
PROGRAMMING LANGUAGES AND DATA BASE MODELS :
ON THE INTEGRATION OF CONCEPTS, CONSTRUCTS, AND NOTATIONS

J . W. Schmidt

Rapporteur: Dr . J .M. Rushby

1. Introduction: On Data Def inition

Any high-level approach to data manipulation and data storage
requires some mechanisms for t he specification of operands by which
the data can be stored and manipulated. These mechanisms generally
provide the specification of:

(a) the structure of the operands, that is the rules by which
they are composed out of others and by which componen ts
can be denoted;

(b) the operators applicable to the operands;

(c) the set of general constraints to be maintained on the
operands.

Historically, the two areas, programming languages and data base
model s, developed rather independently and to a great extent
introduced their own concepts and terminology. In the programming
language community, data processing tools and tasks are described i n
terms of data structures, data types, typed variables, expressions,
statements and so forth. Data base users are familiar with t h e
concept s of dat a base models, sche mata, data bases, queries, data
base actions, transactions etc.

It is the main purpose of the paper to relate the two areas at
the levels of concepts , construct s , and notations. The motivati on is
twofold. First, there is an increasing number of applications where
the same person has to understand and even construct both programs
and data bases; and it is not just a question of economy to minimise
the number of concepts to be learned and tau ght . Second, it is the
very nature of data bases and programs t hat within the same piece of
software - even within the same statement - operan ds from both
sources, data base and programs, are denoted.

2. Data Definition in Programs: The Speci fication of Types

For the purpose of data definition, programmi ng languages
pro vide so-call e d type generators that are us e d to generate
us er- defined data specifications or data types. Such specifications
can in turn be applied to produce operands that serve for da ta
st orage and manipulation in accordance with the intended
specification.

99

In t he currently prevalent programming languages a user cannot
writ e his own type generators; instead, he has to choose amongst a
coll ection of so- called data structures, that is, type generator s
t hat are pre-defined by the language. A data structure is defined by
the s tructuring method it provide s , by the operators applicable t o
the operands structured by this method and possibly by some general
constraints to be imposed on the values for that operands.

2. 1 Structuring Methods for Data

I t is one of the properties of a well - designed programming
language that data structures for the most common structuring needs
a re provided. What these needs ar e depends, of course, on the
application area. In this section, a few of the structuring needs
tha t ar e supported by general purpose programming languages will be
discussed .

Fr equently, a fixed number of data of possibly different types
have to be aggre gated into a single operand , but the constituents
mu s t kee p their individual names, for example, nam e f . The
speci f i cation of types for this purpose is achieved by the data
s t r ucture record :

~ f t ype = • •• ;
rtype = record ••• f:ftype; ••• ~;

var r: rtype;
bei1n •. • r.f ••• end.

If the data to be aggregated into a single object are of
identical type and of fixed number, a proper type specification may
be achieved by the data structure array. A denotation for the
indi vidual components of array variables is given by the values, for
example, i , of some index type, itype:

~ itype = •• • ;
e l emtype :;: • • .;
atype = array'" [i type J of el emtype;

var a: atype;
begin ••• ali] . . . end.

Structures that are defined by a fixed number of components, possibly
of diff e rent type, and selected by some naming scheme, will
s ubs equently be called tuple- like structures.

Somet imes, the number of identically-typed data to be collected
i n one operand is not fixed. In this case, a data structure ~ may
be used :

100

~ elemtype = •• • ;
s t ype = s et of elemt ype;

var s : s type;--

For s et variables there are generall y no mec han isms for the
denotat ion of eleme nts: the varying cardinalit y of sets does not
allow the definition of a fixe d naming scheme, and any identification
of elemenw r ef e rring to their sequential order does not apply to
(pure) s ets.

I n case the concept of order is applicable, operands for a
varying number of identically-typed elements can be defined by the
data s tructure sequence:

~ elemtype = • • . ;
qtype = sequence of elemtype;

var q: qtype;

Structur es define d by a varying number of identically-typed elements
with or without naming schemes for element selection are subsequently
called set- l i ke s t ructures.

Qui te often the data struct uring needs demand a combination of
several st ructuring met hods. So, data of different types may be
aggrega t e d into one tuple-like structure and a fixed number of these
compound ope rands may be aggregated to form another tuple - like
structure:

~ ftype = • •• ;
i t ype :;:: • • . ;
artype = ar ra,y

var ar: artype ;
begin ••• ar(i].f

(itype] of record • • • f: ftype ; • • • end;

• • • end.

Type generator s are not only characterised by their rules for the
compositi on and decomposition of operands but also by the set of
operators f or t he manipulation of operands.

