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MODELLING AND VALIDATION OF PROTOCOLS

P.M. Merlin

Abstract

Complex protocols are used to coordinate remote activities
in computer networks. To insure proper operation, formal
techniques of protocol definition and validation have been proposed,
and developed to the point that they can be applied to actual
protocols. However, much work remains to be done in order to cope
with protcols of ever-increasing complexity: in particular, those
coordinating the activities of many interacting entities.

The characteristics that determine the applicability of a
modelling and validation technique to a protocol will be treated.
Then a comparative description of techniques for protocol formal
modelling and validation will be presented, including new techniques
that are applicable to protocols which conventional techniques are
incapable of handling.

1s Introduction

Given a system or cooperating processes such that the
cooperation is done through the exchange of messages, a protocol 1is
the set of rules which govern this exchange [DANT, GOUD]. By
limiting the interaction to message exchange, we mean that
information about the state of a process may be known to others only
if this information is explicity released (i.e. a message is sent)
by the process. Distributed Systems naturally employ protocols
because 1if the interacting entities are physically remote to each
other, message exchange is the only possible way of coordinating
their activities. However, the use of protocols is not limited to
physically distributed systems, but to any system in which the
interaction between entities is done by message exchange. In this
paper, we assume a quite general definition of a "message": a
letter, a finite sequence of bits, a signal, a pulse, are all
considered as messages.

The exchange of messages between the processes have some
purpose and the role of the protocol is to insure that the purpose
is indeed achieved. There are many different purposes that
protocols can be designed for. The most common purpose is that of
data transfer between processes. For illustration, Figure 1(a)
shows a card reader connected to a computer via a communication
channel ., Typically, a protocol will take care of the transfer of
data from the card reader to the computer, and will handle also
exceptional situations such as transmission errors and lost
messages. Examples of such point-to-point data transfer protocols
appear in [X.25, STEN, SDLC], and a simple one is also described in
section 2. Protocols may also take care of transmitting data
between processes via a shared medium such as a bus, a satellite
link, or a radio channel (see Figure 1b). If in shared medium data
transfer the processes transmit messages asynchronously, it may
occur that more than one process could attempt to transmit
simultaneously. The occurence of such a situation is called a
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collision. If a colision occurs, the transmitted messages will be
garbled. In shared medium data transfer, the main role of the
protocol is to resolve contention for the use of the medium by
either preventing collisions (e.g. synchronising the wuse of the
medium), or recovering from them (e.g. using collision detection
mechanisms and retransmitting after collision). These protocols
are called "contention protocols" and examples of them can be found
in the DEC-UNIBUS [PDP 11], ALOHA NETWORK [ABRA], ETHERNET [METC],
etc.

Another purpose which is quite common for protocols is
that of synchronisation and initialisation. For illustration, a
protocol may take care of synchronising the time clocks of the
different computers of a computer network [FINN], or protocols may
initialise variables or counters in remote computes. This is done,
for instance, during the establishment of a session between a user
and a time sharing system, or a session (called also "connection" or
"yirtual call") between two users of a computer network. In
distributed data bases, protocols take care. of synchronising the
update of multiple copies of the same datum (e.g. A file or a
variable) to guarantee a consistent view of the data base [MULL,
ELLI]. Other purposes of protocols are flow control of the traffic
in a store-and-forward network, location of a mobile unit in a
communication network (search), etc.

Modern distributed systems may require extremely complex
protocols. Protocols can be so subtle that a formal treatment is
necessary in order to guarantee that its definition is complete and
unambiguous, and that the purpose of the protocol will be correctly

achieved. Formal modelling techniques are used to define
protocols, and validation techniques are wused +to insure their
correctness and proper operation. These techniques are the main

topic of this paper.

As shown in subsequent sections, different classes of
protocols require different modelling and validation techniques.
There is no single method that can be conveniently used to model and
validate all protocols, much the same as there is no single
universal tool in the mechanic shop. For bolts we can use pliers
which cannot be used for screws; for screws we use screw-drivers.
However, while theoretically there is a correspondence between bolts
and pliers, clearly pliers are not suitable for large railway bolts,

because there is a practical mismatch. Similarly, there are
matches between classes of protocols and modelling and validation
techniques. Sometimes these matches are practical, other times,

although theoretically a technique can be applied to a protocol, in
practice, this could be impossible.

