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Introduction 

I want to discuss why we should want to teach anyone to become 

a computer designer, what sort of people we SQould teach and how. 

We are interested in the production of radical computer designers: 

people who, hopefully, will not h&ve to serve long apprenticeships 

while they mature enough to take major decisions in their organisations; 

people who will think about technology and what can be done with it 

that is of interest to human beings. This is perhaps a romantic 

viewpoint but I think it is becoming more popular. 

I am going to draw upon two sources. Firstly, the history as I 

have seen it, and secondly, the technology as it exists now and some 

conservative extrapolations of that technology. I have been around 

the field for a bit over twenty years and worked in some, though not 

all, parts of it. I thought a great deal about my own experiences 

and I have found out as much as I could about what really happened 

from people who were there. With respect to technology I have the 

advantage of not being enough of a · technician to.be overly taken by 

the wonders of the stuff, while having enough Common sense to look 

at it as an intelligent layman might. I wonder what the componts 

that we have now are going to mean for the future. 

Before I discuss computer design itself I should say something 

about my qualifications. I have not taught any computer design. I 

have taught a number of courses, never the same one twice, following 

topics in the ACM Curriculum such as 'd&ta structures' and 'advanced 

programming'. I also have no particular qualifications as an 

engineer, although I have been associated in an intimate way with 

some machines. If I have to be labelled, one could say that I am a 
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discontented programmer who, perhaps because of a lack of competence 

in dealing with complexity, set out to do something about it by 

changing machines. I did this first at a time when it was most 

unpopular to talk as if one could somehow combine the subjects of 

computer organization and programming. 

Computer Science courses - Present and Future 

Computer science courses at the university level have developed 

very hastily after the fact of the computer became obvious to everyone. 

It was at first exclusively and industrial development and it was only 

when there began to be thousands, even tens of thousands, of computers 

around, that the universities began reacting. There were of course a 

few pioneer institutions in England and the United States which got a 

very early start. Programs that are called computer science now were 

usually called something else in the early days. Among the earliest 

were the programs in applied mathematics at Harvard and the program at 

Manchester. By the middle sixties the pressure in the United States to 

have computer science courses was tremendous. It began to look as if 

every university and college was planning to have a program, far more 

than there were people qualified to staff them. 

Starting a program then also meant acquiring equipment. That was 

a period of gifts and large discounts by the manufacturers but there 

was still the problem of raising funds. Building computers and 

computer design was not a fashionable subject for universities. In 

the fifties people with experience knew that it was not practical to 

build a general purpose machine, keep it running, and serve the 

problem solvers at the same time. The reaction was to break away 

from computer design altogether in the universities and to take a 

standard product from one of the manufacturers. This meant that 

during that period, IBM had a disproportionate influence and many 

s.chools acquired IBM equipment of the then popular vintages. 

Relatively few machines were built in the universities, one of the 

most interesting exceptions being the Rice University machine with 

which John Illiffe was associated. 

Computer science courses usually started with departmental 

sponsorship, perhaps Electrical Engineering, perhaps Mathematics 

depending on the professor. If you look at the existing ~grams 
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they tend to be strongly biased by the department and the people 

that initially set them up. You might find a department with 

twenty or so numerical analysts and automata theorists, in other 

cases you might find mainly electrical engineers. The latter were 

i n a minority, I think, with the exception of schools like M.I.T., 

because of the unpopularity of building machines during that 

period. Then the subject of programming began to get just formal 

enough to make it possible to have some computer science groups 

based mainly on programming. This was the period of the obsession 

with syntax and syntax directed compilers. I shall have more to 

say about this later. 

This meeting may be one of the first to address itself to the 

subject of producing a more balanced computer scientist. He does 

not seem to be referred to as an engineer in any of the papers I 

have seen at this meeting though I think it odd that we should 

think of the product of these courses as bein~ a scientist. Some 

people prefer to think of him as an engineer because of the largely 

empirical nature of the subject. However, it does seem now to be 

desirable to put out a student who is not labelled as a circuit or 

logic designer on the one hand or a programmer on the other but who 

is more versatfle. 

In order to do this we ought to know what we want to produce, 

i.e., what the people whom we teach should become. It is not 

adequate to say that the output of our institution is to be a 

system programer who typically may work for, say, IeL. I believe 

we cannot talk that way because I am not convinced that there are 

going to be any system programmers in another five years, or ten 

years at the most. Similarly, we cannot describe our output as a 

man who is going to work for, say, IBM as a computer designer 

designer because the only sorts of positions that are available are 

specialist positions. There a man works as a cog in a very large 

machine and by the time that machine has gone through its appointed 

cycles a sufficient number of times the man is reduced to 'cogdom' 

for ever. I would prefer to think of our course as training for 

saboteurs. 
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Consider where t h e bright young man goe s who has ideas about 

computer structure and who would like to design his own machine. 

Generally, he cannot go to the computer manufacturers because they 

are merely copying one another. Some have fairly large research 

establishments but the output of those establishments is usually 

ignored. One thing he can do is to start up his own company. If 

we were producing computer designers who are going to do that sort 

of thing we ought to teach them something about raising money, 

marketing, and so on; we would need to produce the complete man. 

That is not such a bad idea. We are certainly not in the trade 

school business and we should not be teaching the construction of 

the various manufacturer's software or the details of their 

equipment. 

Compute r designers ought to be generalists, which means that 

they cannot know very much about any given thing. For example, 

consider what it would do to a man's potential for further thought 

if he were required to master the structure of some large, popular 

operating system, in view of the lack of intellectual content 

represented in such a program. How much better for him to actually 

build some sort of operating system on a much more modest scale. 

As for hardware design, one can argue in a similar way. The really 

important thing is to get the potential computer designers to 

actually design something and build it. 

That brings up the question of whether it is practical or not, 

i.e. can you afford to do it. We can afford to do it if we stop 

buying computers. One thing a computer science department does 

not need is a computer, as Howard Aitken concluded by about 1953. 

He knew at that time that a computer science group did not need one 

because it would get in the way of creative work. This does not 

mean that a department should not build a computer, or better yet, 

build many little ones, take them apart, and build some more. 

