
;

39

MODELLING AND VALIDATION OF PROTOCOLS

P.M. Merlin

Abstract

Complex pr ot ocols are used to coordinate remote activities
in computer networks. To insure proper operation, formal
techniques of protocol definition and validation have been proposed,
and developed to the point that they can be applied to actual
protocols . However, much work remains to be done in order to cope
with protcols of ever-increasing complexity: in particular, those
coordinating the activities of many interacting entities .

The char acteristic s th at determine the applicability of a
modelling and validation t echnique to a protocol will be treated.
Then a comparat ive description of techniques for pr otocol formal
modelling and va lid atio n will be presented, including new techniques
that are applicabl e to protocols which conventional techniques are
incapable of handling.

1. In troduc tion

Given a s ystem or cooperating processes such that the
cooperation i s done through the exchange of messages , a protocol is
the set of rules which govern this exchange [DANT, GOUDl. By
limiting the interaction to message exchange, we mean that
information about the state o f a process may be kn own to others only
if this information i s explic ity released (i .e . a message i s sent)
by the process. Distributed Systems naturally employ protocols
because if the interacting entities are physically remote to each
other , message exchange is the only possible way of coordinating
their activities. However , the use of protocols is not limited to
physically distributed systems , but to any system in which the
interaction between entities is done by message exchange. In this
paper, we assume a quite general definition of a "message": a
letter, a finite sequence of bits , a signal, a pulse, are all
considered as messages.

The exchange of messages between the processes have some
purpose and the role of the pr otocol is to insure that the purpose
is indeed achieved. There are many different purposes that
protocols can be designed for. The most common pur pose is that of
data transfer between processes. For illustration, Figure 1 (a)
shows a card reader connected to a computer via a communication
channel. Typically, a protocol will take care of the transfer of
data from the card r eader to the computer, and will handle also
exceptional situations such as transmission errors and lost
messages. Examples of such point-to-point data transfer protocols
appear in [X.25, STEN, SDLCl, and a simple one is also described in
section 2. Pr otocols may also take care of transmitting data
between processes via a shared medium such as a bus, a satellite
link, or a radio channel (see Figure lb). If in shared medium data
transfer t he processes transmit messages asynchronously, it may
occur that mo r e than one process could attempt to transmit
simultaneously. The occur ence of such a situation is called a

40

collision. If a colision occurs, the transmitted messages will be
garbled. In shared mediLlll data transfe r, the main role of the
protocol is to re sc lve content ion for the use of the mediLlll by
either preventing collisions (e.g . synchronising the use of the
mediLlll), or recovering from them (e.g. usi ng collision detection
mechanisms and retransmitting after collision). These protocols
are called "contention protocols" and examples of them can be found
in the DEC-UNIBUS [PDP 11l, ALOHA NETWORK [ABRAl, ETHERN ET [METCl,
etc .

Another purpose whic h is qui te common for protocols is
that o f synchronisation and initialisation. For illustration , a
protocol may take c are of synchronising the time c l ocks of the
different computers of a computer network [FINNl, or protocols may
initi alise variables or co un ters in remote computes. This is done,
for instance, during the establishment of a session between a us er
and a time s haring system, or a sess i on (called also "connect ion" o r
"virtual call") bet ween two users of a comput e r ne twork. In
di stributed data bases, pr o tocol s ta ke care . of synchronising the
update of multipl e copies of the same datum (e .g . A file o r a
variable) to guarantee a consist ent view of the data base [MULL,
ELLIl. Other purposes of protocol s are flow control of the traffic
in a store-and-forward network, location of a mobile unit in a
communic ation network (searc h), e t c .

Modern distributed systems ma y require extremely complex
protocols . Protocols can be so s ubtle that a formal treatment is
nec essa ry in order to guarantee t hat its definition is complete and
unambiguo us , and that the purpose of the protocol will be correctly
achieved. Forma l modelli ng techniques are used to defin e
protocols, and validation techniques a re used to in sur e the ir
correctness and pro pe r operation. These techniques are the main
topic of this paper .

As shown in subsequent sections , different classes of
protoco l s r equire diffe r ent modelling and validati on tec hn iques.
Ther e is no single method that can be co nveniently used to model and
valida te all protocols, muc h t he same as there is no si ngle
univ ersal tool in the me c hanic s hop. For bolts we can use plier s
whi c h cannot be used for screws ; for sc r ews we use screw-drivers.
However, whil e theoreti cal ly there is a co rrespondenc e between bolts
and pliers, clearly pliers are not suitable for large railway bolts,
because there is a pract i c al mismatc h. Similarly, there are
matc hes between c lasses o f protocols and modelling and validation
te c hniques. Sometimes these matches are practical, other times,
although theoretically a t ec hn ique can be applied to a protocol, in
practice , this co uld be impossible.

In the next section we show an example of the usage o f a
simple modell ing and validation tec hnique, illustrate its ad vantages
and demonstrate the shortcomings of thi s t ec hn ique t o ha nd le
protocol s hav ing certain c haracterist i cs . Then, t he
characteristics that determine the applicability of a technique t o a
protocol are discussed in general, and different tec hniques are
presented and eval uated according to the types of c harac t eristi cs
that they c an handle. Last, we present an example using a
tec hnique which is applicable to a type of protocol characteristics
that most estab lished and kno wn protocol validation techniques are

'.

:

41

not applicable to. Space limitations force us to omit detail
discussion of many meritorious works. We regret these inevitable
omissions and refer the reader to the surveys of [SUNS 1, SUNS2] and
the bibliography of [DAY].

2 . An Introductory Example: The Alter nating Bit Protocol

Using Petri Nets [PETR, HOLT, PETE, MILL], Figure 2 shows
a model of a simplified version (the recovery mechanism is omitted)
of the alternating bit protocol. A more complete description of
this technique and the example appearing in [MERL 1, MERL2]; [EOCH1]
present a theoretically equivalent technique for this protocol,
which involves two parties - a sender and a receiver connected
through a medium. The sender sends messages to the receiv er, and
the receiver responds wi th acknowledgements . Each message carries
a control bit (0 or 1) whose value al ternates for consecutive
messages, and each acknowledgment carries a bit equal to the one
carried by the message it acknowledges.

The places of Figure 2 represent the following conditions:

A1 = ready to send message with control bit 0
B1 = ready to receive message with control bit 0
M1 = message 0 in transit
K1 = ac knowled gement 0 i n transit
W1 = wai ting for acknowl edgment to message 0
C1 = message 0 was received
E1 = acknowledgment to message 0 was received
D1 = message 0 is being consumed; and A2 , B2, M2 , K2 , W2, C2, E2,

D2 have the same respective meanings but for messages or
acknowledgements carrying control bit 1.

The bars perform the following events:

11 sends message 0
12 receives message 0
13 sends acknowledgment to message 0
14 rec ei v es acknowl ed gment to message 0
15 consumes message 0

16 produces message 0; and 21, 22, 23, 24 , 25, 26 per form the same
respective events but for messages or acknowledgments carrying
control bit 1.