In the next section we show an example of the usage of a
simple modelling and validation technique, illustrate its advantages
and demonstrate the shortcomings of this technique to handle
protocols having certain characteristics. Then, the
characteristics that determine the applicability of a technique to a
protocol are discussed in general, and different techniques are
presented and evaluated according to the types of characteristics
that they can handle,. Last, we present an example using a
technique which is applicable to a type of protocol characteristics
that most established and known protocol validation techniques are
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not applicable to. Space limitations force us to omit detail

discussion of many meritorious works. We regret these inevitable
omissions and refer the reader to the surveys of [SUNS1, SUNS2] and
the bibliography of [DAY].

2. An Introductory Example: The Alternating Bit Protocol

Using Petri Nets [PETR, HOLT, PETE, MILL], Figure 2 shows
a model of a simplified version (the recovery mechanism is omitted)
of the alternating bit protocol. A more complete description of
this technique and the example appearing in [MERL1, MERL2]; [EOCH1]
present a theoretically equivalent technique for this protocol,

which involves two parties - a sender and a receiver - connected
through a medium. The sender sends messages to the receiver, and
the receiver responds with acknowledgements. Each message carries

a control bit (0 or 1) whose value alternates for consecutive

messages, and each acknowledgment carries a bit equal to the one
carried by the message it acknowledges.

The places of Figure 2 represent the following conditions:

A1 = ready to send message with control bit 0

B1 = ready to receive message with control bit 0

M1 = message 0 in transit

K1 = acknowledgement 0 in transit

W1 = waiting for acknowledgment to message 0

C1 = message 0 was received

E1 = acknowledgment to message 0 was received

D1 = message 0 is being consumed; and A2, B2, M2, K2, w2, C2, E2,

D2 have the same respective meanings but for messages or
acknowledgements carrying control bit 1.

The bars perform the following events:

11 sends message 0O

12 receives message 0

13 sends acknowledgment to message 0

14 receives acknowledgment to message 0O
15 consumes message 0

16 produces message 0; and 21, 22, 23, 24, 25, 26 perform the same

respective events but for messages or acknowledgments carrying
control bit 1.

The initial state is one token in A1 and one token in BI1.
By generating all possible global states and transitions between
them, the reader may familiarise himself with the behaviour of the
protocol. The resulting graph of such global state generation is a
state machine called Token Machine and it is given in Figure 3. In
the Token Machine, states represent global states of the Petri Net
model of the protocol, and each transition is labeled by the number
of the bar that effects it. Since in this case the Token Machine
is finite, we can easily see (i.e. validate) that after a message is
sent it will be received, that consecutive messages are sent
carrying alternating control bit, that there is no deadlock, etc.
[MERL 1,2] shows the null model and TM of the protocol including the
recovery mechanisms and accounting for possible failures. Several
validation techniques were proposed based on a finite state
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description of each party of the protocol and generating all
possible global states and transitions [BOCH 1, MERL3, RUDI, WESTI1,
ZAFI, POST], in a way similar to the one demonstrated above. These
techniques are theoretically equivalent.

In this paper, each part of a protocol residing at a
single process is called a party of the protocol, i.e. a party is a

portion of a process which is relevant to a protocol. The first
cause which can preclude the applicability of the technique shown
above 1is high party complexity. For illustration, if in the

example instead of an alternating bit the sender will 1label the
messages with a sequence number of, say, 32 bits, then it will be
clearly impractical to generate the Token Machine, because it will

include more than 2 to the 32 states. In that case, it may be even
quite complex Jjust to describe the protocol itself with a finite
state model as the one of Figure 2. Moreover, one may even want to

model and validate a protocol whose entities include unbounded
variables, for example if the messages would carry an acyclic
increasing sequence number, In this case, it is even theoretically
impossible to apply a finite state technique.

The topology or a protocol is the graph whose nodes are
the parties of the protocols and arcs denote possible interactions
between the parties (see Figures 1 and 2). Also increase in
topology complexity can preclude the applicability of a technique.
For example, a protocol with even simple parties may not be
validated by exhaustive global state generation if it includes too
many parties.

e Protocol Classification

The amenability of a protocol to the application of a
technique is affected by two relatively independent protocol
characteristices: party characteristic and topology characteristic.
The characteristic of a party is given by the (possibly infinite)
set of all possible pairs of incoming-outgoing message sequences,
i.e. the characteristics deseribe all possible behaviours of the
types of topologies the protocol can work on. A protocol may be
designed to correctly work in any topology of a given set of
topologies. For example, the same protocol of Figure 1(b) could be
used for any number (possibly up to a certain 1limit) of parties
connected to the shared medium. Table 1 shows a list of types of
topology sets. The entries in the table are ordered by increasing
generality, 1i.e. each entry is a special case of entries appearing
later.