Opulence is bad for computer science, and I say that with some 

authority, being associated with a department which has choked on 

its own opulence. Big machines tend to dominate everything, both 

the organization and technical interest. The bigger the machine 

the worse it gets; it is actually going to control everything we 
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do. Much of what can be learned should be l earned by touch - by 

touching and kicking computers. With the money saved by not 

buying a big machine we can buy parts and u se those parts to 

build things. 

A course for computer designers ought to last for only one 

y ear, not be broken into elementary, intermediate and advanced 

topics. It should be mostly laboratory and should teach switching 

theory, logic design, computer organisation and programming all at 

the same time. Some people say that this cannot be done, that one 

must hold the machine still while programming it, then forget about 

programming while letting the machine vary. They would cGncentrate 

on simple applications of logic design and on applications of simple 

arithmetic circuits perhaps. Then, by some great vaulting motion 

they get into comput er organisation. I disagree. I notice that one 

of the authors of the relatively few books on the subject, Gordon Bell, 

has cheated and used the historical approach by collecting together 

papers on the subject of computer organisation. I think that is 

quite good. It is in effect a course in pathology though not 

entirely because one can look for the key ideas that appeared 

along the way. 

It is these key ideas which are important. Most of what else 

the students do should not be computer science. It is important 

that these students of computer design should not do too much computer 

science or be too specialised in any other area either. They could be 

electrical engineers in part, mathematicians in part, and other kinds 

of people in part. I suppose there will inevitably be specialist 

courses, such as artificial intelligence 1, 2 and 3, and courses in 

numerical analysis, but ideally there should be just one course whi ch 

deals with the simple down to earth notions where we really know what 

we are talking about. 

The course ought to be accessible to nearly everyone. It should 

be pretty much in the general education category, and that should be a 

guide to the content. If it is not worth teaching to the English 

majors, it may not be worth teaching to the future computer designers. 
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This is because the technology is so important that it must be part 

of the common knowledge or we will be overrun by it. 

There is much about this course that is impractical, as 

experienced organisers of laboratories will know. I am advocating 

a kind of organised chaos with parts bins and equipment lying around 

where people are allowed to think before they '.are thought to be 

capable of thinking, where they express algorithms not in the form 

of Fortran programs but as hardware or combination of hardware and 

program. I am going to argue later about the implications of 

components, why this ought to be possible, and why it ought to work. 

Let us consider what a computer designer is, and why anyone 

should want to design computers. There is one very great one, for 

instance, very nearly the complete engineer and incredibly talented. 

He is Seymour Cray, who designed the CDC and 7600. Recently he was 

quoted as saying that the 7600 is the last small machine he is going 

to work on. Therein lies his motivation. He wants to build a machine 

that is very big and very fast for a certain class of problems. I 

doubt if he cares at all what it is used for. He designs his super 

machine as a kind of art form. That is one kind of computer designer. 

Another kind belongs to the faceless design team of a typical 

manufacturer. It consists of battalions and divisions of computer 

designers, all optimising the living daylights out of something 

which is guaranteed to have absolutely no architectural integrity. 

The term 'computer architecture' was first used in connection with 

such a monumental system, and introduced I think, a serious misuse 

of the word 'architecture'. 

To understand the term architecture, forget about the computers 

for the moment and think about buildings. An architect is an artist. 

He has some concept of what something should be like as a whole, how 

it should all fit together, how it should all be one thing. He is 

normally not able to build all of his building personally. He has 

to deal with workmen and supervise them. He has a communication 

problem, and if he is going to be successful he must use a great 

deal of energy in monitoring the work to see that his concepts do 

not get degraded in the execution. 

57. 



A computer system must have an architect if it is to deserve 

the term "system". Someone should have some overall idea of what 

it is about. Unfortunately, I do not think there are many examples 

of computers which fulfill this consideration. They have generally 

been built as perturbations of designs of previous computers. The 

word "compatibility" is often used to suggest the general constraints 

which exist. 

Now consider how one becomes an architect. People do not become 

architects by first being specialists ·in many fields; they do so 

because they cannot help it. Computer designers, using the term 

broadly, should have something in common with ·architects. 

Architects do not forget that buildings exist for people. Some may 

need to impress people from a distance with a monumental architecture 

and because of this less attention is paid to making people comfortable 

inside the buildings, but as Frank Lloyd Wright may have said, the 

greatest architect will be the man who builds a building that no one 

notices. The digital computer technology can only be justified, a 

truism but we forget it, by the utility of these things for people. 

It seems clear and obvious to me i~at the computer field has reached 

its present state because of two long standing notions that are not 

very tenable. The first notion is that computers are algorithmic 

processors of some sort which eliminate the human being by turning 

human activities into algorithms. This is the way people t?ought 

about using computers for applications in business. i.e. eliminate 

the clerk. The second viewpoint which was never as widely held but 

has had considerable influence is the artificial intelligence 

viewpoint. They seemed to argue that while you may not be able to 

algorithmatize the human activity but you might be able to design a 

program which could . learn how to do what man does. In both cases 

the idea was to get rid of people. As a result, we have produced 

computer designers and system programmers who are feeding on their 

own subject matter. They tend .to design something which is faster, 

bigger, or more automatic than was previously available and they 

completely forget that the thing makes no sense at all unless people 

are involved. 
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There is another viewpoint whi.ch is not yet popularly held 

but I think will take over in time. It will take over only because 

the people in the computer field are going to have to adopt it in 

order to survive. It is the viewpoint of the computer as a 

communications medium. This forces one always to think of people

to-people communication via the ma.chine. It is a medium which 

adds to the usual capabilities of communications devices the 

possibility of storage and the possibility of processing the 

information or permitting interaction between messages. There 

is no point in trying to produce computer designers unless that 

kind of thing is well understood. Consider what they are going 

to design. It is not sufficient to produce a man who can go out 

and be happy building yet a faster multiplier. We have a sleeping 

technology that is quite remarkable in terms of some of the raw 

measures but is not at all remarkable in terms of its true effect 

and its actual application. It is a big hoax in these respects. 