The initial state is one token in A1 and one token in B1.
By generating all possible global states and transitions between
them, the read er may familiarise himsel f wi th the behav iour of the
protocol. The resul ting graph of such global state generation is a
state machine called Token Machin e and it is given in Figure 3. In
the Token Machine, states represent global states of the Petri Net
model of the protocol, and each transi tion is labeled by the number
of the bar that effects it. Since in this case the Token Machine
is finite, we can easily see (i.e. validate) that after a message is
sent it will be received, that consecutive messages are sent
carrying alternating control bit, that there is no deadlock, etc.
[MERL 1,2] shows the null model and TM of the pr'otocol includ ing the
recovery mechanisms and accounting for possible failur es. Several
validation techniques were proposed based on a finite state

42

description of eac h party of the protocol and generating all
possible global states and transitions [BaCH 1. MERL 3 . RUDI. WEST1 .
ZAFI. POST]. in a way similar to the one demonstrated above. These
techniques are theoreti cally equival ent.

In this paper. each part of a protocol r esiding at a
single process is called a party of the protocol. i.e. a party is a
portion of a process which is r elevant to a protocol. The fir s t
cause which can preclude the applicability of the technique sho wn
above is high party compl exity . For illustration. if in the
example instead of an alternating bit the sender wil l label the
messag es with a sequence number of. say . 32 bits. then it will be
clearly impractical to generate the Token Machine. because it will
include more than 2 to the 32 s tates. I n that case. it may be even
qui te compl ex just t o d escrib e the protocol itself wi th a finite
state model as the on e of Figure 2. Moreover. one may even want to
model and validate a protocol whose entities include unbounded
variables. for example if the messages would carry an acyclic
increasing sequence number . In thi s case . it is ev en theoretically
impossible to apply a finite state technique.

The topology or a protocol i s the graph whose nodes are
the parties of the protocols and arcs denote possible interactions
between the partie s (see Figures 1 and 2). Also increase in
t o pology complexity can prec lude the applicability of a tec hnique.
For example. a pr o tocol with e ven simple parties may no t be
validated by exhaustive global state generation if it incl ud es too
ma ny parties .

3. Protocol Classification

The amenabil ity of a protocol t o the applic ation of a
technique is affected by two relatively independent protocol
characteristics : party characteri stic and topology characteristic .
The character ist i c of a party is given by the (possibly infinite)
set of all possible pairs of incoming-outgoing message sequences.
i.e. the characteristi cs describe a l l possible behaviours of the
types of topologies the pr otocol can work on. A proto col may be

.desi gned to co rrectly work i n any to polog y of a given set of
t opologies. Fo r example. the same protocol of Figure 1 (b) could be
used for any number (possibly up to a certai n limit) of parties
connected to the shared medium. Table 1 shows a list of types of
t opology sets. The entries in the table are ordered by increasing
general ity. i.e . each entry is a special case o f entries appeari ng
later.

A protocol may also be designed to work on an evolving
topology. For example . a routing pr otocol may work on any compute r
network topology where operating nodes and links may fail . and new
nodes and links may become operational [FINN. MERL4J. Thi s can be
consider ed as if the topology would be evolving during operation .
Another example of topology evolution is gi ven by the progress of a
mul tiparty phone conversation i n an advanced telephone exc hange
[FOOX]. The topology characteristic of a protocol is defined as
the set of pe rmitted t o polog ies and their possible evolutions.

A model li ng tec hni que is theoretically appl icable to a
given protocol if and only if it is powerful enough to be able to

;

43

represent each of the characteristics of the parties and the
characteristic of the topology. For illustration, the party
characteristic of the sender (or of the receiver) in Figure 2 can be
expressed as repetitions of the string: (MO KO M1 Kl). But any
such expression can be represented by a Petri net, in fact, even a
Finite State Machine could be used to represent that characteristic.
The simple topology of the alternating bit protocol is also
represented by the connectivity of the Petri net of Figure 2.

Theoretical or practical applicability of a validation
technique depends on the protocol characteristics (parties and
topology), on the modelling technique used to describe the protocol
Ii.e. the description to which the validation is applied), and
finally, the properties to be validated. When surveying techniques
in subsequent sections these dependencies will be further discussed.

The
a validation
appl icabil i ty

practical applicability of
technique is d ifficul t

implies theoretical

a modelling technique or of
to formalise. Practical
applicability, but also

"conciseness", "ease of understanding", "convenience to use", etc.,
which are difficul t to quantify and sometimes depend on personal
experience and taste.

Initially, most work on protocol modelling and validati on
was done for protocols of simple party characteristic, i.e. those
which can be described by a Finite State Machine, but later ther e
were several developements applicable to more complex parties .
However, from the topology po i nt of view, wi th a few ex ceptions
[FIN, MERL4, MERL5, DIJK, FOOX, ELLI, etc.) most of the formal work
done to date is applicable only to extremely simple topologies
usually a pair of entities.

4. Abstraction

It is important to remember t hat a (formal) description is
only ~ model of a system and not the real world. When modelling a
protocol, we don 't take into account eac h electron in the system; we
even don't consider the logical dates which make the computer that
performs that protocol. We l imit our view to certain aspects
because otherwise the complexity of the model will be intractable
and the effort necessary to build the model will be as large as that
of building the real system or even greater. A limitation to d eal
with certa in aspects while ignoring those details of the protocol
and it s environment which are irrel evant to these aspects is called
an abstraction. Abstr 'action implies assumptions on the behaviour
or properties of the protocol environment which are explicity or
implicitly made by ignoring details. Hence, the validated
properties of the protocol will indeed be true only if the
assumptions implied by the modelled abstract ion hold.

Similarly to operating systems, protocols are typically
built in hierarchical levels of abstraction, where the protocols at
a level use the functions provided by the levels below without
concern for how those functions are actually implemented. An
example of this is shown in Figure 4. The shown protocol structure
is typi cal of computer networks. In this example, the user'
protocols of the highest level take care of communication between
"processes". At this level of abstraction it appears as if

44

processes directly communicate with each other by exchanging
"letters". However, in practice, the lower level protocol, i.e.
the protocol communicating between the hosts, is responsible for
delivering the letters and implements this by exchanging what is
abstracted as "messages". These messages may carry parts of
letters as well as necessary control and synchronisation information
for the host-host protocol. The protocols at the user level of
abstraction is not concerned with the details of the host-host
protocol, and assumes that the letters it sends wil be delivered and
that certain types of failures may occur. Similarly, the message
exchange is implemented by the e nd-to-end network-node protocol
which communicates by packets, and so on for the lower levels of
abstractions. All levels, except the store-and-forward include
only two parties per protocol. The store-and forward protocol may
include more than two parties connected on any mesh topology and
Figure 4 shows only one of the paths through that topology.

The abstraction made determines also what we consider to
be parties and what we consider to be communication links between
them. A common abstraction is to consider complex links as being
parties that connect ' between other parties . For example, the
shared medium of Figure 1 (b) can be seen as a party that represents
the possible behaviours of the medium, and interconnect between
A, B, C,D, E.