2.2 Operations on Data

The operator s defined for structured types - and inherited by
their t ype generators - may ro'ughl y be divided into two categories:

c omponent ope rators, which operate on structured operands by
operating on their components, and

c ompou nd op erato r s, which apply to structured operands as a
whole.

101

Component operators requi r e tha t structured ope rand s ca n be
decomposed into components down to a level where t he y are e i t he r of
some structured type with compound operators or of some base t ype
pre- defined in the language and well - equipped with operators. The
operators defined, for example, for the tuple- like structures record
and array are mostly compon ent opera tors.; exceptions ma y be th e
assignnment and the test-on- equality operator. Compound operators are
the dominant ones for set-like structures such as ~ and sequence.
So, the operators union and intersection apply to set operands and
yield set-valued expressions; the application of the dperators
set - inclusion or set - element-test results in Boolean - valued
expressions. Assignment statements may be formed out of set variables
and set valued expressions by the compound operator assignment.
Compound operators are sometimes given in the form of procedures, for
example, procedure first (q:qtype; qelem:elemtype), reads a sequence
variable, q, and assigns the value of the first element to a
variable, qe. The application of those operators leads, of course,
directly to a statement.

To summarise, structured variables may contribute to programs in
different ways depending on the type generator used for their
declaration:

(a) In a rather restricted role, they may serve as parameters
for a set of pre-defined procedures.

(b) More generally, they may act as variables in expressiOns
and function calls as well as in assignment and procedure
statements.

(c) Last but not least, they may constitute a pool of
component variables for expressions, functions calls and
statements.

2 . 3 Constraints on Data

I n some programming languages the user can specify constraints
to be maintained on oper ands. Imposing upper and lower bounds on the
values to be accepted by an unstructed variable is a common example:

~ f type = 1 •• 19;

Constraints are inherited by structured types based on constrained
types:

~ eleurtype = 1 •• 19;
s type = set of elemtype;

var s : s type;--

102

The constraint composed on the set variable, s, reads

S i ~ (i ~ integer: (i>=1) ~ (1.<=19) };

In the currently prevalent programming languages the mechanisms for
constraint specification are rather limited.

3. Data Definition in Data Bases: The Specification of Schemata

As with data definition in programs there is no general
agreement on the 'optimal' structuring methods for data bases. While,
however, programming languages offer a spectrum of data structures,
each of the currently prevalent data base models is heavily biased
towards one structuring methods. So, it is no surprise that there
have been rather emotional discussions on what would be 'the best
data base model'. This discussion has cooled down since ANSI/SPARe
proposed a data base architecture with several structuring methods at
various levels.

Regardless of their differences, the major data base models - at
least those based on relations, hierarchies, and nets - may all be
described in terms of the two classes of structuring methods
introduced above: tuple-like structures allow the definition of data
composed out of a fixed (and mostly small) number of components of
different types, set-like structures are used if the elements are of
identical type and if their number varies (and may be high). By the
tuple-like method, data base components can be defined for the
following two purposes: holding the description of either one' real
world' object given by its k attributes or one association between I
'real world' obj ects (k, I constant). The set-like structuring method
leads to data base components that can keep n (n variable, n »k,l)
elements of identically-typed 'real world' objects or associations.

In the next section, the structuring methods underlying the
three major data base models will be discussed in some detail.

3.1 The Relational Data Base Model

Three type generators are required to define a relational data
base schema, one set-like and two tuple-like structures:

data base defines a relational data base by a fixed number of
named components;

relation defines a data base component so that it can hold a
varying number of relation elements of identical type;

relation elements are supposed to be defined by some tuple-like
structure, traditionally by the data structure record.

103

The data base and record are tuple-l ike structures; relation is a
set- like structure .

~ ftype = •
re ldbtype =

. ,
database

end;
~ reldb: reldbtype;

. . . .,
relk: relat ion <f'> .2f

record ••• f:ftype; ~;

The cons traint imposed on the data bas e component, · reldb. relk, - its
key, f - means that no two elements of t he relation may have the same
value for the element component identifi ed by f.

A data structure relation can be regar ded as a generalisation of
the data structure ~ - as defined , for example, in Pascal - in the
following sense : the types for se t elements, selemtype, are
restric ted to be unstructured, for example, of type character or of a
constrained type defined on integers. The constraint defined on set
types is uniqueness of set elements.

~ selemtype = char;
stype = ~ .2f selemtype;

Relation element types, relemtype, may be structured unlike set
element types, selemtype. Therefore the constraint of uniqueness of
elements can be generalised to uniqueness of element components or a
list thereof.