My iconoclastic computer designers will have to understand 

this kind of thing to begin with. They must to decide what they 

want to do with the technology as individuals. Tlwy must not 

think that they are going to prepare themselves for jobs with 

the Sperry Rand Corporation, or are going to be a computer 

designers or system programmers because it is one of the higher 

paid occupations. They must be people who think about the 

human activities that the technology can be used for. 

Let us take the application to education as an example. 

During the sixties there was a flurry of interest in computer 

aided instruction. Computer companies quickly looked around 

for publishers or education related firms with which to merge 

and the marketing executives of the computer companies found 

themselves thinking about selling computers to schools. Well, 

fortunately, this never came to much and the question-and-answer 

box approach failed because it was totally uneconomic. The 

educators may not have realised that all of expensive 

electronic gadgets were not doing much good. Those machines 

were designed to get rid of teachers, not to improve communication. 
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But it is obviously a communications application: teachers to 

students, students to teachers, students to students. That is 

not the way it was approached It was approached as yet another 

opportunity to create suitable algorithms, optimise programs and 

optimize the form of instruction. The very idea that everyone 

would learn in the same way and that there is an optimal method 

for all of us in absurd. There was a potential communications 

application but nobody took the timp. to think about what 

machines to really do something in education might be like. 

So, I think that education is a field still wide open and I 

would like my computer designers to be interested in that kind 

of problem. 

Schools are space and time frames. There are rooms and one 

has to decide how big the rooms" are going to be. In addition 

there is a system of dividing up the day and year into pieces 

and the learning process is then forced into this space and 

time frame. People have repeatedly commented that, in principle, 

computer technology ought to make it possible to get away from 

that. They really should have said communication technology 

aided by what we think of as computer technology. But we go on 

spending untold millions on buildings which are already obsolete. 

They have been obsolete for a decade or more and we are not 

spending much of anything - if anything - on looking at the way 

to use the new digital and communication technology to get away 

from those rigid space and time frames. 

My first principle in teaching computer design is that people 

must be made to think about the social worth of what it is that 

they are going to do. They have got to discover it for themselves 

and that is difficult, particularly with engineers. They must 

get the point of view of the other culture. They must start 

believing that people are important. That is why they should 

not specialise in computer science too soon, but should look at 

the world through the eyes of the artist and the writer. They 

should be learning to cope with the technology in a way that 

removes the fear element. 
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A Hi storical View of Computer Des ign 

In order to develop such a cours e we must understand what 

computer science i s now and how it got that way. Let us start 

at the beginning and consider the extrao rdinary influence that 

Turing seems to have had. We can say that Turing established 

the notion that one could have a general purpose computer. Many 

people who have no familirity with the details of Turing' s work 

were expos ed to this idea of the general purpose computer very 

early and believed in it uncritically. Computers have a 

remarkable property that probably does not compare with anything 

that technology has produc ed before. One can change the function 

of a computer by changing its program from out s i de ; i. e . the 

structure of the machine i s, in pa rt, soft. But the pos s ibility 

of designing and building a "general purpose machine" is a 

different propo s i t ion a ltogeth er. A great deal of design effort 

ha s been severely handicapped because of this idea. I do not 

think that one can design a general purpos e machine, as su ch. 

Machines have been designed that are called general purpose, but 

they are actually spec ial purpose computers with purposes that 

are not necessarily clear to the designers. Thus, we have a 

whol e group of artifi cial problems that need redefinition . 

Some of the pioneer computer builders who not only thought 

of computers but actually built them and us ed them knew exactly 

what they were doing. For exampl e, Aiken and Mauchley both 

designed computers becaus e they had particular kinds of numerical 

probl ems in mind. I am sure that they became entranced with the 

machines themselves in the process, but they related the things 

that they were about t o build quite directly to the model s they 

had of the computations that they wished to perform. Both of 

those men were very pract ical indeed. They were building numerical 

engines, and they had straight-forward ideas of the computer 

structure suitable to that task. One of the first t hings that 

today's students of computer science should do i s look at the 

work of some of th ese pioneers, i.e. Aiken, Mauchl ey and Eckert, 

Stibitz, Wilke s and Wheeler . All t h ese people had problems to 
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solve and they di d not think of machines, except perhaps when 

they let their imaginations go on an excursion, as being very 

different from numerical engines. 

Turing was different. He seemed to influence a lot of people 

to follow a more ephemeral path. For example, the artificial 

intelligence people can trace their origins to Turing ' s ideas. 

By the time I first came to the computer field, the general

purpose idea was very well established, even though it was quite 

a while before I heard of Turing. A characteristic of designing 

a "general purpose" computer is that there are no constraints. 

But a designer must have constraints in order to make decisions 

about what he is going to do as well as what he is going to do. 

For example, many of' the pioneers were believers in decimal 

arithemetic. They used decimal arithmetic themselves, like all 

other people, and they thought it was worthwhile to build machines 

that w,ould operate in decimal. But another school of design 

argued for the circuit efficiency of binary and established 

different constraints for its successors. 

A second factor in the history of computer design has been 

the obsession with speed. This was partly the result of the very 

rapid development of electronic technology, which developed so 

rapidly that it was always poss i ble to see very large factors of 

increase in machine speed in the near future. It resulted in a 

rapid rate of obsolescence of machines during the fifties and 

sixties which is only now just beginning to stop. Another factor 

contributing to the obsession was the parallelism versus serialism 

arguments. One outcome of an early meeting at the Moore School of 

Engineering has been that most of the major machines that have been 

built and , widely used have had a parallel structure. The only 

reason for this had to be the belief "the faster, the better". 

The whole criterion of speed in design was divorced at a very 

early point from application. It was not a matter of building 

things fast enough. The things had to be fast in an absolute way, 

and each improvement in circuit speed and component speeds resulted 

in a new round of machine design. 
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Only occasionally was the goa l of speed challenged. People 

would point to scientific and military problems which required it. 

Yet, in all of the machines that were built, including the majority 

of tho se built for business applications, the speed of the arithmetic 

unit was a major consideration. People working on these machines 

could not relate actual applicational needs to the machine specificat

ions. Speed was an end sought in itself even as it has been in air

craft design. 