5 Models

In this section we discuss a few of the existing protocol
models and modelling techniques.

Finite State Machines

Fini te state machines were proposed qui te early to model
protocols [KAWA, BIRK, KNOB, BOCH2J. A single finite state machine
can be used to describe the global state of the protocol or,
al ternatively, one machin e can be used for each party, as described
by the simple example of a sender and a sing le buffe r receiver of
Figure 5. The sender sends a "data " message and waits for the
"done" message sent by the receiver when the buffer is empty again.
In the mul ti-machine approach, a transition marked wi th a SEND and a
transition on a different machine marked with a RCV having the same
parameter (i.e. the same message) are performed simultaneously and
the mac hines are said to be coupled. If the message transmissio n
delay is not important, the sender and receiver machines can be
directly coupled and the machine for the medium omitted. The
si ngle machine and the coupled machines models are theoretically
equivalent and they are theoretically applicable to any protocol
having finite entities (i.e. characterizable by regular expressions)
and a bounded number of topologies. Infinite state entities are
not representable, and the generalizations necessary to represent
unbounded number of topologies will be discussed later .

In practics, both approaches are applicable to simple
topologies (usually a pair of entities) and to entities having no
more than a few dozens of states. A practical advan tage of the
single machine approach is that global prope r ties can be directly
checked (or designed) on the model. An advantage of the coupled­
machin es approach is that it can be directly implemented in each

'.

;

45

party without the problems of decomposing the single machine
description amongst the entities . Such decomposition may be done
in different ways leading to possibly non-compatible implementations
of the same protocol [WEST2J. The single machine approach is used
to describe several adopted standards [e.g. X.2l, X.25J. More
details and examples of the finite state machine approach can be
found in [BOCH1,GOUD, RUDI, WESTJ.

Several extensions to the finite state machine model were
proposed [GOUD, BOCH3, MERL4, VISSJ one of which is demonstrated in
section 7. These extensions broaden the theoretical and practical
applicability of the model .

Petri Nets and Related Models

The use of the Petri net model was already shown in
Section 2. The theoretical applicability of Petri nets is broader
than Finite State Machines - any Finite State Machine · as well as
some types of protocols having an infinite number of states can be
represented by Petri nets. However, the Petri net model is not
universal because certain party characteristics are not
representable in this model. Also protocols wi th unbounded number
of permitted topologies cannot be represented and the necessary
generalisations will be discussed later.

The practical applicability of Petri nets is close to that
of finite state machines, but in many cases broader. For example,
the protocol of Figure 6 is represented in practice by a Petri net,
but cannot be represented by a finite state machine even
theoretically. This protocol has the property that permits any
number of outstanding messages which can be sent and received out of
order. However, if we require an arbitrary number of outstanding
messages that will be received in the same order that they are sent,
this will not be representable even theoretically by a Petri .net.
Petri nets are convenient for representing protocols which can
operate with various amounts of some resouces (e .g. number of
buffers, etc .). In this case, a single Petri net will suffice, and
the actual amount of resources will be represented by the initial
number of tokens placed. Petri nets will also be convenient for
representing parties in which several events may occur in arbitrary
order. For example, the Petri net of Figure 7 will be quite
complex to represent by a finite state machine, but the Petri net
representation is relatively compact.

A typical failure handled by protocols is the loss of a
message in the medium. In the Petri net model, this can be
described by arbitrarily removing the token from the place that
represents the medium (e.g. Ml or M2 of Figure 2). Using such a
representation of failures [MERL1, MERL2J studied the recoverability
of distributed computing systems and its appl ications to protocols.
Unfortunately, [MERL 1 J shows that the necessary and sufficient .
conditions a Petri net must satisfy in order to be recoverable from
lost messages imply some properties that are usually unacceptable in
practical systems. This is due to the fact that Petri nets do not
include any knowledge (or limitations) of the execution time of the
events, and relations among these times playa central role in all
practical recoverable protocols. The practical implication of this
is that Petri nets cannot faithfully represent the entire meaning of

46

time-outs, and a s imil ar s ituation exists with re spect to the
coupled finite state machines model.

In order to al l ow the repr esentation o f timing kno,lledge
by a Petri net-like mod el the Tim e Petr i Net was c reated. A Time
Petri net is defined by a Petri net wher e each bar ha s two times
specified . The first denotes the minimal time that must e lapse
from the time that all the input conditi ons of the bar are e nab l ed
until this bar can fire. The o ther time d e no tes the maximal time
that the input conditions can be enabled and the bar doe s not fire.
After this time, the bar must fi re. In general , these two times
give some measure of minimal and maximal execution tim es of the
bars, wh ile maintaining the basic character istics of the Petr i nets.
This model is useful in describing practical recover able protocols ­
[MERL 1,2,3J and al l ows the exact representation of time-cuts whi c h
is impossible in most other models.

The principal practical shortcoming of Petri nets (as well
as state machines) - is the rapid growth of t he graph with the
compl exi ty of the protocol. To alleviate this, in addition to the
Ti me Petri net, other enhanc ements and variations of the basic model
were . propo sed and used t o repr e s ent pro tocols [POST, KELL, MERL3,
ELLI , YOEI, SYMC, FOOXJ. These enhancements r e sult in a more
compact notati on , but t hey also increase the theor etical
applicability of the model.

High Leve l Programming Lanaugages

High level programming lang uages were also proposed and
used to model protocols [BOC H4, STEN , DANT, KROGJ. In this model,
eac h party is represented by a formal description similar to a high
level program. Since these languages are un i ver sal, they permit
the representat i o n of any entity c haracteristic. However, in the
standard way in wh ich these languages are used only simple
topologies can be represented, and the extensio ns necessary to
r epresent unbounded numbers of topo l ogies or evolving topologies are
described below.

In prac tice, standard high level programming languages a re
convenient to represent numbers, data , variables, counters, etc .,
but not complex control structures. Therefore, th is model was
mainly used to repr esent the d a t a transfer aspects or protocols
wh ile the graph models (Sta te Machines and Petri nets) wer e mainly
used to represent the con t r ol aspects (async hroni sation ,
initialisation, etc.) for which they are more convenient . He nce ,
there were also protocol models proposed [BOCH3, DANT, MERL4J whic h
combine hi gh level languages with graph mod els.

A protocol model based on formal gramm ar s is proposed in
[HARA1 , HARA2J.

Representation of Unbounded Number of Topologies and Ev ol ution

If we assume that e ac h party and each link is individually
repr esented , as impl ici t y done befo r e, then unb ound ed numbers of
t opologies cannot be represented because this wi l l require an
i nfinite expression. Hence, we must find finite ways o f expressing
such protocols. This can be done by giving a bound ed number of

'.

