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1. Introduction: On Data Def inition 

Any high-level approach to data manipulation and data storage 
requires some mechanisms for t he specification of operands by which 
the data can be stored and manipulated. These mechanisms generally 
provide the specification of: 

(a) the structure of the operands, that is the rules by which 
they are composed out of others and by which componen ts 
can be denoted; 

(b) the operators applicable to the operands; 

(c) the set of general constraints to be maintained on the 
operands. 

Historically, the two areas, programming languages and data base 
model s, developed rather independently and to a great extent 
introduced their own concepts and terminology. In the programming 
language community, data processing tools and tasks are described i n 
terms of data structures, data types, typed variables, expressions, 
statements and so forth. Data base users are familiar with t h e 
concept s of dat a base models, sche mata, data bases, queries, data 
base actions, transactions etc. 

It is the main purpose of the paper to relate the two areas at 
the levels of concepts , construct s , and notations. The motivati on is 
twofold. First, there is an increasing number of applications where 
the same person has to understand and even construct both programs 
and data bases; and it is not just a question of economy to minimise 
the number of concepts to be learned and tau ght . Second, it is the 
very nature of data bases and programs t hat within the same piece of 
software - even within the same statement - operan ds from both 
sources, data base and programs, are denoted. 

2. Data Definition in Programs: The Speci fication of Types 

For the purpose of data definition, programmi ng languages 
pro vide so-call e d type generators that are us e d to generate 
us er- defined data specifications or data types. Such specifications 
can in turn be applied to produce operands that serve for da ta 
st orage and manipulation in accordance with the intended 
specification. 
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In t he currently prevalent programming languages a user cannot 
writ e his own type generators; instead, he has to choose amongst a 
coll ection of so- called data structures, that is, type generator s 
t hat are pre-defined by the language. A data structure is defined by 
the s tructuring method it provide s , by the operators applicable t o 
the operands structured by this method and possibly by some general 
constraints to be imposed on the values for that operands. 

2. 1 Structuring Methods for Data 

I t is one of the properties of a well - designed programming 
language that data structures for the most common structuring needs 
a re provided. What these needs ar e depends, of course, on the 
application area. In this section, a few of the structuring needs 
tha t ar e supported by general purpose programming languages will be 
discussed . 

Fr equently, a fixed number of data of possibly different types 
have to be aggre gated into a single operand , but the constituents 
mu s t kee p their individual names, for example, nam e f . The 
speci f i cation of types for this purpose is achieved by the data 
s t r ucture record : 

~ f t ype = • •• ; 
rtype = record ••• f:ftype; ••• ~; 

var r: rtype; 
bei1n •. • r.f ••• end. 

If the data to be aggregated into a single object are of 
identical type and of fixed number, a proper type specification may 
be achieved by the data structure array. A denotation for the 
indi vidual components of array variables is given by the values, for 
example, i , of some index type, itype: 

~ itype = •• • ; 
e l emtype :;: • • .; 
atype = array'" [i type J of el emtype; 

var a: atype; 
begin ••• ali] . . . end. 

Structures that are defined by a fixed number of components, possibly 
of diff e rent type, and selected by some naming scheme, will 
s ubs equently be called tuple- like structures. 

Somet imes, the number of identically-typed data to be collected 
i n one operand is not fixed. In this case, a data structure ~ may 
be used : 
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~ elemtype = •• • ; 
s t ype = s et of elemt ype; 

var s : s type;--

For s et variables there are generall y no mec han isms for the 
denotat ion of eleme nts: the varying cardinalit y of sets does not 
allow the definition of a fixe d naming scheme, and any identification 
of elemenw r ef e rring to their sequential order does not apply to 
(pure) s ets. 

I n case the concept of order is applicable, operands for a 
varying number of identically-typed elements can be defined by the 
data s tructure sequence: 

~ elemtype = • • . ; 
qtype = sequence of elemtype; 

var q: qtype; 

Structur es define d by a varying number of identically-typed elements 
with or without naming schemes for element selection are subsequently 
called set- l i ke s t ructures. 

Qui te often the data struct uring needs demand a combination of 
several st ructuring met hods. So, data of different types may be 
aggrega t e d into one tuple-like structure and a fixed number of these 
compound ope rands may be aggregated to form another tuple - like 
structure: 

~ ftype = • •• ; 
i t ype :;:: • • . ; 
artype = ar ra,y 

var ar: artype ; 
begin ••• ar(i].f 

(itype ] of record • • • f: ftype ; • • • end; 

• • • end. 

Type generator s are not only characterised by their rules for the 
compositi on and decomposition of operands but also by the set of 
operators f or t he manipulation of operands. 