The quest for speed and the resulting decisions in favour of 

parallelism have been taken to great extremes as in the large array 

machines like Illiac IV. It is a natural thing for mega-technology 

to be concerned with. Along with this obsession with speed was an 

obsession with size and sheer scale. Of course, in the beginning 

one had to have a certain investment in equipment in order to build 

anything at all; so there was a smallest machine that could be 

built with a given technology. The arguments in favour of large 

computers tended to emphasise the economies of scale and the 

increase in the number of possible states of the machines, but 

they neglected the considerat ions that some parts have low duty 

factors and some state transitions occur very rarely. What is 

the right size for a machine at any given state of the technology. 

So today, we have the computer designers who believe the 

ideas that they can build a general purpose machine to do anything 

well, and that the faster and bigger a machine is the better. I 

do not think we can design sensible machines on that basis. 

However, we have been trying to do it; we have been building 

big, fast machines which have a short life and which are rarely 

missed when they are scrapped. 

Another historical consideration is the accident that the 

principal forces in the computer industry tended to be the business 

machine manufacturers, i.e. their previous specialization was in 

making accounting machines, ledger handling equipment, punched 

card equipment, adding machines, etc. Businesses have used such 

machines for over one hundred years. The kind of peopl e who 

think about business machines are generally accountants and other 
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clerical people who are asso ciated with keeping financial data. 

A characteristic of all of these machines is that they deal with 

paper. There are many wonderful horror. stories about how the 

computer was made into a business machine. We certainly are 

aware of the impact of IBM's enormous and successful punched 

card business on computers. It is important to point out that 

there is now an essent ial absurdity about hanging business 

machines on electronic computers. Business machines utilise a 

highly developed, electro-mechanical paper handling technology. 

With the early computers it was far better to have a one hundred 

card per minute reader and a 150 line per minute printer than to 

have a ten character per second paper tape reader or a typewriter. 

But it is also true from the beginning that there was a consider

able lag betwe en the electronic speed of the machine and the 

input/output equipment. So the busines s machine manufacturers, 

having skills in this electro-mechanical area, devoted enormous 

effort to building machines that would do the same kind of thing, 

namely move paper around faster. 

The problem with paper is that the cycle time for information 

on it i s entirely different from that for electronically stored 

data. When we need the speed of electronics, we need it to deal 

with complexity and rapid change. Every time we use paper we are 

dealing with something that i s relatively static. If anything is 

printed it is presumably worth keeping for a while. However, if 

you produce much paper in the modern information system, you are 

either admitting that you don't really need the system or you are 

producing errors at a very rapid rate. Once paper is produced and 

distributed, then you have all the problem of changes and that 

means more paper, and so on. The contradiction is obvious between 

the time honoured clerical methods of gathering data and producing 

hard copy, and at the same time insisting upon a constant improve

ment in speed and ability to handle complexity in the electronic 

part of the machine. Of course , we are moving in the right 

direction with time-sharing, online entry of data and program, 

cathode ray terminals, etc., but this is not the main thrust; it 

is a secondary thing and it is obscured by our lack of understanding 

of what these machines should be, i. e. whether they are to be 

properly regarded as communication devices rather than as processors. 
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We should be in the twil ight of the era of paper technology. 

I remember one of the early revelations of some of my 

colleagues about twenty years ago of the difficulty of programming 

a sort on one of the first of the l a rge stored program machine s. 

It could hardly sort records faster than a punched card sorter 

would. They did not dream that t hat would be the case ~hen 

they started to writ e the program. Of course, we have long 

s inc e had very fast sort programs, but the very fact that anyone 

u ses sort programs at a ll is anamalous. It is due to another 

attitude resulting from the dominance of the electro-mechanical 

business ma.chine manufacturers and their stre ss on magnetic tapes, 

which are only a littl e better than paper-oriented devices . The 

industry in the early sixties and almost forgott en how to make 

drums, and tended to de-emphasize di sk s since market ing policies 

discouraged the use of devices of that sort. System programmers, 

not knowing any better, ha~ wasted much effort basing systems on 

tape drives. Tapes have the interes ting property t hat they 

guarantee that most of the information stored on them is 

r e latively inaccessible in comparison with what would be the 

case if it were stored elsewhere. In some cases, the data would 

be better kept on paper in filing cabinets. 

All of these things in whi ch we have believed - the ideas of 

t he big, fast, general purpose machine driving paper-oriented 

input/output gear - have conditioned the way we design computers. 

We have evo l ved, on one hand, from people who built special purpose 

machines to so l ve numerical problems and, on the other hand, from 

peopl e who want ed to do with computers what they did with paper

oriented business machines. Instead of successfully designing 

general purpose machines all we have really done is perturb 

designs which were not general purpose at all. 

These attitudes created, in part at least, the gap between 

system programmers and computer designers. That gap is inevitable 

because people accept uncritically and conventional orthodoxies 

that happen to be current. They do not think about what they are 

doing. System programmers have evolved in a way parallel to 

computer designers with an equally misguided set of notions. 
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Ther e i s no doubt that the first electronic computer s were 

very difficult to build. Some important design dec isions had to 

be made just to get the things to work for even a few minut es at 

a time. There wer e not very many of them for a while, and because 

of that the attitude was quickly established that .the time of 

machines was very valuable, more valuable, more valuable than the 

time of people. In response to a perceptive question from a 

person who recognized that programming was a difficult, demanding 

task, Von Neumann dismissed it as work to be assigned to graduate 

s tudents. 

In fact, in the early meetings, an idea that Von Neumann 

put forth was that one of the ways to tell whether a problem was suit

able for a computer was to count the number of multiplications - it 

was necessary to have a lot of them. This was a common attitude then. 

The only dissent was in some very early remarks by Stibitz in about 

1948 at one of the first Harvard Symposia. He daringly suggested 

that there might be some value in doing small probl ems with a 

computer, and that perhaps one might build into machines the 

facility of handle mathematical notation (for instanc e parenthe ses 

and subscripts). He suggested that it would be easy to do. People 

could not accept this because of their view that it took a lot of 

multiplications to make a computer problem. From this, it naturally 

followed that the machine had to b e fast at multiplication . It al s o 

followed, by another line of reasoning that it was worthwhile taking 

any amount of pains to program the thing. 