~ relemtype = r ecord ••• f: ... ; g: •• • j ••• ~j

reltype = relat ion <f,g> of relemtype;

Further aspects of that generalisation will be seen when operations
on relations are dis cussed.

3.2 The Hierarchical Data Base Model

For the definition of hierarchic al data base schema (or more
exactly: tree-structured data base schemats) four type generators are
required, two set-like and two tuple-like structures:

data base defines a hierarchical data base to be a set - like
structure of elements;

elements of a hierarchical data base are defined by a
structuring method tree and have a fixed number of components of
different types;tlle components are defined either by the
tuple-like str ucture record or by the set-like structure
sequence.

104

Since the elements of a sequence are allowed to be of some tree type,
a mul ti-level tree-structured schema can be defined:

~ f type : ••• ,
g type : • • .;
t reedbtype ~ database <t> of

~. parent: record ••• f:ftype; ••• end ;
children 1: sequence < ... > of

~ parent: ••• ;
children 1 : ••• ;

~;
~ treedb: treedbtype ;

~;
children2:sequence <g> of

. . . ., record • • • g:gtype; ••• ~;

childrenk: sequence < .•• > of •••

The example data base, tr eed b , can ho l d a varying number of
tree-structured e lements each associating one parent component of
some record type with k children components of different types . The
constraint denoted by <f> may mean that t here is at most one element
of the data base that has a given va l ue in the component f of its
parent component. The chil dr en named children 1 to childrenk are
defined as sequences of elements since the concept of order shall
apply . A constraint imposed on, say, the sequence treedb.children2
and denoted by <g> may mean that there is at most one element in the
sequence with a given value in its component g.

By the given combination of set- and tuple-like structures 1:n
associations may easily be defi ned . A generalisation to n:m
re lations hips requires that the same element type can be used at
various levels in the hierarchy and that there are means with which
to relate identical elements at various levels. Then, of course, the
structure is generalised from a hierarchy to a network.

3.3 The Network Data Base Model

The basic structuring method for the network data base model
associates a fixed number of components of different types and may be
called net: one component is of a tuple-like structure (owner) and k
components are of a se t - like structure (memb ers) . Each member
component can hold a sequence of el ements to be associated with the
owner component thus fOrming k different owner/member relationships.
A network data bas e basically consi sts of 1 components that are sets
of identically-typed nets . ----

105

• j

record ••
• . . . ,

f:ftypej. • end j
g:gtypej ••• ~j

~ ftype = • •• j
gtype = ••
elemtypek =
elemtypekl= · record
e 1 emtype 1 =
netdbtype = database . ,

~j
~ netdb : netdbtype j

compk: ~ <1> .2!

.
• • • t

~ owner:elemtypekj

end ' --'

· · . .,
membr :sequence <g> of elemt ypeklj

· · . . ,
compl: set <; •• > of

net owner :elemtypelj

· · . .,
membs: s equence < • • • > of elemtypekl j
· . .,

In a network data base an element type, for example, elemtypekl, may
contribute t o the definition of more than one net type. Furthermore,
the ne twork mode l provides operators to insert identical elements
into d i ff e r e nt comp6nen~s of nets and io exploit that ' fact when
nav i g at ing through a network data base. The distinguished
indentifiers < f > and <g > may be considered as examples of constraints
on the network dat a base:

compk : set < f > of net ••• ; shall mean that there is at the most one
net el ement i n the set, compk, that has given value in the component
f of its owner ;
membr:seque nc e < g > ~ elemt ype kl ; shall mean that there is at the
most one record el ement .in the s e quence, membr , with a given value in
its component, g . On e can consider the whole network data base to be
f ormed out of 1 components where each one can hold a set of elements
o f some net type . For the sake of si mplicity many details that may be
considered as part of a schema definition have been omitted . Examples
a re or der claus es f or sequences or various declarations supporting
el ement select ion wi thin sets and sequences . In the ne xt chapter,
addi tional pr o pe r ties of data base models will be discussed,
pr imar ily t he mechanisms for el ement selection and the operators.

4. Select i on Mechanisms

Ultimat el y, it is the 'raison d'etre' for any data base - as for
any structured variabl e - to provide the user with components either
for the pur pose of reading or for writing. In this chapter some of
t he mechanisms f or component s election as defined for data struct ures
wil l be dis cus s ed and the r esul t s will be applied to the structuring
met hods of data base models .