2.2 Operations on Data 

The operator s defined for structured types - and inherited by 
their t ype generators - may ro'ughl y be divided into two categories: 

c omponent ope rators, which operate on structured operands by 
operating on their components, and 

c ompou nd op erato r s, which apply to structured operands as a 
whole. 
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Component operators requi r e tha t structured ope rand s ca n be 
decomposed into components down to a level where t he y are e i t he r of 
some structured type with compound operators or of some base t ype 
pre- defined in the language and well - equipped with operators. The 
operators defined, for example, for the tuple- like structures record 
and array are mostly compon ent opera tors.; exceptions ma y be th e 
assignnment and the test-on- equality operator. Compound operators are 
the dominant ones for set-like structures such as ~ and sequence. 
So, the operators union and intersection apply to set operands and 
yield set-valued expressions; the application of the dperators 
set - inclusion or set - element-test results in Boolean - valued 
expressions. Assignment statements may be formed out of set variables 
and set valued expressions by the compound operator assignment. 
Compound operators are sometimes given in the form of procedures, for 
example, procedure first (q:qtype; qelem:elemtype), reads a sequence 
variable, q, and assigns the value of the first element to a 
variable, qe. The application of those operators leads, of course, 
directly to a statement. 

To summarise, structured variables may contribute to programs in 
different ways depending on the type generator used for their 
declaration: 

(a) In a rather restricted role, they may serve as parameters 
for a set of pre-defined procedures. 

(b) More generally, they may act as variables in expressiOns 
and function calls as well as in assignment and procedure 
statements. 

(c) Last but not least, they may constitute a pool of 
component variables for expressions, functions calls and 
statements. 

2 . 3 Constraints on Data 

I n some programming languages the user can specify constraints 
to be maintained on oper ands. Imposing upper and lower bounds on the 
values to be accepted by an unstructed variable is a common example: 

~ f type = 1 •• 19; 

Constraints are inherited by structured types based on constrained 
types: 

~ eleurtype = 1 •• 19; 
s type = set of elemtype; 

var s : s type;--
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The constraint composed on the set variable, s, reads 

S i ~ ( i ~ integer: (i>=1) ~ (1.<=19) }; 

In the currently prevalent programming languages the mechanisms for 
constraint specification are rather limited. 

3. Data Definition in Data Bases: The Specification of Schemata 

As with data definition in programs there is no general 
agreement on the 'optimal' structuring methods for data bases. While, 
however, programming languages offer a spectrum of data structures, 
each of the currently prevalent data base models is heavily biased 
towards one structuring methods. So, it is no surprise that there 
have been rather emotional discussions on what would be 'the best 
data base model'. This discussion has cooled down since ANSI/SPARe 
proposed a data base architecture with several structuring methods at 
various levels. 

Regardless of their differences, the major data base models - at 
least those based on relations, hierarchies, and nets - may all be 
described in terms of the two classes of structuring methods 
introduced above: tuple-like structures allow the definition of data 
composed out of a fixed (and mostly small) number of components of 
different types, set-like structures are used if the elements are of 
identical type and if their number varies (and may be high). By the 
tuple-like method, data base components can be defined for the 
following two purposes: holding the description of either one' real 
world' object given by its k attributes or one association between I 
'real world' obj ects (k, I constant). The set-like structuring method 
leads to data base components that can keep n (n variable, n »k,l) 
elements of identically-typed 'real world' objects or associations. 

In the next section, the structuring methods underlying the 
three major data base models will be discussed in some detail. 

3.1 The Relational Data Base Model 

Three type generators are required to define a relational data 
base schema, one set-like and two tuple-like structures: 

data base defines a relational data base by a fixed number of 
named components; 

relation defines a data base component so that it can hold a 
varying number of relation elements of identical type; 

relation elements are supposed to be defined by some tuple-like 
structure, traditionally by the data structure record. 
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The data base and record are tuple-l ike structures; relation is a 
set- like structure . 

~ ftype = • 
re ldbtype = 

. , 
database 

end; 
~ reldb: reldbtype; 

. . . ., 
relk: relat ion <f'> .2f 

record ••• f:ftype; . . . ... ~; 

The cons traint imposed on the data bas e component, · reldb. relk, - its 
key, f - means that no two elements of t he relation may have the same 
value for the element component identifi ed by f. 

A data structure relation can be regar ded as a generalisation of 
the data structure ~ - as defined , for example, in Pascal - in the 
following sense : the types for se t elements, selemtype, are 
restric ted to be unstructured, for example, of type character or of a 
constrained type defined on integers. The constraint defined on set 
types is uniqueness of set elements. 

~ selemtype = char; 
stype = ~ .2f selemtype; 

Relation element types, relemtype, may be structured unlike set 
element types, selemtype. Therefore the constraint of uniqueness of 
elements can be generalised to uniqueness of element components or a 
list thereof. 

~ relemtype = r ecord ••• f: ... ; g: •• • j ••• ~j 

reltype = relat ion <f,g> of relemtype; 

Further aspects of that generalisation will be seen when operations 
on relations are dis cussed. 

