
SOME REMARKS ON THE TEACHING OF COMPUTER DESIGN 

z. Riesel 

Traditionally, a distinction has been made between computer 

engineers, who design hardware, and between programmers, who write 

software. The main point I want to make in these remarks is that 

a knowledge of hardware is not enough for computer designers and I 

would like to distinguish between computer builders and between 

computer users. The first group includes all those people who 

provide computing services for the end users, which means the 

engineers and those programmers who provide supporting software 

without which the end users really cannot take advantage of that 

marvellous machine, the electronic computer. This group of 

programmers is roughly covered by the name systems programmers. 

In the past, there has been a cleavage, a lack of communication 

between computer engineers and system programmers. This lack of 

communication is almost as bad as the "two cultures" described by 

Lord Snow, the lack of understanding between the scientific and 

the literary communities. Many engineers have not done much 

programming themselves and do not know what it is that systems 

programmers do. Programmers are put off by the physical aspects 

of computers. There are also psychological differences. We 

engineers are considered to be serious, but somewhat dull characters, 

and we consider programmers to be, by and large, brilliant but 

unreliable. Using the analogy of the motor car industry, we have 

a situation where the designer of the car never takes it out for 

a spin himself and where the racing driver does not know how th~ · engine 

is put together. 

This situation has several serious disadvantages. One is that 

present day computers are really not too well suited for some of the 

work they have to do, especially in the area of compilers and 

operating systems (1), and computer engineers are not in a position 

to do anything about it. Some of them have never heard that there 

exists a problem. 

46. 



The second disadvantage derives from the fact that computer 

design is becoming too difficult for engineers to do with their 

bare hands. Computers have to be used in the design process, and 

also, more and more, in the manufacturing process. 

Engineers have difficulties in using the machines they have 

themselves designed in their own work, to help them design better 

machines. 

Thirdly, in many situations where a computer is to be adapted 

to a special situation, and I am thinking in particular about real 

time control systems incorporating a computer, the best solution 

will clearly not be reached by hardware alone, nor by software alone, 

and the designer has to understand both, if he is to be at all 

effective. 

Fourthly, there is the area of diagnostic testing. Such tests, 

when written by engineers, are invariably too simple and put no 

real strain on the "machine. 

Finally, there is control by microprogram, where the distinction 

between hardware and software breaks down altogether. 

The fact that so few programmers understand the workings of 

hardware has also undesirable consequences. The most serious of 

these is that programmers cannot take part in and contribute to the 

design process because they do not know what is easy, what is 

difficult, and what is impossible in hardware. 

I would therefore like to state my opinion that the art and the 

science of computer design will not make the progress it should, 

unless engineers become programmers and programmers become engineers. 

The curriculum of a school of computer design must be such as to 

achieve this goal, by producing all round computer builders, profi

cient both in hardware and in software. Of course, this statement 

is not an original discovery on my part. A program on the lines I 

am suggesting is in operation in the United Kingdom at Manchester 

and Swansea, and a similar approach has just been suggested by a 

distinguished group in the United States (2). 

47. 



The reconciliat i on of programmers and engineers appears to 

be a worldwide trend . It would probably be preferable if 

faculties of electrical engineering were to introduce a balanced 

option, but if they do not, a special department of computer 

engineering may evolve in some places . 

If the general idea is accepted , it i s fairly easy now , to 

list the subjects to be taught in an undergraduate school f or 

computer builders. First of all, the traditional subjects of 

computer engineering . 

1. Circuit design 

2. Combinatorial and sequential logic 

3. Computer arithmetic 

4. System organization 

5. I/O channel organization 

6. Peripheral equipment. 

In particular I would like to stress peripheral equ ipment, a subject 

that has been much neglected. The computer designer will of course 

not himself design the mechanical part s of disc drivers, tape 

transports , punched card readers etc., nor even the read/write 

circuitry, but he must understand them . Otherwise his control 

units will not work. 