;

47

basic parties and a rule of connecting replications of the basic
parties into permitted topologies. For example, a loop of any
arbitrary number of identical parties can be represented by
representing one copy of the parties , showing its connections to the
neighbours, and assuming a finite number of entites as shown in the
example of Figure 8. Any of the models can be used to describe the
basic entities provided that indices or other ways of expressing the
rule for connecting the entities are added. Sometimes, as in
Figure 8, the indices i , J, k are used only as linkages to show the
connectivity of the topology and different values of indices point
only to different locations in the network but not to different
properties of the parties. Other times, the values of the indices
are used to denote differences between entities , e.g. higher index
may denote higher priority.

An unbounded number of topologies may include not only an
unbounded number of parties but al so an unbounded number of 1 inks to
other parties. In such a case, each party may have an arbitrary
number of neighbours, which can be represented , as shown in the
example of section 7, by allowing the basic party to have a list of
neighbours of arbitrary length.

Clearly , these modelling techniques are applicable not
only to an unbounded number of topologies, but they can also become ,
of great practical value in modelling protocols with bounded but
large numbers of topologies . For illustration , if the loop
generated by the basic party of Figure 8 is limited to 1024
elements , it can be best represented as for the unbounded case in
which O<i , J , k< infinity is changed by 0<i,J,k,<1023. The use of
this technique to represent large or unbounded topologies appears in
[FINN, ELLI, MERL4, MERL5 , DIJKJ .

If each party has a list (or table) of neighbours, a
topology evolution can be represented as a change in these tables
(possibly including creation or destructi·on of tables) , which can
occur during the protocol operation. An example of this appears in
[MERL4J. A similar technique , but wi th a central relation
describing the connectivity, was used in [FOOXJ to model and
validate the protocols of a quite c omplex telephone exchange. The
description of protocols involving topology evolution requires
operations that cause changes in the party interconnections, and the
model used to describe such protocols should include these
operations .

6 . Validation Techniques

In [BOCH1, (also GOUD)J there appears a list of the
properties which are usually validated in protocols; a summary of
them is given below including slight changes and additions. The
list is quite non-committing in the sense that there exist many
protocols from which some of the properties are not required, or for
which some of the properties have a slightly different meaning than
the one described:

•

48

1. DEADLOCK FREENESS: "No terminal state".

2. LIVENESS: "From each reachable state any other state is
reachable" or " for each r eac hable state and event there
exists a reachable state from which this event can occur "
(in a sense, this represents the concept of no degradation).

3. TEMPO-BLOCKING FREENESS: "There i s no non-productive
infinite looping " .

4. STARVATION FREENESS: " If several processes contend for
resources which become available infinitly many times, no
process will be prevented forever from acquiring the
resources that it needs" .

5 . RECOVERY FROM FAILURES: " After a failure the protocol will
return to normal execution within a finite number of steps
(or within finite time)".

6 . SELF SYNCHRONISATION: " From any abnormal state, the protocol
will return to a normal state within a finite number of
steps (or within f i nite time). This property and recovery
are closely related " .

? . CORRECT PURPOSE EXECUTION: This
e.g. " correct data
protocol, and "only
contention-resolution

delivery"
one user

protocol.

is very pr otocol dependent,
for a data transmission

at a time on bus" for a bus

Many validation methods have been proposed, but most of
them make use of one of four basic validation techniques. Although
two methods using the same · basic validation technique may display
some practical differences, they are usually theoretically
equival ent for every protocol whi ch is representable by the two
modelling techniques o n whic h the validation methods are
respecti v ely appl ied . The basic valid ation technique s are
desc r ibed below.

One of the most common validation techniques is exhaustive
global state generation as demonstrated by the Token Machine of
Figure 3. Uses of this technique appear in [BOCH1 , BOCH2, BOCH3,
MERL.l, MERL2 , MERL3, ZAFI, RUDI, WEST1, WEST2, etc . J. The
theoretical applicability of this technique is limited to protocols
wi th bounded number of topologies and finite state parties . The
practical applicability is limited to very simple topologies (say up
to half a dozen parties) . Several actual protocols (or parts of
them) we r e validated using this technique (e.g. alternating bit
protocol [BOCH1 , MERL2J , X.21 [WEST2J, X.25 [BOCHll? , a telephone
exchange having evolving simple topologies [FOOXJ). An advantage
of this technique is that the state generation can be easily
mechanised, and several properties can be automatically tested
[RUDI, WEST1, WEST2J. However, since there exist protocols where
some properties should "usually" hold but exceptional cases are
permi tted, the failure to pass an automatic test does not
necessar ily imply that the protocol is not correct , and therefore,
human interpretation of the results is nevertheless needed [MERL3,
WEST2, FOOX]. Sometimes, (e.g. [DANT, FOOX]) properties of the

:

49

Total state space can be va lid ated by generating a small subset of
the states. This can greatly increase the applicability of the
technique.

Another common protocol validation technique is assertion
proving [KELL, EOCH3, BOCH4, STEN, KROGJ which is applied to the
protocol description , as if the description were a parallel program.
This technique was usually applied on protocols modelled in high
l evel programming languages, but theoretically it can be applied to
any other model. The usual way of applying this technique is by
attaching a predicate of the vdriables' values to certain points in
a program and proving that whenever the program reaches these points
the predicate is true. This can be generalised to a given
collection of cooperating programs by attaching the predicate to
sets of pOints such that in each set there is at most one point from
each program. Then it is proved that whenever the programs reach
the points of any such set the predicate holds. As described
above, this method is limited to protocols with a bounded number of
topologies. Howev er, the method can be generalised to protocols
with an unbounded number of topologies provided that the desired
predicate and the (possibly unbounded) sets of points can be
expressed by bounded expressions, as to be demonstrated by the
example of section 7 .

In practice , assertion proofs were mainly appl ied to
simple topologies, but sometimes, having quite complex parties.
Examples of actual protocols validated using this method are:
alternating bit [BOCH 317, HDLC [BCCH4J, Data Transfer Protocol
[STENJ. Since the construction of proofs may require an act of
creati vi ty, thi s technique cannot be fully automated . However,
qui te powerful theorem provers have been constructed which are
capable of automatically proving many of the required properties.
An application of such a prover to the validation of protocols is
reported in [BFAN).

While global state generation is more convenient in
proving control properties (e.g. that certain events will or will
not occur), assertion proving is mainly used in proving data
transfer properties, in particular, in protocols involving parties
with large or infinite state space . The two techniques can be also
combined [ECCH3J in order to capitalise on the advantages of each.

A third validation technique is induction over the
topology. By this technique, the holding of a property or the
occurrenc e of an event is proven by showing that certain conditions
will propagate throughout the topology . The use of induction over
the topology is theoretically applicable to protocols of any
characteristic , and is particularly useful in cases of protocols
having large or an unbounded number of topologies, and evolving
topologies. The technique was successfully appl ied in practice to
several such protocols [FINN, MERL4, MERL5, DIJKJ. These examples
involve relatively simple parties, and from the limited experience
with this technique it seems that formal proofs for such topologies
but more complex parties could be difficult . However, we clearly
cannot expect simple validations for very complex systems
(i.e. complex topologies together with complex parties) and still
this could be the best technique for those cases. An example of
the use of this technique is given in the next section.