3.2 The Hierarchical Data Base Model 

For the definition of hierarchic al data base schema (or more 
exactly: tree-structured data base schemats) four type generators are 
required, two set-like and two tuple-like structures: 

data base defines a hierarchical data base to be a set - like 
structure of elements; 

elements of a hierarchical data base are defined by a 
structuring method tree and have a fixed number of components of 
different types;tlle components are defined either by the 
tuple-like str ucture record or by the set-like structure 
sequence. 
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Since the elements of a sequence are allowed to be of some tree type, 
a mul ti-level tree-structured schema can be defined: 

~ f type : ••• , 
g type : • • .; 
t reedbtype ~ database <t> of 

~. parent: record ••• f:ftype; ••• end ; 
children 1: sequence < ... > of 

~ parent: ••• ; 
children 1 : ••• ; 

~; 
~ treedb: treedbtype ; 

~; 
children2:sequence <g> of 

. . . ., record • • • g:gtype; ••• ~; 

childrenk: sequence < .•• > of ••• 

The example data base, tr eed b , can ho l d a varying number of 
tree-structured e lements each associating one parent component of 
some record type with k children components of different types . The 
constraint denoted by <f> may mean that t here is at most one element 
of the data base that has a given va l ue in the component f of its 
parent component. The chil dr en named children 1 to childrenk are 
defined as sequences of elements since the concept of order shall 
apply . A constraint imposed on, say, the sequence treedb.children2 
and denoted by <g> may mean that there is at most one element in the 
sequence with a given value in its component g. 

By the given combination of set- and tuple-like structures 1:n 
associations may easily be defi ned . A generalisation to n:m 
re lations hips requires that the same element type can be used at 
various levels in the hierarchy and that there are means with which 
to relate identical elements at various levels. Then, of course, the 
structure is generalised from a hierarchy to a network. 

3.3 The Network Data Base Model 

The basic structuring method for the network data base model 
associates a fixed number of components of different types and may be 
called net: one component is of a tuple-like structure (owner ) and k 
components are of a se t - like structure (memb ers) . Each member 
component can hold a sequence of el ements to be associated with the 
owner component thus fOrming k different owner/member relationships. 
A network data bas e basically consi sts of 1 components that are sets 
of identically-typed nets . ----
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• j 

record •• 
• . . . , 

f:ftypej. • end j 
g:gtypej ••• ~j 

~ ftype = • •• j 
gtype = •• 
elemtypek = 
elemtypekl= · record 
e 1 emtype 1 = 
netdbtype = database . , 

~j 
~ netdb : netdbtype j 

compk: ~ <1> .2! 

. 
• • • t 

~ owner:elemtypekj 

end ' --' 

· · . ., 
membr :sequence <g> of elemt ypeklj 

· · . . , 
compl: set <; •• > of 

net owner :elemtypelj 

· · . ., 
membs: s equence < • • • > of elemtypekl j 
· . ., 

In a network data base an element type, for example, elemtypekl, may 
contribute t o the definition of more than one net type. Furthermore, 
the ne twork mode l provides operators to insert identical elements 
into d i ff e r e nt comp6nen~s of nets and io exploit that ' fact when 
nav i g at ing through a network data base. The distinguished 
indentifiers < f > and <g > may be considered as examples of constraints 
on the network dat a base: 

compk : set < f > of net ••• ; shall mean that there is at the most one 
net el ement i n the set, compk, that has given value in the component 
f of its owner ; 
membr:seque nc e < g > ~ elemt ype kl ; shall mean that there is at the 
most one record el ement .in the s e quence, membr , with a given value in 
its component, g . On e can consider the whole network data base to be 
f ormed out of 1 components where each one can hold a set of elements 
o f some net type . For the sake of si mplicity many details that may be 
considered as part of a schema definition have been omitted . Examples 
a re or der claus es f or sequences or various declarations supporting 
el ement select ion wi thin sets and sequences . In the ne xt chapter, 
addi tional pr o pe r ties of data base models will be discussed, 
pr imar ily t he mechanisms for el ement selection and the operators. 

4. Select i on Mechanisms 

Ultimat el y, it is the 'raison d'etre' for any data base - as for 
any structured variabl e - to provide the user with components either 
for the pur pose of reading or for writing. In this chapter some of 
t he mechanisms f or component s election as defined for data struct ures 
wil l be dis cus s ed and the r esul t s will be applied to the structuring 
met hods of data base models . 
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4.1 Selection Mechanisms for Data Structures 

Data structures in programming languages allow component 
selection in two different ways . Either they provide a denotation to 
select component variables or they provide operators to form 
expressions returning component values. The data structures array and 
record with their denotations indexing, a ri], and qualifications, 
rec.f, are of the first kind. The data structure sequence with a 
selection function first(q) or a procedure first(q,qe) is an example 
for the second kind. 

Selection by component denotation is the more general one in the 
sense that it leads to variables, and variables may exist in both 
constructs, expressions (right-hand-sides) and statements 
(left-hand-sides). 

Selection by component denotation in turn may be divided into 
two categories: selection by ex pression as for example indexing o f 
arrays, a[i+1], where the selector is computed by an expression, i+1, 
and can be stored in a variable; and selection by identifier as for 
example qualification of records, rec.f, where the selector, f, is 
defi ned in the type declaration, that is, in the program text . 