A protocol may also be designed to work on an evolving
topology. For example, a routing protocol may work on any computer
network topology where operating nodes and links may fail, and new
nodes and links may become operational [FINN, MERL4]. This can be
considered as if the topology would be evolving during operation.
Another example of topology evolution is given by the progress of a
multiparty phone conversation in an advanced telephone exchange
[FOOX]. The topology characteristic of a protocol 1is defined as
the set of permitted topologies and their possible evolutions.

A modelling technique 1is theoretically applicable to a
given protocol if and only if it is powerful enough to be able to
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represent each of the characteristics of the parties and the
characteristic of the topology. For illustration, the party
characteristic of the sender (or of the receiver) in Figure 2 can be
expressed as repetitions of the string: (MO KO M1 K1). But any
such expression can be represented by a Petri net, in fact, even a
Finite State Machine could be used to represent that characteristic,
The simple topology of the alternating bit protocol is also
represented by the connectivity of the Petri net of Figure 2.

Theoretical or practical applicability of a wvalidation
technique depends on the protocol characteristics (parties and
topology), on the modelling technique used to describe the protocol
(i.e. the description to which the validation is applied), and
finally, the properties to be validated. When surveying techniques
in subsequent sections these dependencies will be further discussed.

The practical applicability of a modelling technique or of

a validation technique 1is difficult to formalise. Practical
applicability implies theoretical applicability, but also
"conciseness", "ease of understanding'", "convenience to use", etc.,

which are difficult to quantify and sometimes depend on personal
experience and taste.

Initially, most work on protocol modelling and validation
was done for protocols of simple party characteristic, i.e. those
which can be described by a Finite State Machine, but later there
were several developements applicable to more complex parties.
However, from the topology point of view, with a few exceptions
[FIN, MERLY4, MERL5, DIJK, FOOX, ELLI, etc.] most of the formal work
done to date is applicable only to extremely simple topologies -—-
usually a pair of entities.

4, Abstraction

It is important to remember that a (formal) description is
only a model of a system and not the real world. When modelling a
protocol, we don't take into account each electron in the system; we
even don't consider the logical dates which make the computer that
performs that protocol. We 1limit our view to certain aspects
because otherwise the complexity of the model will be intractable
and the effort necessary to build the model will be as large as that
of building the real system or even greater. A limitation to deal
with certain aspects while ignoring those details of the protocol
and its environment which are irrelevant to these aspects is called

an abstraction. Abstraction implies assumptions on the behaviour
or properties of the protocol environment which are explicity or
implicitly made by ignoring details. Hence, the validated

properties of the protocol will indeed be true only if the
assumptions implied by the modelled abstraction hold.

Similarly to operating systems, protocols are typically
built in hierarchical levels of abstraction, where the protocols at
a level use the functions provided by the levels below without

concern for how those functions are actually implemented. An
example of this is shown in Figure 4. The shown protocol structure
is typical of computer networks. In this example, the wuser

protocols of the highest level take care of communication between
"processes". At this level of abstraction it appears as if
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processes directly communicate with each other by exchanging
"letters". However, in practice, the lower level protocol, 1i.e.

the protocol communicating between the hosts, is responsible for
delivering the letters and implements this by exchanging what 1is

abstracted as "messages". These messages may carry parts of
letters as well as necessary control and synchronisation information
for the host-host protocol. The protocols at the wuser level of

abstraction is not concerned with the details of the host-~host
protocol, and assumes that the letters it sends wil be delivered and
that certain types of failures may occur. Similarly, the message
exchange is implemented by the end-to-end network-node protocol
which communicates by packets, and so on for the 1lower 1levels of
abstractions. All levels, except the store-and-forward include
only two parties per protocol. The store-and forward protocol may
include more than two parties connected on any mesh topology and
Figure 4 shows only one of the paths through that topology.

The abstraction made determines also what we consider to
be parties and what we consider to be communication links between

them, A common abstraption is to consider complex links as being
parties that connect bhetween other parties. For example, the
shared medium of Figure 1(b) can be seen as a party that represents

the possible behaviours of the medium, and interconnect between
X,B,C,D,E,
5 Models

In this section we discuss a few of the existing protocol
models and modelling techniques.