The result i s that the engineers had to build machines with 

fast multipliers and it was silly to question how easy it was to 

program. The programmers were content for a while to write programs 

in absolute - a task made more difficult by binary machines - but 

they found that they were not very good clerks, and they s tart ed 

developing programming aids. In the early days, the aids for 

machines like the IBM 701 and 702 were primitive . One did 

assembl ies using card sorters and reproducing punches, obvioulsy 

because machines were considered too valuable to use for that kind 

of low level activity which had no multiplications. 



This attitude about programming aids accounts for much of what 

has happened since. For example, the development of FORTRAN, which 

had a pronounced effect on programming, was conditioned by the feeling 

that code produced by a translator must compare favourable with the 

hand-tailored product of the hypothetical expert programmer. This was 

more important than anything else, and it has influences all programming 

system design since. There were a few embarrassments, of course. It 

was very difficult at first to build compilers that would compile in 

reasonable amounts of time, but that was overlooked for a while. This 

established the precedent of making compilers and operating systems 

the number one application of computers. 

After several years it was noticed that small runs predominated 

in computer usage. Then the designs of compilers were changed to 

favour the actual preparation of source programs instead of object 

program performance. There was also some effect on the design of 

operating systems to favour the small users, though the large machines 

quickly became inaccessible to most of their potential users. The 

large machine is surrounded by an organisation and staff dedicated to 

it. These people can talk to one another about secondary and tertiary 

problems having to do with the machine, and easily forget that the 

machine can actually be used for something. Like the designers of 

the same "general purpose" machine, they are divorced from application. 

The difficulty of communication between system programmers and 

designers is, in effect, a phony problem. They have nothing to say 

to each other. Neither is concerned with what the machines are for. 

They are interested in them only from their own point of view based 

on their own conventional orthodoxies. We must begin again by 

teaching people what design is about, by having them design some 

simple things first, by having them build the machines they program. 

We must not produce specialists, but generalists - people who can 

take into account the human element and what things are for. 

If we succeed in teaching people this way, they ought to be 

able to design things other than computers. They might design, for 

instance, bathrooms and avoid the awkward arrangement of a sink with 

two separate, spring faucets for hot and cold water. They could see 

in proper perspective the design of an on-line editing system which 

was the subject of a well known research activity which I visited 
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r ecently. It was an introspective activity in which, it turns out , 

the principal use of the system is for the design, preparation, 

and editing of its own program, with little concern for such 

human factors as the tilt of the CRT screen. 

To teach students who can carryon in the present way we can 

keep them working on real problems . This is often the case in 

present computer science programs. In the last few years system 

programming people have developed a mystique and much lore about 

syntax and syntax directed compilers. There are several courses 

available in each of many schools on this subject; and by now, 

many people know a lot about it but not what to do with it. 

There is something very sterile about a compiler generating a 

compiler and about programs written to check syntax. But no one 

uses syntax as a partial definition of a machine, for example, to 

make it self-explanatory in some particular sense. 

We ought to treat compilers - and operating systems - as 

being mainly of historical interest. In the early fifties 

interpretive programs were used but these were slow and they had 

a lot of overhead, so people started writing compilers. This 

started a "school of static programming". It encouraged lack of 

generality by putting constraints on the programmer that gave 

him an artificial frame into which he had to fit. Furthermore, 

it encourages the artificiality which results from the design 

engineers who are primarily concerned with the fast multiplier. 

Alternatively we could have taken the attitude that machines 

were wrong and that we ought to be able to run interpreters 

efficiently on them. For example, consider the evidence that 

has been accumulated by the APL system. How can people who on 

the one hand are constantly talki ng about the importance of 

rapid matrix operations and on the other hand be quite happy with 

an interpretive programming system which encourages, in fact 

almost forces, the use of matrix constructs. Users are fooling 

themselves. The APL machine is a very very slow machine by 

present standards, yet it satisfies many people because it is 

the only machine they have had to use that will respond in a 

reasonable way. Of course, you could build a very fast APL 
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machine. It is a suffic i ent l y constrained task to build a machine 

which is itself an APL interpreter. It is this point of view which 

we must teach the student: that it is perfectly reasonable to 

tackle the problem of building a machine in the broadest sense. 

You can teach them using Gordon Bell's building blocks, 

Charles Seitz's building blocks, your own building blocks. It is 

a natural thing for computer scientists to· think about such 

machines and to blur the distinction between designing the hard 

part and the soft part. 

Technology and Design Goals 

What we can teach and how we can teach it depends a lot upon 

the state of technology today and upon the direction it is heading. 

I want to make some comments based on my extrapolation into the 

future. These do not go very far ahead but I think they are all 

inevitable. They have nothing to do with the wonders of yet 

faster components to be expected but they do have something to do 

perhaps with the possibility of them being less expensive. I'll 

also try to tell you something about my own design philosophies 

and notions. 

Consider which technological facts are going to be important. 

Charles Seitz has touched on the main one, and that is the sudden 

availability, after many years of promises, of integrated circuit 

storage. About two years ago, Rex Rice, one of the workers in the 

semiconductor industry, had just given a talk on fabrication of 

machines with new components having been engaged himself for several 

years in building a very elaborate machine. He reached the point 

where he began to realize that he had started his elaborate machine 

to soon, so he said to us that the important thing to system 

designers right now is that the cost of storage (per bit) is going 

to be roughly proportionate to size for fairly small stores, from 

say a thousand bit s on up. At the time, I took note of what he said 

but it took me a long time to understand why that should be important . 

It i s now true that bipolar and MOS integrated circuit chips are 

available as storage devices of various sizes, ranging from, say, 



sixty-four bits to 256 bits, 1024 bits and larger. Al l th e component 

manufacturers are engaging in the usual battle of promise s of l ower 

prices and larger sizes, while computer manufacturers are concerned 

with the possibility of replacing their core stores, and actually 

doing it in some cases, with these new stores . It ' s an evolutionary 

thing from their point of view. They are going to plug in s emi

conductor storage in place of the old core storage. Of course, with 

core storage, one had to have a fairly large size unit to get to the 

point where the cost per bit was reasonable and so with this experience 

leading the way one finds discussions of monolithic assemblies of what 

initially comes from the manufacturers as small memory chips. 