50

The last technique is adherence to sufficient conditions .
In this technique , the protocol is designed in such a way that each
design step is done satisfying conditions which are suffici e nt to
guarantee the required properties. That is, instead of designing a
protocol and later proving its correctness, this technique is aimed
at directly designing one which is correct by construction .
(Notice that similar concepts exist for software development.) This
techniquA can be used in any topology and entity characteristic, and
its main advantage is that it is easy to apply and that correctness
i s di rectly guaranteed . Its main shortcoming is that sufficient
conditions could be too strong, i.e. there may be many correct
protocols that will be rejected because they do not satisfy the
sufficient conditions. On the other hand, tight sufficient
conditio ns (or preferable necessary and sufficient conditions) are
usually complex and difficul t to find. Examples of this technique
appear in [GUNT, MERL6l.

7 . A Conclud ing Example: ~ Routing Protocol

The modelling and validation example described below is a
,,,implified version of the routing protocol proposed and validated in
[MERL4l . The protocol is executed by the nodes of an arbi trary
computer network of nodes N and links L 5 NxN (since the arcs are
non-dir ected, if i ,j belong to L so also do i ,j). To each link i , j
of L a positive constant dij (called "distance") is assigned. The
distance represents the cost of using the link . One of the nodes
of N is called the SINK . Each node I of N has a variable di which
stores the "estimated distance" from node I to SINK and a vari able
pi called "preferred neighbour" that pOints to one of the ne ighbours
of i. The set of all pOinters pi is denoted as P. Initially, the
poin ters P form over the entire network a directed tree routed at
SINK. An example of such a network is sho wn in Figure 9. The
pointers P provide a loop free path from every node to SINK and the
purpose of the protocol is to update the pOinters in such a way
that:

1. At any time they form a tree routed at SINK, and
2 . Minimise the path length (i.e. the sum of dij through
the path) from each node to SINK.

In situations defined below, a node I will send to its neighbour s a
message communicating its estimated distance di to SINK . Such a
message is denoted MSG(di), and it will ar rive at the receiving node
wi thin an arbitrary finite time. In this section "message" refers
to the control message MSG(di) - we don't refer to the ordinary data
messages which are transmitted through the network.

The protocol operates in update cyc les which are triggered
by the SINK. Each upd ate cycle improves the paths to SINK, and
after s uch a cycle ends the SINK may start a new one. After a
finite number of cycles the paths converge to the minimal path from
each node to SINK. As elaborated below, each update cycle proceeds
in two phases:

'.

:

51

(1) Control messages are sent
of the current P tree.
estimates di are updated.

uptree from SINK to the leaves
During this phase, distance

(2) Cont r ol messages are sent down tree to the SINK.
During this phase, new preferred neighbours P are selected.

In this example, the topology of the protocol corresponds
with the topology of the network, and each party corresponds with a
network node. This protocol works on any topology, but since,
ex cept the SINK , all parties per form the same algorithm, the
description of only one party and the SINK are necessary . The
details of the protocol are formally described in Figure 10 where
the algorithm performed by an arbitrary node I is shown. Each
party has two states: S1 ("ready for next cycle") and S2 ("phase 1
was performed, waiting for phase 2"). Each party has two
variables , pi , di . The network connectivity is represented by an
arbitrary list of neighbours L. Fo r each neighbour k of cf L there
is:

(1) a link distance dik (as already discussed) ,
(2) a flag Ni(k) initialised to NIL, set to RCVD when party
I receives a MSG from k , and reset to NIL when phase 2 is
completed.
(3) a variable Di(k) that stores the last estimated distanc e
received from k.

Whenever a MSG with any parameter d is received from k the "FOR"
statement is performed, i . e . new values are stored in Ni(k) and
Di(k). Then , transitions of the finite state machine are performed
if the pa rty is in the co r responding state and t he "CONDITION"
associated with the transit i on is true. When the transition is
performed , the state is changed and the" ACTION" associated with the
transition is performed . T12 is performed by party I (i.e. , phase 1
for node i) when it receives a MSG from its pi , then a new di i s
calculated and MSG (di) is sent to each neighbour except pi . As
proven below , the tree str ucture of P guarantees that after a cycle
is triggered, T12 will be performed by every node. T21 is
performed by party I (i . e . phase 2 for node i) when it has received
a MSG from each of its neighbours . Then I sends MSG(di) to its pi
(allowing phase 2 to propagate down tree), updates pi , and resets
the flags Ni. The cycle ends when the SINK performs T21. The
algorithm for the SINK (see Figure 11) is slightly different because
pSINK does not exist, dSINK=C always, and the SINK can spontaneously
start new cycles while at S1. When the SINK performs T12 a cycle
b eg ins and wh en T21 the cycle is completed.

The protocol is said to be in idle state if no message is
in transit , all parties are at S1 , and fo r all I and k NHk)=NIL.
It is easy to show that in idle state, the only event that can occur
is transition T12 at SINK. Initially, the protocol is in idle
state and P forms a tree rooted at SINK . Then:

52

Theorem 1 : (No deadlock). Wi thin finite time the SINK
will always be able to start a new cycle, and any cycle
started will be completed in finite time.

Theorem 2 : The pOinters of P always form a tree rooted at
SINK.

Theorem 3 : Within a bounded number of cycles, P corresponds
with the-directed graph given by the shortest paths from the
nodes to SINK. The bound equals the longest path in terms
of number of hops in this graph.

-The proofs of Theorems 1 and 2 follow directly from the lemma below.
The proof of part 1 or the lemma demonstrates the use of induction
over the topology. The combined proof of parts 2 and 3 demonstrate
the use of assertion -proofs: The predicate is given by conditions
(a)-(f) of the proof, they should hold at any time (i.e. such
conditions are said to be "invariant") and the proof is done by
induction over all possible events that can occur.

Lemma: If in idle state and while P forms a tree the SINK performs
T12 then:

1. every party (including SINK) will perform T21 within
finite time:
2. when T21 is performed by SINK the protocol enters idle
state:
3. from the time that T12 is performed by SINK, P remains a
tree at least until after T21 is performed by SINK.

Proof of part J. : Let P1 denote the initial tree . Initially all
parties are at Sl, hence a party I can change its pi only when
performing T21 and this after performing T12. Suppose a party I
laying s ? 0 steps over P1 from SINK performs T12. When performing
T12 it sends - MSG(di) to all its neighbours except pi. This
guarantees that every party j such that pj=i will perform T12.
Hence, every party j that lays 5+1 steps over P1 from SINK will
perform T12, and by induction, every party will perform T12. This
implies that each party in the leaves of P1 will receive a MSG from
each of its neighbours and perform T21 at which time it sends MSG to
its old best neighbour. Hence, by induction in a similar way as
above but down tree every party will perform T21.