Finite State Machines

Finite state machines were proposed quite early to model
protocols [KAWA, BIRK, KNOB, BOCH2]. A single finite state machine
can be used to describe the global state of the protocol or,
alternatively, one machine can be used for each party, as described
by the simple example of a sender and a single buffer receiver of
Figure 5. The sender sends a "data" message and waits for the
"done" message sent by the receiver when the buffer is empty again.
In the multi-machine approach, a transition marked with a SEND and a
transition on a different machine marked with a RCV having the same
parameter (i.e. the same message) are performed simultaneously and
the machines are said to be coupled. If the message transmission
delay is not important, the sender and receiver machines can be
directly coupled and the machine for the medium omitted. The
single machine and the coupled machines models are theoretically
equivalent and they are theoretically applicable to any protocol
having finite entities (i.e. characterizable by regular expressions)
and a bounded number of topologies. Infinite state entities are
not representable, and the generalizations necessary to represent
unbounded number of topologies will be discussed later.

In practics, both approaches are applicable to simple
topologies (usually a pair of entities) and to entities having no

more than a few dozens of states. A practical advantage of the
single machine approach is that global properties can be directly
checked (or designed) on the model. An advantage of the coupled-

machines approach is that it can be directly implemented in each
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party without the problems of decomposing the single machine

description amongst the entities. Such decomposition may be done
in different ways leading to possibly non-compatible implementations
of the same protocol [WEST2]. The single machine approach is used

to describe several adopted standards [e.g. X.21, X.25]. More
details and examples of the finite state machine approach can be
found in [BOCH1,GOUD, RUDI, WEST].

Several extensions to the finite state machine model were
proposed [GOUD, BOCH3, MERLY, VISS] one of which is demonstrated in
section 7. These extensions broaden the theoretical and practical
applicability of the model.

Petri Nets and Related Models

The use of the Petri net model was already shown in
Section 2. The theoretical applicability of Petri nets is broader
than Finite State Machines - any Finite State Machine as well as
some types of protocols having an infinite number of states can be
represented by Petri nets. However, the Petri net model 1is not
universal because certain party characteristics are not
representable in this model. Also protocols with unbounded number
of permitted topologies cannot be represented and the necessary
generalisations will be discussed later.

The practical applicability of Petri nets is close to that
of finite state machines, but in many cases broader. For example,
the protocol of Figure 6 is represented in practice by a Petri net,
but cannot be represented by a finite state machine even

theoretically. This protocol has the property that permits any
number of outstanding messages which can be sent and received out of
order, However, if we require an arbitrary number of outstanding

messages that will be received in the same order that they are sent,
this will not be representable even theoretically by a Petri net.
Petri nets are convenient for representing protocols which can
operate with wvarious amounts of some resouces (e.g. number of
buffers, etec.). In this case, a single Petri net will suffice, and
the actual amount of resources will be represented by the initial
number of tokens placed. Petri nets will also be convenient for
representing parties in which several events may occur in arbitrary
order, For example, the Petri net of Figure 7 will be quite
complex to represent by a finite state machine, but the Petri net
representation is relatively compact.

A typical failure handled by protocols is the loss of a

message in the medium. In the Petri net model, this can be
described by arbitrarily removing the token from the place that
represents the medium (e.g. M1 or M2 of Figure 2). Using such a

representation of failures [MERL1, MERL2] studied the recoverability
of distributed computing systems and its applications to protocols.
Unfortunately, [MERL1] shows that the necessary and sufficient.
conditions a Petri net must satisfy in order to be recoverable from
lost messages imply some properties that are usually unacceptable in
practical systems. This is due to the fact that Petri nets do not
include any knowledge (or limitations) of the execution time of the
events, and relations among these times play a central role in all
practical recoverable protocols. The practical implication of this
is that Petri nets cannot faithfully represent the entire meaning of
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time-outs, and a  similar situation exists  with respect to the
coupled finite state machines model.

In order to allow the representation of timing knowledge
by a Petri net-like model the Time Petri Net was created. A Time
Petri net is defined by a Petri net where each bar has two times

specified. The first denotes the minimal time that must elapse
from the time that all the input conditions of the bar are enabled
until this bar can fire. The other time denotes the maximal time

that the input conditions can be enabled and the bar does not fire.
After this time, the bar must fire. In general, these two times
give some measure of minimal and maximal -execution times of the
bars, while maintaining the basic characteristics of the Petri nets.
This model is useful in describing practical recoverable protocols
[MERL 1,2,3] and allows the exact representation of time-cuts which
is impossible in most other models.