Now suppos e we look at the whole thing again from the start, 

and what we see is the possibility of putting storage in the machine 

wherever we want it, not just in one large unit. The class ical system 

diagram which shows control, arithmetic, storage, input, output would 

fragment right away into a very compl ex (and useless) picture with a 

lot of storage, a lot of control, perhaps a lot of arithmetic, and 

(along the same lines I mentioned previously) lots of input and output 

based on terminals, in order to get at people and to allow communication 

between people. 

Moreover, as Charles Seitz has mentioned , in many case.s where one 

used hard combinational logic, one can instead store the equivalent of 

the state table or a characteristic vector for a logic function. And 

so a good deal of what was thought of in the older systems as control 

now slips back into the province of the programmer but at a level where 

many programmers for a long time have not seen fit to work. It is at 

a level where representation is important, where one has to think of 

the codes that are suitabl e in the particular position you are using. 

This means getting away from the notion of a general-purpose anything 

and away from the idea of universal high-level languages, for instance, 

without requiring the designer to work in a way that many microprogram 

designers now work. I t seems to be true that much microprogramming is 

done by people who ordinarily do logic design, becaus e typi cal syst em 

programmers are not prepared to th ink at that level of detail, timing, 

etc. 
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Because of the economic factors involved, there are just two 

kinds of things that get into large scale integrated circuits in vast 

quantities: the ubiquitous electronic desk calculator (which is 

produced at a rate of a million per year now!) and location-addressed 

storage. For the latter the semiconductor firms are c'ompeting in the 

time-honoured fashion by trying to drive each other out of business 

and by trying to find things that they can sell in sufficient 

quantities where the price will hold up. 

Now we can make an interesting observation. Suppose we could 

buy field programmable read-only memories and, as a byproduct of 

testing them make most of the combinational logic circuits that you 

might need to use simply by fusing the appropriate links. This will 

revolutionize design practise. There has been some discussion in this 

seminar of the implications of the classical method of designing from 

state machines, generating some combinational logic, doing some minimiz

ation. Finally, when someone makes a change, you start allover again. 

Much of that process disappears if we can store the state machine. 

Then when one does make a mistake, there is very little involved in 

making some new chips. I.e., the design process can become a lot 

softer and one can put small amounts of semiconductor storage wherever 

it is needed. This one result of the technology is the most important 

thing affecting the way we teach and the way we do computer design. 

It is not merely something that can be faster and cheaper, but some

thing which changes the whole nature of design. 

It is because of this that the introductory course in computer 

science ought to, from the v~ry beginning, combine logic design (in 

simplified form) with the ideas of programming. There should be very 

strong emphasis on programming where choice of the representation is 

free. This is in contrast to the programming languages of the last 

ten or fifteen years where choice of representation is very restricted. 

They impose particular ways of handling characters. Fixed sizes of 

numbers, fixed conventions on floating point numbers, and until very 

recent times extremely limited data structures. It took a long time 

for vectors and arrays to get into programming languages in anything 

like a general fashion and tree structures are still not quite there. 
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Programmers do not appreciate the idea that representation is where 

everything starts and that the representation you choose should 

depend entirely on what you want to do with it. There is no best 

representation, so if machines become mostly storage, then the 

choice of representation becomes much more important than before. 

I think that above all, the most general notion that has 

been put forward in any fo rm in computing is the notion of hier

archical structure . What is interesting about the Algol language 

and a reason why it has considerable theoretical impact is the 

notion of recursive definition. More recently, Dijkstra has 

advocated a programming style which really amounts to confining 

oneself to hierarchical structure and to doing away with such 

ad hoc constructs as branches. We might cons ider the state 

machine model as one which is usually thought of as a single 

level construct and extend it to a hierarchy of state machines. 

Wherever one can extend the definition by making it recursive, one 

gets generality almost for free. It is the only way I know of 

that this can be done, but so far it has not influenced machine 

design very much. There are a number of instances of machines 

that have better capabilities for the nesting construct than 

others, but the vast majority of machines are still single level 

machines. In fact , the vast majority of machine design decisions 

seem to be taken about choices between parallel and serial struc ture 

than anything else. The things that computer design should be 

concerned with have to do with representation and concurrency. 

(I might mention in passing that semiconductor storage is inherently 

serial becaus e of its packaging limitations; thus the old design 

constraints which occupy logic designers ~eed no longer apply). 

If we really believe that we can have a usable, general

purpose machine, then we must recognize that the kinds of things we 

want to represent are not known in advance. We cannot make any 

decisions, therefore, about the matters which notations like Bell's 

or the APL notation deal with very well. The questions of represent

int parallelism, word structure, how the instruction is divided up 

into fields, and that kind of descriptive material, is very well 

handled by those notations. But if we need a machine which will 
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let u s use any notation which i s appropriate fo r expressing t h e 

program and any representat ion of t he data and program which i s 

appropriate to the frequency of use of the parts and t h e likel i

hood of change, then what can we say about t he machine? The answer 

i s that we cannot make any structuring decisions about word size, 

parall elism, etc., in advance . Instead, we would ne ed to specify 

the s tructure of the machine as part of what is normally thought 

of as a program. 

List processing was mentioned as an example of something that 

seems not to run very well on some super-computers . This is not a 

criticism of the idea of list process ing, which after all i s 

intended to deal with a variable structure in one parti cular way. 

It i s mere l y an exampl e of my contention that the se machines are 

all special purpose. We cannot claim that they are general purpos e 

at all, and the fact t hat we can s imulate s omething g i ven sufficient 

time is beside t he point if t hat time is not reasonable. 

The ma in areas where speed i s really required are the special 

purpo se situations. They might be dealt with not by going parall e l 

(i.e. with large, synchronized transfers of bits) but by going 

serially into individual, decentralized component s of machine s, and 

arranging the machine as a whole so t hat very large numbers of these 

components can work concurrently (only loos ely synchronized). This 

changes t h e interconnection problem t o one whi ch begins to look more 

like those of telephone switching systems. 