4. 2 Selection Mechanisms for Data Base Models 

In chapter 3 it was shown how a complex data base sc hema 
def inition can be composed or primitive types by repeated application 
of a few structuring methods. Now, some selection mechanisms for 
these structuring methods will be discussed allowing a data base to 
be decomposed into its components. The followin g di scussion will 
mai nly concentrate on the relational data base model. 

A few general requirements for sel ection mechanisms on relations 
can be postulated. Frequently, only one or a few of the many elements 
of a relation are of interest for reading, updating, or existence 
tes ti ng. Therefore a denotation allowing the selection of individual 
relation elements as variables is desira ble. The alternative would be 
to operate by compo und operators on whole relation variables. 
Furthermore, since relations are intended to hold logically related 
data a selection mechanism should be based on selectors that in turn 
can be stored in the data base. In this case k elements, possibly 
from different relations, can be related by an element in a furt her 
relation holding the k element selectors. In addition, it is 
desirable that the selector for the rel ating element can be easily 
composed from the individual selectors of the related elements. Then 
th e selection mechanism for relations would equal l y support t he 
sel ection of the k related elements if the selector of the relating 
element is given and the selection of the relating element if the k 
sel ectors of the related element are at hand. 
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Symmetry arguments like these lead to a selection mechanism 
where the k selectors stored in the relating element are the 
selectors for that element and where the selectors of therelated 
elements must be stored as components of these elements. In other 
words, an-iPpropriate selection mechanism for the structuring method 
relation is based on the content of the relation elements as opposed 
to the name- or address-oriented selection mechanisms for data 
structures like record or array. 

If the selection mechanism is based on those element components 
distinguis hed by the key of a relation it is guaranteed that unique 
elements are denoted: 

~ ftype = .; 

relemtype = record •• • f :ftype; ••• ~; 
reI type = re l ation <f'> of relemtype; 
reldbtype = database ••• rel:reltype; •• 

~ reldb: reldbtypej 
begin • • • reldb . reI <fe.> • • • ~. 

fe denotes an expression of type ftype. 

Elements in a hi erarchical data base, for example treedb, as defined 
in section 3.2 are selected by 

~ ••• {see section 3.2}; 
treedbtype = • • • ; 

var treedb: treedbtype; 
begin ••• treedb<fe>.children2<ge> ••• end. 

Acordingly, element selection for a network data base like netdb 
defined in section 3.3 reads 

~ ••• { see section 3.3 } 
netdbtype = • • • ; 

var netdb netdbtypej 
~in ••• netdb.compk<fe>.membr<ge> • • • end. 

fe and ge are expressions of type ftype and gtype . 

It should be noted that commercial data base systems provide many 
extra select ion mechanisms based on additional clauses in the schema 
defini tion. 

The res t of the paper will concentrate on the operators defined 
wi th a data base mode l. While gradually extending the set of 
operators and generalising the selection mechanism, the requirements 
for the interface between a data base model and a programming 
language will be analysed. 
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5. Data Base Manipulation: A Minimal Approach 

A data structuring method is not completely defined without the 
operators applicable to the operands being defined with thi s method. 
For the relational data base model, operators are required so that 
expressions and statements can be formed out of data base components 
(that is, relatio ns ) and relation elements (that is, records). In 
this chapter, a minimal set of operators for the relational model is 
introduced and it is shown ha. expressions on data base (component) 
variabl es can be used as operands in program statements and vice 
versa. 

5.1 Operations on Relations 

An ope rator absolutely necessary for relations or at least for 
relation elements is the assignment operator,:= (or some equivalent 
procedure). Otherwise, there were no read and write operations on 
relational data bases. 

If a relational data base, reldb, is defined by 

~ ftype =. . , 
relemtype = record ••• f:ftype; ••• ~; 
reltype = relation <f> of relemtype; ••• ; 

~ reldb: database ••• rel:reltype; • •• end; 

the assignment statement reldb.rel<fe> := e; requires that the 
expression, fe, is of type ftype, and that the expression, e, is of 
the type of t he left-hand-side variable, that is, of type relemtype 
with the restriction that the value set ' for the component, f, is 
restrict e d to the value of fe . An additional operator, in, tests 
whether a relation, rel, contains an element equal~o some 
expression. 

The express i on re ldb .rel<fe> in reldb . rel becomes true iff the 
designated relation element isalready initialised, that is, 
assigned. 

It is of some notational convenience if a notation is provided that 
allows the denotation of data base components without preceding them 
with the entire data base identifiers: 

with reldb do 
begin • • e; 

rel<fe;.. := e; 
•• • re~fe> ~ reI ..• ; 

~. 
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5.2 Interfacing Programming Languages and Data Base Models 

There are two different ways of providing operations for data 
bases . One ap proach regards a d ata base model as being 
self-contained, perhaps after adding a few more operators to increase 
the computational possibili ties of the model. The other approach 
allows the definition of data bases and data base operations within 
the scope of programs wri tten in some programming language: this is 
tenned the host language approach. This discussion will follow the 
latter approach . 