The principal practical shortcoming of Petri nets (as well
as state machines) is the rapid growth of the graph with the
complexity of the protocol. To alleviate this, in addition to the
Time Petri net, other enhancements and variations of the basic model
were .proposed . and used to represent protocols [POST, KELL, MERL3,
ELLI, YOEI, SYMC, FOOX]. These enhancements result in a more
compact notation, but they also increase the theoretical
applicability of the model,

High Level Programming Lanaugages

High level programming languages were also proposed and
used to model protocols [BOCH4, STEN, DANT, KROG]. In this model,
each party is represented by a formal description similar to a high
level program. Since these languages are universal, they permit
the representation of any entity characteristic. However, in the
standard way 1in which these languages are used only simple
topologies can be represented, and the extensions necessary to
represent unbounded numbers of topologies or evolving topologies are
described below.

In practice, standard high level programming languages are
convenient to represent numbers, data, variables, counters, etc.,
but not complex control structures. Therefore, this model was
mainly used to represent the data transfer aspects or protocols
while the graph models (State Machines and Petri nets) were mainly
used to represent the control aspects (asynchronisation,
initialisation, etc.) for which they are more convenient. Hence,
there were also protocol models proposed [BOCH3, DANT, MERL4] which
combine high level languages with graph models.

A protocol model based on formal grammars is proposed in
[HARA1, HARA2].

Representation of Unbounded Number of Topologies and Evolution

If we assume that each party and each link is individually
represented, as implicity done before, then unbounded numbers of
topologies cannot be represented because this will require an
infinite expression. Hence, we must find finite ways of expressing
such protocols. This can be done by giving a bounded number of
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basic parties and a rule of connecting replications of the basic
parties into permitted topologies. For example, a loop of any
arbitrary number of identical parties can be represented by
representing one copy of the parties, showing its connections to the
neighbours, and assuming a finite number of entites as shown in the
example of Figure 8. Any of the models can be used to describe the
basic entities provided that indices or other ways of expressing the
rule for connecting the entities are added. Sometimes, as in
Figure 8, the indices i, j, k are used only as linkages to show the
connectivity of the topology and different values of indices point
only to different 1locations in the network but not to different
properties of the parties. Other times, the values of the indices
are used to denote differences between entities, e.g. higher index

may denote higher priority.

An unbounded number of topologies may include not only an
unbounded number of parties but also an unbounded number of links to
other parties. In such a case, each party may have an arbitrary
number of neighbours, which can be represented, as shown in the
example of section 7, by allowing the basic party to have a list of
neighbours of arbitrary length.

Clearly, these modelling techniques are applicable not
only to an unbounded number of topologies, but they can also become.
of great practical value in modelling protocols with bounded but
large numbers of topologies. For illustration, if the 1loop
generated by the basic party of Figure 8 is limited to 1024
elements, it can be best represented as for the unbounded case in
which 0<i,j,k< infinity is changed by 0<i,j,k,<1023. The use of
this technique to represent large or unbounded topologies appears in
[FINN, ELLI, MERLY4, MERL5, DIJK].

If each party has a 1list (or table) of neighbours, a
topology evolution can be represented as a change 1in these tables
(possibly including creation or destruction of tables), which can
occur during the protocol operation. An example of this appears in
[MERLA4]. A similar technique, but with a central relation
describing the connectivity, was used in [F00X] to model and
validate the protocols of a quite complex telephone exchange. The
description of protocols involving topology evolution requires
operations that cause changes in the party interconnections, and the
model wused to describe such protocols should include these
operations.

6. Validation Techniques

In [BOCH1, (also GOUD)] there appears a list of the
properties which are usually validated in protocols; a summary of
them 1is given below including slight changes and additions. The
list is quite non-committing in the sense that there exist many
protocols from which some of the properties are not required, or for
which some of the properties have a slightly different meaning than
the one described:
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1w DEADLOCK FREENESS: "No terminal state".

2, LIVENESS: "From each reachable state any other state is
reachable" or "for each reachable state and event there
exists a reachable state from which this event can occur"
(in a sense, this represents the concept of no degradation).

3. TEMPO-BLOCKING  FREENESS: "There is no non-productive
infinite looping".

4, STARVATION FREENESS: "If several processes contend for
resources which become available infinitly many times, no
process will be prevented forever from acquiring the
resources that it needs".

5. RECOVERY FROM FAILURES: "After a failure the protocol will
return to normal execution within a finite number of steps
(or within finite time)".

6. SELF SYNCHRONISATION: "From any abnormal state, the protocol
will return to a normal state within a finite number of
steps (or within finite time). This property and recovery
are closely related".

e CORRECT PURPOSE EXECUTION: This is very protocol dependent,
e ulls "correct data delivery" for a data transmission

protocol, and "only one user at a time on bus" for a bus

contention-resolution protocol.

