 

Hardware design and manufacturing still use hand tool methods; 

there are no 'high level~ tools comparable to those available for 

programming. A definition of hardware is 'that which cannot be 

changed very easily.' At the present time, there are no techniques 

for building hardware configurations cheaply, quickly, automatically, 

and reliably 

The state of the art is demonstrated by the work of Seitz and 

of Bell. For their modular systems many of the physical and 

electrical problems of using real devices are resolved by the 

component designer and are invisible to the computer designer. 

Unfortunately much of the potential of the hardware is lost as a 

result. Furthermore, changes in the architecture or logic still 

require physical manipulation of the components, and as a result it 

is much harder to construct hardware than to construct programs, even 

in these systems. 

None of the efforts in the field of computer-aided design of 

computers has yielded very satisfactory resul ts. It is not clear 

why success in this area has been so elusive, and there still seem to 

be good r easons to believe that the use of computers to build 

computers could help enormously. 

Microprog'ramming provides a useful tool, but it should clearly 

be considered a form of programming, not of computer design. It is 

basical l y a technique for extending the programmer 's domain, where we 

have at least a few powerful tools to help us, at the expense of the 

hardware. In particular, most of the opportunities for parallelism, 

which provide the only significant conceptual distinc tion between 

computer design and programming, are not available to the 

microprogrammer. Because of the loss of this and other hardware 

97. 



flexibilities, emulation by a general purpose microprocessor is 

slow, and satisfactory emulator performanc e . is usually achieved by 

design of a special purpose microprocessor. For example, t her e is 

a nearly one-to-one corr e spondenc e between machine and micro 

instructions on the System 360/85, a microprogrammed computer with 

high performance, and a square root routine on that machine was 

found to be faster i n 360 machine language than in microcode. 

In summary, there is no meaningful distinction between 

programming and t he phases of computer design concerned with 

architecture and l ogic design, exc ept those associated with ease 

of design, construction , and change. Most of the latter 

difficulties arise from the problems of physical modification. 

Future technol ogical developments are likely to produc e an order 

of magnitude of change in component performance within ten year s. 

Utilization of these advances will require more fl exible thinking 

but will not lead to any clearer distinction between programming 

and computer design. 

Relation ' to Reality 

The third and fourth phases of computer desi gn do not correspond 

to any form of programming but seem to have a distinctly different 

nature. Since the characteristics of r eal devic es are highly 

dependent upon t he details of a transient technology, meaningful 

teaching of the third des ign phase i s especially difficult. 

Machine and program maintenance, despite certain similaritie s, 

are different problems. Programs do not deteriorate; if a program 

works once, then it should always work when given identical conditions . 

I n machine maintenance, time is an additional factor; a machine may 

work one day, break down, and fail to work the next. 

Conclusions 

There appears to be little difference between programming and 

the ar.chi tectural and logic des ign phases of computer design, but the 

physical implementation and maintenance phases are completely 

distinct. 

98. 



Studying mistakes seems to be one of the best ways of learning 

computer design. This i s difficult for a student, since little is to 

be learned from a small project but large failures tend to be 

expens ive. A book of 'horror stories' might be valuable as an 

inexpensive way of conveying a feeling for the problems of design 

to a student. 

99 . 