There are sCllle general requirements a programming language and a 
data base model should meet when being interfaced: 

(a) var iabl es and expressions that are well-formed in the 
sense of a data base should be accepted by a program 
statement unless type condi tiona are violated; 

(b) variables and expressions that are well-formed in the 
sens e of a program should be accepted by a data base 
statement unl ess type conditions are violated. 

A programming language to be i nterfaced with a relational data 
base model as defined above shoul d therefore accept expressions of 
the relation elem ent type, that is, the result of an element 
selection, and of Boolean type that is, the result of an 'element 
test. And progr amming language express ions should be accepted in 
statements that assign or test r elation el;ements. In the following 
examples the interface requirements between the programming language 
Pascal and a relational data base model are discussed. 

Example: , Insertion 

prOgram dbuser (reldb); 
~ ktype = 1 • 100; 

r imports the relational database, reldb} 

relemtype = record • • • key: ktype; • • 
reI type = relation <key> of releurtype 

~ reldb: database • •• rel:reltype; •• 

end· -' • • • 
end· --' ree : relemtype; 

begin ~ reldb, rec do 
begin ••• ; key := 10 ; ••• ; t initialisation of rec} 

if !l2i re1<:ke;y> in reI, 
then rel<ke;y> := rec { inserti on of ree 1 

~ 
~. 
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Example: Replacement 

program dbuser (reldb)j { imports the relational database , reldb} 
~ ktype = 1 • 100j 

relemtype = record • • • key: ktype j • • • ~j 
rel type = relation < key,> of relemtypej • • • 

~ reldb: database ••• rel:reltypej ••• ~j 
rec : relemtype j 

begin ~ reldb, rec do 

end -_. 

begin .•. ; key := 10 ; • 
if rel<key> i n rel 
then rel<key>:= rec 

end 

. , ( initiali sation of rec ) 

( replacement by rec } 

So, in a minimal approach the i nser tion and replacement operations 
are accomplished by the assignment and the test operator of the data 
bas e model and the g-~-else control structure of the programming 
language. 

A less stingy approach may introduce operators for assignment, 
insertion, re placement etc . , as compo und operators on relations: the 
insert operator, :+ , is defined so that the statement reI :+ [rec]; 
has the same meaning as the s tatement with rec do if not rel<key> l!l 
r eI ~ rel<key> : = rec; 

The relat ion constructor, [ ••• ], constructs one-element relation 
expressions out of record expressions. 

Analogo usly , the replacement statement, reI :& [rec]; is defined to 
be equivalent to 
!!.'ll!:!. rec ~ rel<key> .!.!! rel ~ rel<key> : = rec; 

Last but not least, the delete statement reI :- [ rec ]; deletes the 
relation elements equal to rec - if it exists. 

In section 7.2 it will be s hown how the relation update operators, 
:+, :& , :-, can be replaced by the ordinary assignment operator, :=, 
at the expense of a more complicated right-hand-side expression. 

The denotation for relation components can also be used when data 
f rom t he data base are to be processed by a program: 
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Example: Reading a Database 

program dbuser (reldb); £ imports the relational database, reldb} 
.:!!zP.!!. ktype = 1 • • 100; 

relemtype = record ••• key:ktype; ••• end; 
reltype = re l ati on <key> of relemtype; • • • 

~ reldb: database • • • rel:reltype; ••• ~; 
rec : rellllllt;rpe; 
ck :ktype 

be~in with re ldb do 
begin ck : :-1; 

while ck <= 100 do 
bejtin if reI <ck>-in reI 

then begin rec := re1c:ck>; 
• " (processing of rec 1 . . ., 

~ 
ck := ck + 1 

end. 

Of course, this solution is intolerable if many o f t he rel a tion 
elements are not assigned, for example, reI <ck>!!! r e I = false, or 
when the cardinality of the key value set, that is, the value set of 
type ktype, is very large. If an order is defined on the value set of 
the key component (s) additional selecti on mechanism on relations can 
be introduced that return the value of a relation el ement: 

The procedure low (rel,relem) assigns the val ue o f t he r elation 
el ement with the lowest key value to a variabl e, r elem; the procedure 
n ext (reI, relem) returns the value of t he n ext hi ghest element. 
Analogously, the pair of procedures high and p rior can be defi ned. 
The procedure this ' (rel,relem) is defined to be equival ent t o the 
statement 
g rel<relem.key>!!! reI ~ relem := rel<relem.key>; 

A Boolean procedure end-of-relation, eor(rel), becomes t rue if and 
only if the element to be selected does not exist. 