106

4.1 Selection Mechanisms for Data Structures

Data structures in programming languages allow component
selection in two different ways . Either they provide a denotation to
select component variables or they provide operators to form
expressions returning component values. The data structures array and
record with their denotations indexing, a ri], and qualifications,
rec.f, are of the first kind. The data structure sequence with a
selection function first(q) or a procedure first(q,qe) is an example
for the second kind.

Selection by component denotation is the more general one in the
sense that it leads to variables, and variables may exist in both
constructs, expressions (right-hand-sides) and statements
(left-hand-sides).

Selection by component denotation in turn may be divided into
two categories: selection by ex pression as for example indexing o f
arrays, a[i+1], where the selector is computed by an expression, i+1,
and can be stored in a variable; and selection by identifier as for
example qualification of records, rec.f, where the selector, f, is
defi ned in the type declaration, that is, in the program text .

4. 2 Selection Mechanisms for Data Base Models

In chapter 3 it was shown how a complex data base sc hema
def inition can be composed or primitive types by repeated application
of a few structuring methods. Now, some selection mechanisms for
these structuring methods will be discussed allowing a data base to
be decomposed into its components. The followin g di scussion will
mai nly concentrate on the relational data base model.

A few general requirements for sel ection mechanisms on relations
can be postulated. Frequently, only one or a few of the many elements
of a relation are of interest for reading, updating, or existence
tes ti ng. Therefore a denotation allowing the selection of individual
relation elements as variables is desira ble. The alternative would be
to operate by compo und operators on whole relation variables.
Furthermore, since relations are intended to hold logically related
data a selection mechanism should be based on selectors that in turn
can be stored in the data base. In this case k elements, possibly
from different relations, can be related by an element in a furt her
relation holding the k element selectors. In addition, it is
desirable that the selector for the rel ating element can be easily
composed from the individual selectors of the related elements. Then
th e selection mechanism for relations would equal l y support t he
sel ection of the k related elements if the selector of the relating
element is given and the selection of the relating element if the k
sel ectors of the related element are at hand.

107

Symmetry arguments like these lead to a selection mechanism
where the k selectors stored in the relating element are the
selectors for that element and where the selectors of therelated
elements must be stored as components of these elements. In other
words, an-iPpropriate selection mechanism for the structuring method
relation is based on the content of the relation elements as opposed
to the name- or address-oriented selection mechanisms for data
structures like record or array.

If the selection mechanism is based on those element components
distinguis hed by the key of a relation it is guaranteed that unique
elements are denoted:

~ ftype = .;

relemtype = record •• • f :ftype; ••• ~;
reI type = re l ation <f'> of relemtype;
reldbtype = database ••• rel:reltype; ••

~ reldb: reldbtypej
begin • • • reldb . reI <fe.> • • • ~.

fe denotes an expression of type ftype.

Elements in a hi erarchical data base, for example treedb, as defined
in section 3.2 are selected by

~ ••• {see section 3.2};
treedbtype = • • • ;

var treedb: treedbtype;
begin ••• treedb<fe>.children2<ge> ••• end.

Acordingly, element selection for a network data base like netdb
defined in section 3.3 reads

~ ••• { see section 3.3 }
netdbtype = • • • ;

var netdb netdbtypej
~in ••• netdb.compk<fe>.membr<ge> • • • end.

fe and ge are expressions of type ftype and gtype .

It should be noted that commercial data base systems provide many
extra select ion mechanisms based on additional clauses in the schema
defini tion.

The res t of the paper will concentrate on the operators defined
wi th a data base mode l. While gradually extending the set of
operators and generalising the selection mechanism, the requirements
for the interface between a data base model and a programming
language will be analysed.

108

5. Data Base Manipulation: A Minimal Approach

A data structuring method is not completely defined without the
operators applicable to the operands being defined with thi s method.
For the relational data base model, operators are required so that
expressions and statements can be formed out of data base components
(that is, relatio ns) and relation elements (that is, records). In
this chapter, a minimal set of operators for the relational model is
introduced and it is shown ha. expressions on data base (component)
variabl es can be used as operands in program statements and vice
versa.

5.1 Operations on Relations

An ope rator absolutely necessary for relations or at least for
relation elements is the assignment operator,:= (or some equivalent
procedure). Otherwise, there were no read and write operations on
relational data bases.

If a relational data base, reldb, is defined by

~ ftype =. . ,
relemtype = record ••• f:ftype; ••• ~;
reltype = relation <f> of relemtype; ••• ;

~ reldb: database ••• rel:reltype; • •• end;

the assignment statement reldb.rel<fe> := e; requires that the
expression, fe, is of type ftype, and that the expression, e, is of
the type of t he left-hand-side variable, that is, of type relemtype
with the restriction that the value set ' for the component, f, is
restrict e d to the value of fe . An additional operator, in, tests
whether a relation, rel, contains an element equal~o some
expression.