Proof of parts ~ and 1 : Let us assume that up to a time t in the
interval between T12 and T21 performed by the SINK, the following
conditions hold:

(a) P forms only trees;

(b) since SINK performed T12, each party has performed T12 and
T21 at most once each;

(c) for every party i, if i performed T21 then for all k,
Ni(k)=NIL, and there is no message in transit to i;

(d) each party has sent at most one message on each link.

:

53

(e) for every party i, if i is in 3 1 t hen every party j having a
path in k to i is also in 31;

(f) for every party i that is in 31, if pi=j then either j is at
32 or j is at 31 and di>dj.

The only events where their occurrence may invalidate the conditions
are that some party r performs T12 or T21. We check that such
occ urr ences maintain the conditions. 1£ at time ~ party r
performed T12 (i.e. entered 32);

(a) is maintained because T12 does not change P;

(b) if r already had performed T12, it also performed T21 and
party pr violates (d) before t;

(c) no additional party performed T21;

(d) from (b) , this is the first time that r performs T12, hence
the first time that sends M3Gs ;

(e) pr has sent M3G to r, but r has not sent to pr, therefore,
pr is in 32;

(f) if a party enters 32 (f) is not changed.

If at time ~ ~ 2: performed T21 (i.e. entered back 31);

(b) since r performed T12 only once , then this is the first time
it performed T21;

(c)(d) since r pe r formed T12 and then T21, r sent one M3G on each
of its links;

(e) if pj=r and since j performs T12 and T21 at most once, then
if j is in 32 it has not sent M3G to rand r could not
perform T21.

(f) since pr performed T12 only once, at t Dr(pr)=d(r,pr)+dpr
and dr ~ Dr(pr), hence dr dpr. If there exists a node j at
state 31 such that pj=r, because r performed T21 we know
that j performed T12 and T21 and the same previous argument
holds for dr and dj.

(g) every j having a path in P to r is in 31 (by (e)); if after
r performs T2 1 pr is in 32 there is no loop formed; if it i s
in 31 (f) guarantees no loop.

Hence, (a)-(f) hold until after 3INK performs T21; (a) implies (3)
or lemma and, since initially all nodes are at 31, (1) , (b), (c)
imply (2). Q.E.D.

The protocol in [MERL4) allows the distances dij to vary
with tim e and generalise the protocol to handle topological changes,
i.e. link or node failures and new links o r nodes becoming
ope rational. That paper also shows how the data messages can be
routed using the paths p maintained by the protocol.

54

8. Conclud ing Remar ks

We expect in the future the need for coping with more
complex protocols . In particular, work is needed in protocols
which operate over complex topologies - an area where not much work
has been done. The development of automatic or semiautoma tic tools
may help in this task, however, human ingenuity will always be
required. The discovery of better sufficiency conditions may also
facilitate the design of correct protocols. Better understanding
is also needed in ways of insuring that errors are not introduced
when the validated model is translated into an implementation.

REFERENCES

[ABRA] Abramson, N., "The ALOHA System - Another Alternative for
Computer Communications", Fall Joint Computer Conf., AFIPS
Conf. Proc. Vol. 37, 1970, pp. 281 - 285.

[BIRK] Birke, D.M., "State Transition Programming Techniques and
their use in Producing Teleprocessing Device Control
Programs", IEEE Trans. Comm ., Vol. COM-20, No.3, pp. 568-
570 (June 1972).

[BOCH1] Bochmann, G. V., "Finite State Description of Communication
Protocols", Proc. of the Computer Network Protocols
SymposiLlll, Liege, BelgiLlll, 13-15 Feb. 1978. (Also
Pub. No. 236, Dept. d'Informatique, University of Montreal,
July 1976.

[BOCH2] Bochmann, G.V. , " Communication Protocols and Error Recovery
Procedures", ACM Operating Systems Review, Vol. 9, No.3,
July, 1975 .

[BOCH3] Bochmann , G.V. and Gecsei, J., "A Unified Method for
Specification and Verification of Protocols", Proc. of IFIP
Congress, Toronto, Canada, Aug . 1977, pp . 229-234. (AI so :
Pub. No. 247, Dept. d'Informatique, Univ. of Montreal,
Canada) .

[BOCH4] Bochmann, G.V. , " Logical Verification and Implementation of
Protocols" , Proc. of 4th Data Comm . Symp., Quebec
City, Canada, Oct . 1975, (IEEE). (Also :Pub. No. 190,
Dept. d'Informatique, University of Montreal, Canada).

[BRAN] Bran, D. and Joyner, W.Jr . , "Verification of Protocols Using
Symbolic Execution", Proc . Computer Network Protocols Symp . ,
13-15 Feb. 1978, Leige, Belgium.

[DANT] Dantine, A. and Bremer, J., "Modelling and Verification of
End-to-End Transport Protocol s", Proceedings of the Computer
Network Protocols Symposium Liege, Belgium, 13-15
Feb. 1978.

'.

:

[DAY]

55

Day, J.C., "A Bibliography on the Formal Specification and
Verification of Computer Network Protocols", Proc . of the
Computer Network Protocols Symp., Liege, Belgium, 13-15
Feb. 1978 .

[DIJK] Dijkstra, E.W., "Two Starvation-free Solutions of a General
Exclusion Problem" ,EWD 625, Prof . Dr. E.W . Dijkstra,
Burroughs Research Fellow, Plataanstraat 5, 5671 Al Nuenens,
The Netherlands . (See also Proceedings of IBM/University of
Newcastle Seminar, Newcastle, England, 5-8 Sept. 1978 .)

~LLI] Ellis, C.A., "Consistency and Correctness of
Database Systems", Proc. Of Sixth ACM Symp. on
Systems Principles (Nov . 1977) 67-84.

Duplic ate
Operating

[FINN] Finn, S.G., "Resynch Network Protocols", Proc . of 1977
Intern . Conf. on Comm., Chicago 1977 (IEEE).

[FOOX] Foox, E. and Merlin, P.M . ,
Implementation of a Computer
Protocols" . In preparation .

"Modelling Validation and
Controlled Exchange using

[GaUD] Gouda, M.G., and Manning, E.G., "On the Modelling, Analysis
and Design of Protocols A Special Class of Software
Structures: Proc. 2nd Internl. Conf. on Soft. Eng., San
Francisco, CA . , Oct . 1976, pp . 256-262. (IEEE Catalog
No. 76CHl125-4C.) See also: Gouda and Manning, "Protocol
Machines: A consise formal Model and its Automatic
Implementation, Proc. of the Third Int. Conf. Compo Comm. ,
Toronto, 3-6 Aug . 1976.

[GUNT] Guntner, K. D., "Pr evention of Buffer Deadlocks in Packet­
swi tching Networks", Report prese nted at IFIP-IIASA Workshop
on Data Comm . , Laxenburg, Austria, 15-19 Sept. 1975.

[HARA1] Harangozo, J., " Protocol Definition with Formal Grammars",
Proc . of the Computer Network protocols Symposium, Liege,
Belgium, 13-15 Feb . 1978 .