With these selection mechanisms the previous version of t he pr ogram 
reading a data base may be replaced by the f ol lowing one : 
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Example: Reading a Dat abase 

program dbuser (reldb)j {imports the relational database , reldbl 
~ ktype = 1 • 100j 

re l emtype = record • key:ktype j •• • ~j 
reltype = relation <key> 2f. relemtypej .. -j 

~ reldb: database ••• rel:reltypej ••• ~j 
ree : relemtypej 

begi n ~ reldb £2 
b egin low (rei, ree)j 

end . -

while not eor (rei) do 
begin :-: • ( processing of ree 1 • . ., 

next ( rei, ree ) 

~ 

These examples show that a data base model with just a minimal 
set of o perators, assignment and test, and element-orientated, 
key- base d selection mechanisms can easily be interfaced to a 
programming language if the data structures for element definition 
correspond, and if appropriate control structures exist. The 
interface requirements definitely become harder to fulfill if the 
selection mechanisms for relations are generalised. 

6. Predicate-Oriented Selection Mechanisms 

The two selection mechanisms introduced for relations both 
operate key-orientated and one-element-at-a-time: the denotation 
rel<key > selects one element as a variablej the procedures 10'<1, next, 
this, high, and prior return the value of one relation element. These 
selection mechanisms are based on some predicates that either test 
key values for equality or for some minimum or maximum condition. And 
since key values are guaranteed to be unique within relations, at the 
most one element is selected. 

For some purposes it is of interest to equip a data base model 
with a selection mechanism based on a more general class of selection 
predicates. Users should be able to specify the data to be selected 
all at once, and this in turn may enable an implementation to find 
these data - or at least some of them - by one effort. Subsequently, 
a notation for a general predicate-orientated selection mechanism 
will be proposed. 

In the Pas cal language the elements for a set-valued expression 
can be specified by the denotation nlow •• nhigh; the expressions, 
nlow and nhigh, return values from some base-type value set and 
nlow •• nhigh denotes each value of that value set between these 
limi ts. In other words, set elements are selected from a base value 
set - that is unstructured and constant - by a denotation equivalent 
to 
each e in base-set: (e > = nlow) and (e < =nhigh) 
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The (free) element variable, e, has to be introduced to denote the 
relation elements so that a selection criterion can be specified by 
the predicate following the colon. Adopting this notation for 
relation selection leads to 
each I" in reI: p(r), 
~e three generalisations have been made: 

(a) the structure of the elements to be selected is no longer 
restricted to some unstructured base type as, for example, 
integer; instead any type that is admitted as a relation 
element type is allowed; 

(b) the value set is no longer given by a constant set, for 
example, set of integers or a subset thereof; instead, it 
is given by any relation expression; 

(c) the selection predicate is no longer restricted to 
predicates defining closed intervals; instead, any Boolean 
expression is admi tted. 

A data base model equipped with this . general content-orientated 
mechanism that selects n elements at a time is, of course, more 
powerful than one supporting only one-element selection. On the other 
hand, it demands more, not only from the data base management system 
implementing that general content-orientated selection mechanism on 
address-orientated storage hardware, but also from the programming 
environment that wants to make use of this more powerful selection 
mechanism. In the next chapter, some of the consequences and 
alternatives for the interface between data base models and 
programming languages will be discussed. 

7. Data Base Manipulation Revisited: Control Structures vs. 
Data Structures 

In the previous chapter, a selection mechanism for relational 
data bases was introduced which selects n elements at a time. A data 
manipulating environment - as defined by some programming language -
has to meet certain requirements before it can profi t from t hi s 
selection mechanism. In essence, there are two alternative solutions: 
the programming language has to provide structures either for 
controlling the execution of statements so that the elements selected 
from the data base are assigned one after the other, or for 
structuring variables so that the elements selected from the data 
base can be assigned all at once. 

The two alternatives may be characterised by a trade-off between 
time and space. The time-oriented solution requires one assignment 
statement for each selected element; however, it needs only minimal 
space - that is, space for one relation element. The space-oriented 
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s o lution requires space for all the selected elements at once; 
h oweve r, it needs only time for one relation assignment. Both 
a l ternati ves will be discussed in seme detail. 

7 . 1 Control Structures 

The time- oriented solution demands a control structure that 
executes statements for each element of a given selection. The 
repetitive statement used when the number of repetitions is known 
b e forehand is commonly called a for-loop. The interface between 
Pascal and the re lational dataoase model may be achieved by 
admi tting the n-element selection mechanism ~ r .!!2 reI : p (r) as a 
cont r ol mechanism within the for- statement: 

f or each r in reI: per) do 
begin-:-• • --( processing-of r 1 . . . ~; 
It s hould be noted that this is the first time within our approac h 
t hat an exten s ion of the programming language is demanded; and the 
extension refers to a construct that is already present in the 
language . 

A !.£!:- statement may be used to implement queries against a data base 
t hat have Boolean results. As an example, take 

program dbuser (reldb); 
~ relemtype = record ••• key:ktype; ••• ~; 

reI type = relation <key> £f relemtype; ••• 
~ reldb : database ••• rel:reltype; ••• ~; 

q : boolean; 
begin ~ reldb do 

~. 

begin q := false; 
for each r in reI true ~ q := q 2£ per); 
if q then .-•• 

The Bo olean va r iable, q, becomes true as soon as a relation element 
e xists that makes the predicate p (r) true. The for-statement 
essentially implements a disjunction of Boolean expressions, p(ri), 
ea ch evaluated for another relation element, rio In terms of 
first - order predicate calculus this disjunction is equivalent to an 
expression defined by an existential quantifier. If q is initialised 
by false and if the operator or is replaced by ~ the value computed 
for q is equal to the value of a universally quantified expression. 