Periodicity is anothe r aspect of computer design which we must 

consider. A peculiar attitude we have had for some t ime i s exemplified 

by relief from not having to do minimal latency programming of the drum 

computers and, at t he s ame time, annoyance that we do not have better 

disk systems. Programmers have been reluctant to tackle the problem 

of storage h ierarchi es and the probl ems of integrating periodi c 

storage into a system. The reasoning i s usually that we can expect 

very large, fast, cheap random access store in the near future, so 

there is no need to worry about these problems now. Noteworthy 

exceptions are the Atlas paging s cheme and more recently, segmentation 

mechanisms and access queuing on a few other machines. But rotating 
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storage devices a r e gen erally regarded as inconvenient things, and 

consequently second class designers are assigned to them. 

Periodicity is something that is going to be there all the 

time. It is going to keep coming back in one way or another so 

students should learn something about coping with it. For instance, 

one can certainly build a machine with a periodic store and not much 

of any other kind of store, which will out perform any other machine 

used today for business applications. There are no speical program

ming problems. This is also true of time-sharing. The STAR machine 

is another example of facing up to periodicity in the way that the 

modules of storage are made available one after another, and of 

course the 6600 did a similar thing with the I / O processors. As a 

systems idea, periodicity is important. It is not something that 

gets in the way, it is something that can be utilized, and there are 

some very appealing low cost periodi c stores available now. In fact, 

we could use some of these new components to build functional simul~t

ions of the classi cal ma.chines, like the EDSAC. This would really be 

an eye opener to people because machines have not improved that much in 

organization since 1950. 

We can consider some alternatives to the global design goals of 

speed and size. For example, there is the problem of minimal represent

ation. My personal estimate is that what, say, the 360 typically does 

in a program ought to be done in about one fiftieth (1/50) of the 

space. We have to look at machine organization differently and we 

have to look at the representation of the program differently. There 

are a lot of ideas and methods that have been around for a long time 

and that can be looked at this way. For example, Huffman codes can 

be used in context, so that the representation of the program depends 

upon the frequency of the elements which appear either statically or 

dynamically. A second interesting design notion might be the minimum 

power criterior, but I am not nearly enough of an engineer to know 

where that idea might lead. The idea is to see if you can get a 

thing done within some time constraint for the least expenditure of 

power. For example, MOS shift registers and stores can burn up a 

lot of power, so we ought to run them just fast enough to get your 

job done, not as a whole, but individually. 
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Repre sentation and the Design Process 

We have not had time to write any textbooks and I am not sure 

that computer design i s ready for that kind of standardization . I 

urge the people with whom I come in contact to read things which are 

not normally found in the engineering curriculum. I am pleased that 

I have some support in thi s area from people who are much more formal 

and scholarly than I am particularly Edsger Dijkstra. A valuable 

reading is The Act of Creatien by Arthur Koestler. It starts out 

with a lengthy discussion of nearly 100 pages on the subject of humour . 

Koestler propounds the theory that creative ideas are not the product 

of logical , systematic thinking at all, but are often first expressed 

as a joke . We have all the experiences of saying something, almost 

as a release f rom tension, in the . form of a joke, and then saying 

"Hey, that's not a bad idea. It's worth following up." 

Designers must l earn how to think 'illogically' and must not be 

afraid of inconsistencies. While something new is developing in the 

mind, the inconsistencies are so frequent that if one stops to catch 

even a fraction of them, the whole train of thought dissolves. We 

must not let mathematics - or notation - get in the way of clear 

thinking. We must get across to people who, because they are human 

beings are going to be designers, the notion that they cannot depend 

upon anyone piece of machinery to do it. Machines help, but every 

time one adopts a 'machine' - machine in the sense of a system, an 

algorithm or a standard method he gives up something and becomes 

imprisoned by it. For example, it was not until the late fifties 

that programmers even used graphs (in the topological sense) for any 

purposes other than sharing flow of control. Graphs, of all the 

general sorts of representations ayailable, are probably the least 

confining . We do become trapped by notations and so must be prepared 

to invent them and discard them. That is something that I noticed 

that Don Knuth, in his remarks here last year, commented on. No 

schools, as far as he knew, ever had courses in "mathematical 

notation", either studying it, in the way one might think of 

comparative linguistics, or inventing it, or even philosophising 

about it. The more we formalize some of our educational processes, 
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the more we tend t o kill in the people subje cted to these pro cesses, 

the ability to invent ad hoc the tool s that we need. 

About ten years ago, I followe the particular track of using 

programming languages, particularly Algol and Algol-style languages 

as a model for a machine , and I found t his quite fruitful. That 

particular way of doing things became almost machine-like, and 

gradually as peopl e got involved who had not been there at the 

beginning and a s the pioneers left, the 'machine' went on by itself. 

It was very difficult to introduce any new ideas in that situation. 

So if we produce students of design who are not prepared to cope 

with constant change as a normal thing, we are producing people of 

limit ed usefulness . Before they acquire the necessary maturity to 

parti cipate in important deci sions, they will be lo cked into some 

habitual way of thinking. It is not aging . It is a kind of human 

characteristic that has been accentuat ed over the last few hundred 

years. We do really want to find machines and methods to do things 

for us, but we take the life out of things this way. 

Language, not programming language but our native tongue is 

also a handicap. I am very impressed with the thinking of William 

Huggins, a Professor at Johns Hopkins University. He talks about 

and illustrates his notions of iconi c communication, that there are 

things which are best explained without using words using silent 

uncaptioned movies, tape TV or model s , for example. I claim that 

most of the subject matter of the computing field can be bette r 

explained without the words that we use . Programming languages, 

some of the ideas of syntax, the ideas of translation, c~n be 

modelled with packs of cards, and illustrated succinctly without 

words. One comes closer to absorbing an abst ract structure that 

way, or one l earns to make hi s own desc riptions from observing such 

a process. This is important for young peopl e , parti cularly if we 

are concerned with universal knowledgeability in matters having to 

do with computers, but i t is importan.t also for the programmers and 

the design engineers . 
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In practice we cannot stop talking. What we must do is engage 

in the exercise of changing the notations and terminology frequently. 