Many validation methods have been proposed, but most of
them make use of one of four basic validation techniques. Although
two methods using the same basic validation technique may display
some practical differences, they are usually theoretically
equivalent for every protocol which is representable by the two
modelling techniques on which the validation methods are
respectively applied. The basic validation techniques are
described below.

One of the most common validation techniques is exhaustive
global state generation as demonstrated by the Token Machine of
Figure 3. Uses of this technique appear in [BOCH1, BOCH2, BOCH3,
MERL1, MERL2, MERL3, ZAFI, RUDI, WEST1, WEST2, etc.]. The
theoretical applicability of this technique is limited to protocols
with bounded number of topologies and finite state parties,. The
practical applicability is limited to very simple topologies (say up
to half a dozen parties). Several actual protocols (or parts of
them) were validated using this technique (e.g. alternating bit
protocol [BOCH1, MERL2], X.21 [WEST2], X.25 [BOCH117, a telephone
exchange having evolving simple topologies [FO0X]). An advantage
of this technique is that the state generation can be easily
mechanised, and several properties can be automatically tested
[RUDI, WEST1, WEST2]. However, since there exist protocols where
some properties should "usually" hold but exceptional cases are
permitted, the failure to pass an automatic test does not
necessarily imply that the protocol is not correct, and therefore,
human interpretation of the results is nevertheless needed [MERL3,
WEST2, FOOX]. Sometimes, (e.g. [DANT, FOOX]) properties of the
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Total state space can be validated by generating a small subset of
the states. This can greatly increase the applicability of the
technique.

Another common protocol validation technique is assertion
proving [KELL, EOCH3, BOCHY4, STEN, KROG] which is applied to the
protocol description, as if the description were a parallel program.
This technique was usually applied on protocols modelled in high
level programming languages, but theoretically it can be applied to
any other model. The usual way of applying this technique is by
attaching a predicate of the variables' values to certain points in
a program and proving that whenever the program reaches these points
the predicate is true. This can be generalised to a given
collection of cooperating programs by attaching the predicate to
sets of points such that in each set there is at most one point from
each program. Then it is proved that whenever the programs reach
the points of any such set the predicate holds. As described
above, this method is limited to protocols with a bounded number of
topologies. However, the method can be generalised to protocols
with an unbounded number of topologies provided that the desired
predicate and the (possibly unbounded) sets of points can be
expressed by bounded expressions, as to be demonstrated by the
example of section 7.

In practice, assertion proofs were mainly applied to
simple topologies, but sometimes, having quite complex parties.
Examples of actual protocols validated wusing this method are:
alternating bit [BOCH 317, HDLC [BCCH4], Data Transfer Protocol
[STEN]. Since the construction of proofs may require an act of
creativity, this technique cannot be fully automated. However,
quite powerful theorem provers have been constructed which are
capable of automatically proving many of the required properties.
An application of such a prover to the validation of protocols is
reported in [BFAN].

While global state generation 1is more convenient in
proving control properties (e.g. that certain events will or will
not occur), assertion proving is mainly used in proving data
transfer properties, in particular, in protocols involving parties
with large or infinite state space. The two techniques can be also
combined [ECCH3] in order to capitalise on the advantages of each.

A third validation technique 1is induction over the

topology. By this technique, the holding of a property or the
occurrence of an event is proven by showing that certain conditions
will propagate throughout the topology. The use of induction over

the topology 1is theoretically applicable to protocols of any
characteristic, and 1is particularly useful in cases of protocols
having large or an unbounded number of topologies, and evolving
topologies. The technique was successfully applied in practice to
several such protocols [FINN, MERLY4, MERL5, DIJK]. These examples
involve relatively simple parties, and from the limited experience
with this technique it seems that formal proofs for such topologies
but more complex parties could be difficult. However, we clearly
cannot expect simple validations for very complex systems
(i.e. complex topologies together with complex parties) and still
this could be the best technique for those cases. An example of
the use of this technique is given in the next section.
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The 1last technique is adherence to sufficient conditions.

In this technique, the protocol is designed in such a way that each
design step 1is done satisfying conditions which are sufficient to
guarantee the required properties. That is, instead of designing a
protocol and later proving its correctness, this technique is aimed
at directly designing one which is correct by construction.
(Notice that similar concepts exist for software development.) This
technique can be used in any topology and entity characteristic, and
its main advantage is that it is easy to apply and that correctness
is directly guaranteed. Its main shortcoming is that sufficient
conditions could be too strong, i.e. there may be many correct
protocols that will be rejected because they do not satisfy the
sufficient conditions. On the other hand, tight sufficient
conditions (or preferable necessary and sufficient conditions) are
usually complex and difficult to find. Examples of this technique
appear in [GUNT, MERL6].