The other five subjects lend themselves to a clean, axiomatic 

approach and it is therefore very important that our students get 

plenty of exercise in getting their designs to work in the laboratory. 

Laboratory work i s also the only way for students to acquire the 

ability to use instruments, in particular oscilloscopes. 

In their laboratory work our future hardware designers and 

system programmers will put togethe r counters, adders and s imilar 

simple structures. More i mpo r t antly, t hey should have at the ir 

disposal a small computing machine to which t hey can tie various 

pieces of peripheral equipment and make them work by a well chosen 

mixture of hardware and software . They should also be permitted and 

even encourage to change the control sequences , to manipulate the 

register struct ure, so as t o i mplement new and unusual instructions , 

48. 



such as square root extraction, character cocatention or table 

look-up. 

I may add that modern technology and equipment permits 

laboratory work by students at a much higher level than in the 

era of discrete circuits (3). 

I wish to stress again that I would like to see people who 

intend to be systems programmers, though maybe not application 

programmers, to take these engineering subjects, including 

laboratory work, much as the idea may shock them. 

The second set of subjects is now taught mainly in depart

ments of computer science, though, in my opinion, it is of crucial 

importance to computer engineers. 

7. Programming in machine language, in assembler language, in 

algebraic language, in list processing language, in 

simulation languages. 

8. Theory operating systems, assemblers, compilers and 

interpreters. 

This, of course, must include regular access to a good sized 

computing machine and the completion of a good number of programming 

projects, of increasing complexity. This should include application 

programs, possibly in circuit design, programs intended for real 

time control of strange devices and compilers for special purpose 

private language, possibly invented by the students himself. 

Lastly, a group of subjects that, to the best of my knowledge, 

is taught in very few university departments, be they electrical 

engineering, mathematics or computer science. 

9. Use of computers in computer design, including circuit 

design, logic simulation, design and manufacture of 

printed Circuits, production and updating of drawings, 

wiring lists and spare parts lists. 

49. 



The importance of these subjects will be obvious to anybody who 

has rec~tly designed a computer or part of one. In the old days, 

of course, engineers designed just using pencil and paper, just 

as programmers used only obsolute binary maehine language, but 

these methods will not serve much longer, except for very simple 

projects. 

To summarize, the graduates of a computer builders school 

will have a better understanding than mere engineers, or mere 

systems programmers. The introduction of such a program is 

desirable, urgently required, and, I believe, inevitable. 

In conclusion, I would like to say something about the 

ordinary computer user and his need to understand something 

about the workings of a computing machine. I am not concerned 

so much about the big machine users, who are quite sophisticated 

and knowledgable but about small, occasional machine users, who . 

just want to get a small job done, probably from a remote terminal. 

I once heard a lecture by o,ne of the first implementors of an 

interactive time sharing system. The students, he said, were 

given an electric typewriter and taught to type in their 

problems and how to go about getting the correct answers. Some 

weeks later, when they had become experts at this, they were 

taken on a visit to the computing center. But, the lecturer reported 

proudly, they could not understand the need for all this horrible 

machinery, whereas the use of their typewriters for problem solving 

seemed perfectly obvious to them. 

Now I, personally, do not like this attitude. It reminds me of 

the cargo cults of the South Pacific. I believe that a man who 

pressed a switch and turns on an electric light should know that 

somewhere there is an electric power station where energy conversion 

takes place and electricity is distributed to all users. Similarly, 

I believe even a very casual computer user should know about gates 

and registers and that a stored program is executed step by step by 

operating on these registers. As a matter of fact, I believe that 

such knowledge should by a part of popular culture in the twentieth 

century and be taught in the secondary schools. 

50. 



References 

(1) W. M. McKeenan, Language directed computer design, 

Fall Joint Computer Conference, 1967 . 

(2) C. L. Coates at aI, An Undergraduate Computer Engineering 

Option fo r Electrical Engineering, Proceedings of the IEEE, 

June 1971. 

(3) T. L. Booth, Undergraduate Digital Laboratories. 

51. 