Reformulating a difficult problem by just changing the words leads to 

a whole new context and sometimes a solution pops out. 

Trying to pose design problems in unfamiliar context is helpful 

in unexpected ways. One of the more exciting examples of this is 

work that was done by some of our students in controlling an organ 

from a small computer. They designed and built what might be 

described as a modern version of a player piano. They did not really 

know what they were making at first and as yet it has not been used 

by composers, but I am sure it will be. They immediately learned 

some interesting things about programming. One of the things they 

did was make it possible to transcribe manually from standard musical 

notation to a linear notation to be used to drive the machine. One 

of the first things that they transcribed was a Haydn trumpet concerto 

(for organ); it was an extremely compact notation, actually more 

compact than standard musical notation. This constituted a program, 

run by an interpreter in the machine, cheating a little by changing 

the computer in a minor way. After all, they had a special problem. 

They just wanted to control the 80 odd keys and the various stops of 

an organ. If one wanted to justify such a frivolous effort without 

being defensive, we can think of it as an application in computers 

and control. 

I like it for two reasons. First of all, knowing nothing at 

all about music myself, I am awed by the whole operation, and the 

other reason was that the thing was pleasingly slow, and small. It 

took approximately 3500 12 bit words to hold the interpreter and 

the music for the Haydn trumpet convinced as a result of observing 

that project that we are going to have a rash of digital musical 

instruments before very long. (I hope they are not made by a 

business machine manufacturer for I cannot imagine what would 

happen if they were - they might have punched card readers. 

This is perhaps my favourite example of a design project that was 

simple and put a lot of real constraints on the people involved. 

They did not have much money to spend and they had old parts 

that did not work very wel l; but after a year it was the only 

piece of equipment in the department that always worked. 
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Comments and Conclu sions 

Words are very important to the whole question of our course 

for computer designers. If we say t hat we have a programming 

laboratory which uses the tools of Charles Seitz or Gordon Bell, 

we would naturally say it is good experience for them. But if 

we call it a laboratory in logic de sign and machine organization, 

we are asked whether or not the students are learning enough about 

circuits. 

I was asked if I wanted to produce students in my own image. 

I do not. I want to produce students who can discover who they ~ 

and can discover what they ~ to do. I belong to a radi cal school 

and am interested in the design of things other than computers. I 

hope the students will be interested in applying some ideas of 

information scien ce in other areas. I can conclude by echoing a 

remark of U Thant about his fears for the future of a world run by 

computer technologists who care little about people. We have just 

barely enough time to start a counter movement. 

Discussion 

Professor Suchard opened the discussion by asking Professor 

Barton for his comments on the influence of micro-circuitry in 

design. He suggested that one of its most important elements was 

to free the computer designer from a fixed word structure. The 

restrictions of designing for ferrite cores, involving compl etely 

fixed word lengths, could give way to a variabl e format in which 

such factors could be decided independently for different parts 

of the machine - the channels could function by bits, other parts 

in octal, and so on. Professor Barton agreed, adding that all 

complex machines have had their instruction set strongly influenced 

by their word structure. The freedom of representation which 

becomes possible is an important opportunity presented by the 

advent of micro-circuitry and large scale integration. 

Professor Page suggested that there were inherent dangers in 

the extent to which computer design was held in a straitjacket by 

manufacturers. He cited the danger in program design as in oth er 
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research areas, of constru~ting experiments with regard to the 

methods of proof available. Professor Barton said that he thought 

that with increasing capacity, machines and devices would become 

more and more serial, with fewer inherent limitations. Dr. Horning 

questioned whether serial design was in fact le ss constraining 

than parallel to which Professor Barton replied that parallel was 

just a special case of concurrent, whereas serial involved only'a 

single thread. Dr. Horning pressed t he point about constraint 

and Professor Barton agreed that the serial approach was always 

appropriate unless the designer can show that the required speed 

can be obtained only with parallel logic. He emphasised again the 

importance of flexibility - for instance, in most compari sons, 

sums etc . the number of bits involved is very small; flexible 

design could give one the opportunity to do only what one needed 

to do, and the need for packing would be removed. 

It .was suggested by Professor Ercoli that the building of 

parallel memory devices was valuable, since serial memory could be 

simulat ed within it. Professor Barton countered that there was 

little point in building in parallel unless the device was 

inherently parallel, since parallel devices were by their nature 

inefficient in most circumstances. 

The problem of looking for items of varying lengths in a 

list without looking through them all was raised by Professor 

Michaelson. This task was not easier serially, and he asked in 

what way serial design gave more freedom. Professor Barton 

replied that it enabled one to discard a pigeon-hole structure in 

memory - declaration could be used instead, and addresses could 

be computed. It was not enough to substitute serial for parallel 

memory; one had to go back to first design principles and get rid 

of addresses. This involved the design problems of a lifetime. 

He referred to a series of papers given at the Spring Joint 

Converence SYMBOL (Spring 1971, Rex Rice et al.) setting out 

principles not normally used in machine design, in which many 

functions of naming and storing variables and data were put in 

at the hardware level. Manufacturers' reaction was to say that 

programmers perform these functions already, at the software level. 
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• 

• 

Mr. O'Regan asked whether Professor Barton would recomment an 

efficient path for programmers. He replied by quoting Professor 

Perl is who summarised the essential in seven words: Definition, 

Evaluation, Substitution, Sequencing, Selection, Iterating, Binding • 

Professor Randell mentioned the problem of the generality of 

recursion, and gave as an example the Burroughs 6700. When it 

attempted to get a word, it had to compute an address, and this 

was hidden from the user. This suggested an inherent recursion 

absent from Professor Bell's notational description. Professor 

~ replied that the process described was obviously inherently 

recursive, but Professor Randell indicated that he was referring 

to recursiveness of description, not of action. Professor Bell 

replied that he was not sure and would have to check his notation -

if it did not cater for the problem then it should. 

The session concluded with Professor Page thanking Professor 

Barton and suggesting that in view of his departure before the 

plenary session next day, Professor Barton should really have been 

asked the questions he would most dislike having to answer. 
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