7. A Concluding Example: A Routing Protocol

The modelling and validation example described below is a
simplified version of the routing protocol proposed and validated in
[MERLL4]. The protocol is executed by the nodes of an arbitrary
computer network of nodes N and links L £ NxN (since the arcs are
non-directed, if i,j belong to L so also do i,J). To each link i,]
of L a positive constant dij (called "distance") is assigned. The
distance represents the cost of using the link. One of the nodes
of N is called the SINK. Each node I of N has a variable di which
stores the "estimated distance" from node I to SINK and a variable
pi called "preferred neighbour" that points to one of the neighbours
of 4. The set of all pointers pi is denoted as P. Initially, the
pointers P form over the entire network a directed tree routed at
SINK. An example of such a network is shown in Figure 9. The
pointers P provide a loop free path from every node to SINK and the
purpose of the protocol is to update the pointers in such a way
that:

i At any time they form a tree routed at SINK, and
2. Minimise the path length (i.e. the sum of dij through
the path) from each node to SINK.

In situations defined below, a node I will send to its neighbours a
message communicating its estimated distance di to SINK. Such a
message is denoted MSG(di), and it will arrive at the receiving node
within an arbitrary finite time. In this section "message" refers
to the control message MSG(di) - we don't refer to the ordinary data
messages which are transmitted through the network.

The protocol operates in update cycles which are triggered
by the SINK. Each wupdate cycle improves the paths to SINK, and
after such a cycle ends the SINK may start a new one. After a
finite number of cycles the paths converge to the minimal path from
each node to SINK. As elaborated below, each update cycle proceeds
in two phases:

EssssIa=
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(1) Control messages are sent uptree from SINK to the leaves
of the current P tree. During this phase, distance
estimates di are updated.

(2) Control messages are sent down tree to the SINK.
During this phase, new preferred neighbours P are selected.

In this example, the topology of the protocol corresponds
with the topology of the network, and each party corresponds with a
network node. This protocol works on any topology, but since,
except the SINK, all parties perform the same algorithm, the
description of only one party and the SINK are necessary. The
details of the protocol are formally described in Figure 10 where
the algorithm performed by an arbitrary node I 1is shown. Each
party has two states: S1 ("ready for next cycle") and S2 ("phase 1
was performed, waiting for phase 2"). Each party has two
variables, pi, di. The network connectivity is represented by an
arbitrary list of neighbours L. For each neighbour k of cf L there
is:

(1) a link distance dik (as already discussed),

(2) a flag Ni(k) initialised to NIL, set to RCVD when party
I receives a MS3G from k, and reset to NIL when phase 2 is
completed.

(3) a variable Di(k) that stores the last estimated distance
received from k.

Whenever a MSG with any parameter d is received from k the "FOR"
statement is performed, i.e. new values are stored in Ni(k) and
Di(k) . Then, transitions of the finite state machine are performed
if the party is in the corresponding state and the "CONDITION"
associated with the transition is true. When the transition is
performed, the state is changed and the "ACTION" associated with the
transition is performed. T12 is performed by party I (i.e.,phase 1
for node i) when it receives a MSG from its pi, then a new di is
calculated and MSG (di) is sent to each neighbour except pi. As
proven below, the tree structure of P guarantees that after a cycle
is triggered, T12 will be performed by every node, T21 is
performed by party I (i.e. phase 2 for node 1) when it has received
a MSG from each of its neighbours. Then I sends MSG(di) to its pi
(allowing phase 2 to propagate down tree), updates pi, and resets
the flags Ni. The cycle ends when the SINK performs T21. The
algorithm for the SINK (see Figure 11) is slightly different because
pSINK does not exist, dSINK=C always, and the SINK can spontaneously
start new cycles while at 3S1. When the SINK performs T12 a cycle
begins and when T21 the cycle is completed.

The protocol is said to be in idle state if no message is
in transit, all parties are at 31, and for all and k Ni(k)=NIL.
It is easy to show that in idle state, the only event that can occur
is transition T12 at SINK. Initially, the protocol is in idle

state and P forms a tree rooted at SINK. Then:
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Theorem 1 : (No deadlock). Within finite time the SINK
will always be able to start a new cycle, and any cycle
started will be completed in finite time.