[HARA2] Harangozo, J . , "Formal Language Description of a

[HOLT]

[KAWA]

Communication Protocol, KFKI-1977-92, Computer Development,
Central Research Inst. for Physics, H1525, Budapest,
P . O. Box 49, Hungary (HU ISSN 0368 5330) (ISBN 963 371 337
4) •

Holt, A. W. and
Proc. Project MAC
Computation, MIT,

Commoner, F . I " Events and
Conf . on Concurrent Systems
June 1970 .

Conditionstl
,

and Parallel

Kawashima, H., Futami, K. and
Specification of Call Processing
Diagrams", IEEE Trans. Comm . Tech.,

Kand, S . ,
by State

Vol. COMM-19,

"Functional
Transi tion
Oc t. 1971 .

[KELL] Keller, R. M. , "Formal Verification of Parallel Programs",
CACM, 7 (1976), pp . 371-384.

56

[KN OB] Knoblock, D. L, Loughry, D. C. and Visse rs, C. A., "Insight
into Interfacing", Spectrum, Vol. 12, No, 5, May 1975 .

[KROG] Krogdahl, S., "Verification o f Some link-Level Protocols",
Computer Science Reports, Comp o Sci. Dept . , University of
Tromso, N-9001, TROMSO, Norwa y, Jun e 1977 .

[MERL1] Merlin, P.M . , "A Study o f the Recoverability of Computing
Systems", Ph . D. Dissertation, Dept . of Info. and Comp o Sci.,
University of California, I rvine , Calif., Dec . 1974 . See
also: Merlin and Farber, "A Note on Recoverabilityon
Modular Systems", Proc .AFIPS National Computer Conf.,
Vol . 44, pp. 695-699, May 1975 .

[MER L2] Merlin, P . M. and Farber, D.J . , "Recoverability or

[MER L3]

Commun ication Protocol s Implications of a Theoretical
Study", IEEE Trans. Commun . , Vol. COM-24, No . 9, Sept . 1976,
pp. 1036-1043 . See also: Merlin and Farber, 1976
I n ternational Conf . on Com . , 14-16 June 1976, Philadelph i a
(IEEE): and ACM Operating Systems Review, Vol. 9, No.3,
Jul y 1975

Merlin, P.M. , "A
Implementation of
Comm . , Vol. COM-24,

Methodology for the Desi gn and
Communication Protocols", IEEE Trans. on
No.6, June 1976, pp . 614-621.

[MERL4] Merlin, P. M. and Segall, A., " A Failsafe Distributed Routing
Protocol" , LE. Pub. No. 313 1978, Dept. of EE, Technion,
Haifa, Israel, submitted for publication, (see also Segall ,
Merlin and Gallager, 1978 ICC, Toronto , Canada June 1978
(IEEE)) .

[M ERL5] Merlin, P. M. and Randell, B. , "Consistent State Restoration
in Distributed Systems", EE Pub. No. 315, Dec . 1977,
Dept . of EE, Technion, Haifa, Israel, submitted for
publ ic ation, (see al so FTCS-8, To ulouse, Fr ance June 21-23,
1978 (IEEE)).

[MERL6] Merlin, P.M . and Schweitzer, P . J., "Deadlock Avoidance in
Store-and-Forward Networks, I : Store-and-Forward Deadlock,
II: Other Deadlock Types: to appear IEEE Trans . on
Comm . (Draft version: RC-6624 and RC-6625 , IBM Research,
P . O. Box 218 , Yorktown Heights, N.Y. 10598.) See also:

[METC]

Proc . 3rd Jerusalem Conf . on Information Technology (JCIT)
6-9 Aug . 1978 (NORTH-HOLLAND Pub . Co.) .

Metcalfe, R.M. and Boggs,
Packet Switching fo r Local
No . 7 , 1976.

D. R. , "Ethernet: Distributed
Computer Networks" , CACM19,

[M ILL] Miller, R.E., "Graph Theoretic Models of Parallel
Computation", Proceedings o f IBM/University of Newcastle
Seminar, Newcastle, England, 5-8, Sept. 1978 .

[MULL] Mullery, A.P . , " The Distributed Control of Multiple Copies
of Data", RC5782, IBM-T.J. Watson Research Center, Yorktown
Heights, N.Y. 10598, Dec . 1975.

'.

:

57

[PDP11] PDP11 Peripherals Handbook, DEC, Maynard, Mass. 01754.

[PETE] Peterson, J . L. , "Petri Nets", ACM Computing Surveys 9, 3
(Sept . 1977), pp. 223-252.

[PETR] Petri, C.A., "Kommunikation mit Automaten" , Schriften des
Rheinisch-Westfalischen Institutes fur InstrtBTlentelle
Mathematik an der Un iversitat Bonn, Heft 2, Bonn , W. Germany
1962: Tech. Rep . RADC-TR-65-337 , Vol. 1, Rome Air
Development Center, Griffis Air Force Base, N.Y., 1965, 89
pp.

[POST] Postel, J . B., "A Graph Model Analysis of Computer
Dept. of Communications Protocols", Ph .D. Dissertation,

Computer Science, UCLA, Los Angeles, CA., 1974.

[RUDI] Rudin, H., West, C.H. and Zafiropulo , P., "Automated
Protocol Validation: One Chain of Development", Proc. of the
Computer Network Protocols Symp., Liege, Belgium, 13-15
Feb. 1978.

[SDLC] IBM Synchroneous Data Link Control, General Information,
GA27-3093-1, FILE No. GENL-09 , IBM 1975.

[STEN] Stenning , N. V., "A Data Transfer Protocol", Computer
Networks , (1976), pp. 99-110.

[SUNS1] Sunshine, C. A., " Survey of Protocol
Verification Techniques". Proc. of the
Protocols Symp., Liege, Belgium, 13-15 Feb.

Definition and
Computer Network
1978.

[SUNS2] Sunshine, C.A., "Survey of Commun ication Protocol
Verification Techniques",
NBS , Gaithersburg, Maryland,

Proc. Symp. Computer Networks,
(Nov. 1976), pp. 24 - 26 (IEEE).

[SYMO] Symons , F.J.W., " Modelling and Analysis of Communication
Protocols Using Petri Nets", Report No. 140
Telecomm. Systems Group, Dept. of Elect. Eng., Univ. of
Essex, Sept. 1976 . Also " A General Graphical Model of
Processing Systems Using NEMS, A Generalization of Petri
Nets", Report No. 141, ibid , Oct. 1976.

[VISS] Vissers, C. A., "Interface , A Dispersed Architecture" , 3rd
Annual Symp. on Computer Architecture, Computer Archi tecture
News (ACM-SIGARCH), Vol. 4, Jan. 1976 .

[WEST1] West, C.M. , "General Technique
Validation" , IBM J. Res. and
1978.

for Communication Protocol
Dev., Vol. 22 , No.4, July

[WEST2] West, C.H. and Zafiropulo, "Automated Validation of a
Communication Protocol: the CCITT X.21 Rec om menda tion", IBM
J. Res. and Dev. , Vcl. 22 , No. 1, Jan. 1978.