It i ncreases the e xpressive power of the model, the efficiency 
of its i mplementation, and is of notational convenience if the data 
base model allows quantified expressions. In this case the previous 
example reads: 
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program dbuser (reldb); 
~ relemtype = record ••• key:ktypej ••• ~; 

reltype = relat i on <key> of relemtype; ••• 
~ reldb: database ••• rel:reltype; ••• ~; 
begin ~ reldb i£ 

begin • • • i f ~ r in rel (p(r)) then • • • ~ 
~. 

Furthermore, quantified expressions substantially extend the 
sel ection mechanism for relations. Given two relations, re11 and 
re12, a selection ~ r 1 in re11 some r2 in re12 (p(r1,r2)) 
can be formed. 

7.2 Data Structures 

The s pace-orientated solution demands a data structure such that 
operands can be defi ned that accept all the selected elements by one 
assignment. It fits into our approach to extend the programming 
language for that purpose by the same data structure relation 
introduced with t he data base model. Then, any selection of elements 
can be transferred fran a data base into a program by one assignment 
operation, provi ded that the relation cons tructor, [ ••• J, 
introduced in section 5 .2 is generalised so that it constructs 
relation- valued expressions from n- element selections. 

program dbuser (reldb); 
~ relemtype = record ••• key: ktype ; ••• ~; 

reltype = relation <key> of relemtype; 
~ reldb: database. .rel:reltyp9; ••• ~; 

result: reltype; 
begin ~ reldb i£ 

result := [~ r in rel per)]; . . . 
~. 

This space-orientated solution may be contrasted with its 
t ime-orientated equivalent: 

program dbuser (reldb); 
~ relemtype = record ••• key:ktype ; ••• end; 

reltype = rel ation <key> of relemtype; ••• 
~ re l db: database ••• rel:reltype; ••• ~; 

result : rel type; 
begin result : = [ J; 

with reldb do 
~each r In rel p (r) do result + [1'J; . . . 
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Extending a programming langua ge by the intrinsic structuring 
method of a data base model provides, of course, -the most intimate 
interface between program s and data bases: relation variables from 
programs and data bases now can be used intermixed in element 
selections, relation expressions, and in statements . 

A final example will demonstrate that the relation update operators , 
: +, : &, : - , introduced in section 5.2 are just shorthand notations of 
ordinary assignment statements. 

An insert statement, for example, 

reI 1 :+ re12; 

is equivalent to the assignment statement 

re11 := [each r 1 in re11 : true, 
e;;:cli r2 in re12 : all r1 i n re11 (r1.key <> r2.keyJ.]; - - ---

In this example, a relation expression is given by a list of 
selections (for the full syntax, see appendix); the first list 
element consists of all the relation elements of reI 1 , the second 
list element is a selection of those elements of re12 that have key 
values different to those in rell. This intimate interface between 
programs and data bases allows, for example, that the data base 
components can even be used as parameters in procedures and 
functions . If the procedure concept has the appropriate parameter 
mechanisms 'transaction procedures' may be formed that can be treated 
as units of operation even if several of them are executed in 
parallel on the same data base. 

8. Summary and Concluding Remarks 

The paper addresses two topics. At first it defines data base 
models in terms of programming language concepts. Type generators 
(data base models) ar e used to write specifications (data base 
s chemat a ) that define how data are structured and identified, 
manipulated and constrained . Expression (data base queries) are 
formed out of operands (data base components) and operators and 
denote rules for obtaining results. Statements (data base actions and 
transactions) denote operations that may modify their operands when 
being executed. Furthermore, the paper discusses some of the mutual 
requirements to be met by programming languages and data bas e model s 
so that operands from both sources can be mixed within statements. 
The example given by the programming language Pascal and the 
relational data base model shows that, depending on the selection 
mechanism defined for relations, interfacing needs either no 
modification of the language at all 01' it requires the generalisation 
of an existing control str ucture 01' the introduction of a new data 
structure. 
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Neither the conventional approach for an interface based on a 
third component (user working area) which is mainly defined by a dat a 
structure mediating between programs and data bases nor the more 
advanced idea of extending a data base model by a control structure 
are discussed in this paper. Also, new concepts for data definitions, 
for example, user-defined type generators as in Euclid, Modula, or 
Ada (cluster, module, or package) are not exploited. 

A Pascal system extended by relations and relational data bases 
(Pascal/R, see appendix) is implemented on a DECsystem/10. 