Theorem 2 : The pointers of P always form a tree rooted at
SINK.

Theorem 3 : Within a bounded number of cycles, P corresponds
with the directed graph given by the shortest paths from the
nodes to SINK. The bound equals the longest path in terms
of number of hops in this graph.

The proofs of Theorems 1 and 2 follow directly from the lemma below.
The proof of part 1 or the lemma demonstrates the use of induction
over the topology. The combined proof of parts 2 and 3 demonstrate
the use of assertion proofs: The predicate is given by conditions
(a)=(f) of the proof, they should hold at any time (i.e. such
conditions are said to be "invariant") and the proof is done by
induction over all possible events that can occur.

Lemma: If in idle state and while P forms a tree the SINK performs
T12 then:

1. every party (including SINK) will perform T21 within
finite time:

2. when T21 is performed by SINK the protocol enters idle
state:

3. from the time that T12 is performed by SINK, P remains a
tree at least until after T21 is performed by SINK.

Proof of part 1 : Let P1 denote the initial tree. Initially all
parties are at S1, hence a party I can change its pi only when
performing T21 and this after performing T12. Suppose a party I
laying s 2 0 steps over P1 from SINK performs T12. When performing
T12 it sends  MSG(di) to all its neighbours except pi. This
guarantees that every party j such that pj=i will perform Ti12.
Hence, every party J that 1lays s+1 steps over P1 from SINK will
perform T12, and by induction, every party will perform T12. This
implies that each party in the leaves of P1 will receive a MSG from
each of its neighbours and perform T21 at which time it sends MSG to
its old best neighbour. Hence, by induction in a similar way as
above but down tree every party will perform T21.

Proof of parts 2 and 3 : Let us assume that up to a time t in the
interval between T12 and T21 performed by the SINK, the following
conditions hold:

(a) P forms only trees;

(b) since SINK performed T12, each party has performed T12 and
T21 at most once each;

(e) for every party i, if 1 performed T21 then for all k,
Ni(k)=NIL, and there is no message in transit to 1i;

(d) each party has sent at most one message on each link,

TR
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(e) for every party i, if i is in S1 then every party j having a
path in k to i is also in S51;

(f) for every party i that is in 81, if pi=j then either j is at
S2 or j is at S1 and di>dj.

The only events where their occurrence may invalidate the conditions
are that some party r performs T12 or T21. We check that such
occurrences maintain the conditions. If at time t party r
performed T12 (i.e. entered S2):

(a) is maintained because T12 does not change P;

(b) if r already had performed T12, it also performed T21 and
party pr violates (d) before t;

(c) no additional party performed T21;

(d) from (b), this is the first time that r performs T12, hence

the first time that sends MSGs;

(e) pr has sent MSG to r, but r has not sent to pr, therefore,
pr 18 i S23

1) if a party enters S2 (f) is not changed.

If at time t party r performed T21 (i.e. entered back S1):

(b) since r performed T12 only once, then this is the first time
it performed T21;

(e)(d) since r performed T12 and then T21, r sent one MSG on each
of its links;

(e) if pj=r and since j performs T12 and T21 at most once, then
if j is in S2 it has not sent MSG to r and r could not
perform T21.

(f) since pr performed T12 only once, at t Dr(pr)=d(r,pr)+dpr
and dr 2 pr(pr), hence dr dpr. If there exists a node j at
state S1 such that pj=r, because r performed T21 we know
that Jj performed T12 and T21 and the same previous argument
holds for dr and dj.

(g) every j having a path in P to r is in S1 (by (e)); if after
r performs T21 pr is in S2 there is no loop formed; if it is
in 81 (f) guarantees no loop.

Hence, (a)-=(f) hold until after SINK performs T21; (a) implies (3)
or lemma and, since initially all nodes are at S1, (1), (b), (c)
imply (2). Q.E.D.

The protocol in [MERLY4] allows the distances dij to vary
with time and generalise the protocol to handle topological changes,
i.e, link or node failures and new 1links or nodes becoming
operational, That paper also shows how the data messages can be
routed using the paths p maintained by the protocol.
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8. Concluding Remarks

We expect in the future the need for coping with more

complex protocols. In particular, work 1is needed in protocols
which operate over complex topologies - an area where not much work
has been done. The development of automatic or semiautomatic tools

may help in this task, however, human ingenuity will always be
required. The discovery of better sufficiency conditions may also
facilitate the design of correct protocols. Better understanding
is also needed in ways of insuring that errors are not introduced
when the validated model is translated into an implementation.
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