[X.2 1] " Recommendation X.21 (Revised) AP VI-No. 55E", Published by
the CCITT <Internl. Telegraph and Telephone Consul ting
Committee), Geneva, Switzerland, March 1976.

58

[X.25] " Recommenda t ion X.25", Vol. VIII. 2, CCITT , Geneva 1976.

[YOEL] Yoeli, M. and Barzilai, Z. , " Behavioral Descriptions of
Communication Switching Systems Using Extended Petri Nets",
Di gital Processes , 3 (1977) , pp . 307- 320.

[ZAFI] Za fi ropulo ,
Analysis" ,
Ruschlikon,

P . , " Protocol Validat i on by Dia l ogue Matrix
RZ816, IBM Zu r ich Research Laboratories, 8803
Switzerland , 1977.

'.

59

tABLE I: TYPES OF TOPOLOGY SETS

TYPE Of SET A SET EXAMPLE
~~~~:z=~~============= == == == === === ==== ====~=========== = == = ===== 

PAIR OF PAl/TIES D---D 

SI1ALL SloT of GIVEN 

SM;'LL 10t'0LOGIES 

A uoJUI.t)ED CLASS Cf 
tlNITi TOPOLO~IE5 

( i. e . h S ET 0 F A 
bOuND~U NU~tiEa Of 
TOl-C L0Gl ES) 

AN UNLlGUNllEll CLASS Gp 
il~I1i TOPOLOGIES 

(I. Eo A S E'1' 0 F A II 
UhilOUNllED NUMLlER Of 

TC[JLGG1ES) 

~ASTER PhIORITll 

~ idd) ~ 
SLAVE 1 SLAVE2 p~rOHITY2 PHIOhITY3 

ANY LOOP OF U? TO b4 PARTIES 

-ANY LOOP Of A fINITE NUMHER 
CF HRTIES · 

A~OTtER EXAMt'L E: 
-ANY TOPOLO~Y Of A FINITE 

NUMBER OF PhRTUS 

u~\mS\TY OF 

* COMPYTlIIB 
LABORATORY ~ ,J 

I'IIYCASTlf. uprl~~ 



60 

cARl> 
REAPER 

(PIlRTY A 

/---- - --;cOM fU T E R 

(PARTY f» 

SIIARfi{> M f I>IUM 

Fi gur e 1 Confi gur ations of Data Transfer Pl'otocols 

". 

(a. ) 

(b) 



: 

61 

SENDER ,---------- , MEDIUM RECEIVER 

I II I 

16 --+-

I 
I 
I 

WI I 
I 
I 
I 

EI~-----+--~I~~ 
14 

-+-26 I 
I 

21 I 
A2r-----~----~I~~ 

I 
I 
I 

W2 I 
I 
I 
I 

PROTOCOL TOPOLOGY: 0 0 

, ------- ---, 
I I 
I I 

15 --t--

I 
I 
I 
I 
I 
I 
I 
I 

--+_ 25 I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I 
2J--~1 ~ 02 I 

I I 
L ____________ J 

Figur e 2 Petri Net Repr esentat i on of t he Alternating Bi t Protocol Wi thout Recovery 



62 

AI 81 
--

WI MI 81 

12 

WI CI 

13 

WI KI 01 15 

WI KI 82 
26 

EIOI 

25 25 

M2 W2 01 EI 82 
15 

15 26 

A2 82 

21 

W2M282 

22 

W2 C2 

E281 
16 

E2 

MI WI 02 

AI 

Fi gure 3 Token Machine for the Protocol of Figure 2 



PROlE"S 1 

..... [2]-
'-----'I 

liNK 

{ONrROL 

e,lr 
cO"/T R OL 

LE TreA.~ 

HOC, r B 

P4(1(E rs 

63 

tHER 

PROTOCOL 

lIosr- Hosr 
PllorOCOL. 

El{tJ-ENb 

?,(oro('oL 

0 .... ·~ "roRe- ANI> - FoR ..,;1Ift.b 
pl1.orocC' 

BITS 

( 

LINk 
(ONTf!OL 

e./r 
cONrQol.. 

.' 
.' . . .. .-. .. . .... .. . .. .. " 

LINK 

PAoro,'" 

B/T - ,.Vel.­
PI-O ro(.ol-

$f~NAL - LEV£ L 

PRD roco!. 

Figure 4 ~pical Hi erarchy of Protocols of a Computer Nqtwork 



64 

rof'olOc;.Y: 
LI S_E_N_ll_'_P. __ ;----41 RH.E I VER 

CovPLliD STATE Mllc/tINES: 

o vr ,>rljl'lbl}/(r 
IlCKW~""~, 

JDl e: 

PROCHSIN(' 

Figure 5 A State Machin p. Representat i on of a Simpl e Protocol 

R€AbY 



: 

65 

M(;DIVIV\ 

Figure 6 A Petri Net Representat i on of a Protocol ·which is not Representabl e by a 
Fini te State Machine 

Figure 7 An.example of a Petri Net which is difficult to represent by a Finite 
State Machine 

VSEO 



66 

.0 .. • .. .. .... .... .... .. ........ "0 

. .. .. .. .. .. .. .. .. .. .. .. .. .... 
PAR.TY i 

Figure 8 Representation of a Protocol for an Unbounded Number of Topologies 
(any loop of a finite number of parties is allowed) 

: 



67 

: 

SINK 

Figure 9 Example of a Network Using the Routing Protocol of Section 7 



68 

pi eli 

" £ i. " ". 

vilr.) ... .. 
N i IKl .. .... 
dH ., . .. 

E'eR MSG Cd ,1) 
Nill) <- RCVC 
DiP) <- dtdil 
EXECUTH YINITE srArE MACHINE 

1'12: CONIJITION: Hi (Pi) = RCVD 
ACTluN : di <- min Di (it) 

T21 

k:ui (k) = RCVD 
1RANSMIT ~I SG Idi) TO Hi.. k SUCH THAT kfPi 

T2 I: (UWI·f1.CN: fOR ALL k, N ilk) =RC VD 
I,(TIUN : TRANSMIT MSG Cd i) TO I'i 

pi (- k* 1HAT ACHIEVES min Di Ck.) 
K 

FOR t. L L k. N i (it) < - NI L 

Figure 10 Routi ng Protocol: Algorithm for Nod e i 



69 

T21 T12 

fCR I'ISG Id,l) 
N i (1) <- He VD 
EI1CUTE fINI1E STATE MAceINE 

fUn flEw_ CYCLE 
EXFCU1£ fINI1E STA1E MACH1NE 

'1' 12: CC hDITIOtJ: NEW_CYCLE 
ACTION : HANSi"iIT r.SG{di) TO ALL K S UCH THAT ktpi 

1'21: CGNVI'flON: FCli ALL k, Ni lit) = RCV D 
AeTIe.. : fOF- ALL k, Hi lle) (- NIL 

Figure 11 Rout ing Protocol : Algorithm for SINK 




	Untitled