Discussion 

Professor van de Riet asked why, in Pascal/R, relations were 
taken as a generalisation of the set type rather than the file type, 
and also since relations are collections of records and Pascal allows 
pointers to records, why were there no pointers to tuples in 
relations? Professor Schmidt replied that they had started with the 
set type because it provided a mechanism already present in Pascal 
for the non-procedural generation of a collection of elements. Work 
had been done on attempting to integrate the notion of reference with 
that of relation - he recalled a paper from University of Toronto 
CSRG of a couple of years back - the techniques were similar to those 
used in Euclid: a reference had to be bound not merely to a type but 
to a variable. 

Dr. Atkinson asked why, since they had i ntrod uced a new data 
type, had they not also introduced new operators for that type - for 
example the algebraic operat·ors. Professor Schmidt replied that they 
had introduced primari l y a new data structuring tool. Since 
quantification is allowed in relation selectors, operators such as 
join etc. can be built up out of these more basic things. But, 
Dr. Atkinson continued, since they provided expressions like R:-E, 
why not generalised set differences, for example? Professor Schmidt 
responded that these things can be done with the basic tools 
provided; R: -E is not a new operator - merely a shorthand. 

Closing the discussion, Professor Randell asked what experience 
they had with Pascal/R as a teaching tool. Professor Schmidt said 
that they had taught it for a number of terms and had recently used 
it for student exercises. He thought their experience could be summed 
up in the words of one student who, after taking a course, asked 
'what has PascallR to do with Data Bases? - it's just programming'. 
Professor Schmidt regarded this as a compliment and suggested that it 
proved that relational data bases were more naturally seen as an 
extension to the data structuring tools available in programmming 
languages, not as some special subject. 
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APPENDIX 

Syntax of the Pascal/R language gl ven as extensions to the definition 
of the Pascal language (see Pascal Re port in K. Jensen, N. Wirth: 
Pascal User Manual and Report. Springer Ver l ag , New York, Heidelberg, 
Berlin 1975, 2nd Edition): 

Notation. terminology. and vocabulary 

<special symbo!> ::; 
:+ I :- I :& I all I 

Data type definitions 

... 
~ I relat i on I dat abase 

<unpacked structured type> ::; <array type> 
<record type> , <set type I <file t ype> 
<relation type> I <database type> 

<relation type> ::; 
relation < <relation key:> > of <rel ation element type> 

<relation key.> ::; 
<key component identife~ (,<key component identi fier.>} 

<key component identifie~ ::; <identifie~ 

<database tYPE!> ::; 
database <database section> (~database section>} end 

<database section> ::; <database component identifier.> 
{,<database component identifie~} 
<relation type> I <empt y:> 

Declarations and denotations of variables 

<component variable> ::; <indexed variable> I 
<field designator> I <file buffe~ I 
<database component desi gnator.> I <select ed variable> 

<database component designatoI~ ::; 
<database variable>.<dat abase component identifier> 

<database variable> ::; <identifier.> 
<database component identifie~ ::; <identifie~ 

< selected variable> ::; 
<relation variable> ( <expression> (,<expression> } J 

<relation variable> ::; <variable> 
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Expressions 

<factor> ::= <variabl~ I <unsigned integer> I 
<function designator> I <set> I <relation> , 
<quantified expression> , «expressioIt> ) I 
not <factor> 

<relatioIt> : := ' r <relation element list;. ] 
<relation element list> ::= 

<relation element> {,<relation element>; , <empty,> 
<relation element> ::= <expression> I <selectioIt> I 

<component selectioIt> 
<selection> ::= <element denotation list;. : <selection expressioIt> 
<component selection> ::= <component list> of <selectioIt> 
<element denotation list;. ::= 

. <element denotation> {,<element denotatioIt>} 
<element denotation> ::= 

~<element variabl~ in <relation expression> 
<component list;. ::= 

< <component designator.> {,<component designator.>; > 
<component designator ::= 

<element variable>.<component identifier.> 
<element variable> ::= <variable identifier.> 
<variable identifier.> ::= <identifier> 
<selection expression> ::= <Boolean express ion> 
<relation expression> ::= <expression> 
<Boolean expression> ::= <expression> 

<quantified expreSSion> ::= <quantifier.> <element variabl~ 
in <relation expression> <predicat~ 

<quantifier> ::= ~ I ill 
<predicate> ::= «selection expression» 

<quantified expression> 

Statements 

<assignment statement> ::= <variable> := <expressioIt> 
<function identifier.> := <expressioIt> I 
<relation variable> <relation update operator> 

<relation expression> 
<relation update operator.> ::= :+ , :- I :& 

<for statement> ::= 
for <control sectiOn> ££ <statement;. 

< control section> ::= 
<control variable> := <for list;. , <selection> 

<with statement;. ::= 
wi th <wi th variable list> do < statement;. 

<wi th --;;ariable list;. ::= <with Variable> (,<wi th variabl~ 1 
<with variable> ::= <record variable> I <database variable> 
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Relation handling procedures and functions 

low (r, relem), next (r, relem), this (r, relem), 
high (r, relem), prior (r,relem), 
ear (r ) . 
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