The express i on re ldb .rel<fe> in reldb . rel becomes true iff the
designated relation element isalready initialised, that is,
assigned.

It is of some notational convenience if a notation is provided that
allows the denotation of data base components without preceding them
with the entire data base identifiers:

with reldb do
begin • • e;

rel<fe;.. := e;
•• • re~fe> ~ reI ..• ;

~.

109

5.2 Interfacing Programming Languages and Data Base Models

There are two different ways of providing operations for data
bases . One ap proach regards a d ata base model as being
self-contained, perhaps after adding a few more operators to increase
the computational possibili ties of the model. The other approach
allows the definition of data bases and data base operations within
the scope of programs wri tten in some programming language: this is
tenned the host language approach. This discussion will follow the
latter approach .

There are sCllle general requirements a programming language and a
data base model should meet when being interfaced:

(a) var iabl es and expressions that are well-formed in the
sense of a data base should be accepted by a program
statement unless type condi tiona are violated;

(b) variables and expressions that are well-formed in the
sens e of a program should be accepted by a data base
statement unl ess type conditions are violated.

A programming language to be i nterfaced with a relational data
base model as defined above shoul d therefore accept expressions of
the relation elem ent type, that is, the result of an element
selection, and of Boolean type that is, the result of an 'element
test. And progr amming language express ions should be accepted in
statements that assign or test r elation el;ements. In the following
examples the interface requirements between the programming language
Pascal and a relational data base model are discussed.

Example: , Insertion

prOgram dbuser (reldb);
~ ktype = 1 • 100;

r imports the relational database, reldb}

relemtype = record • • • key: ktype; • •
reI type = relation <key> of releurtype

~ reldb: database • •• rel:reltype; ••

end· -' • • •
end· --' ree : relemtype;

begin ~ reldb, rec do
begin ••• ; key := 10 ; ••• ; t initialisation of rec}

if !l2i re1<:ke;y> in reI,
then rel<ke;y> := rec { inserti on of ree 1

~
~.

110

Example: Replacement

program dbuser (reldb)j { imports the relational database , reldb}
~ ktype = 1 • 100j

relemtype = record • • • key: ktype j • • • ~j
rel type = relation < key,> of relemtypej • • •

~ reldb: database ••• rel:reltypej ••• ~j
rec : relemtype j

begin ~ reldb, rec do

end -_.

begin .•. ; key := 10 ; •
if rel<key> i n rel
then rel<key>:= rec

end

. , (initiali sation of rec)

(replacement by rec }

So, in a minimal approach the i nser tion and replacement operations
are accomplished by the assignment and the test operator of the data
bas e model and the g-~-else control structure of the programming
language.

A less stingy approach may introduce operators for assignment,
insertion, re placement etc . , as compo und operators on relations: the
insert operator, :+ , is defined so that the statement reI :+ [rec];
has the same meaning as the s tatement with rec do if not rel<key> l!l
r eI ~ rel<key> : = rec;

The relat ion constructor, [•••], constructs one-element relation
expressions out of record expressions.

Analogo usly , the replacement statement, reI :& [rec]; is defined to
be equivalent to
!!.'ll!:!. rec ~ rel<key> .!.!! rel ~ rel<key> : = rec;

Last but not least, the delete statement reI :- [rec]; deletes the
relation elements equal to rec - if it exists.

In section 7.2 it will be s hown how the relation update operators,
:+, :& , :-, can be replaced by the ordinary assignment operator, :=,
at the expense of a more complicated right-hand-side expression.

The denotation for relation components can also be used when data
f rom t he data base are to be processed by a program:

111

Example: Reading a Database

program dbuser (reldb); £ imports the relational database, reldb}
.:!!zP.!!. ktype = 1 • • 100;

relemtype = record ••• key:ktype; ••• end;
reltype = re l ati on <key> of relemtype; • • •

~ reldb: database • • • rel:reltype; ••• ~;
rec : rellllllt;rpe;
ck :ktype

be~in with re ldb do
begin ck : :-1;

while ck <= 100 do
bejtin if reI <ck>-in reI

then begin rec := re1c:ck>;
• " (processing of rec 1 . . .,

~
ck := ck + 1

end.

Of course, this solution is intolerable if many o f t he rel a tion
elements are not assigned, for example, reI <ck>!!! r e I = false, or
when the cardinality of the key value set, that is, the value set of
type ktype, is very large. If an order is defined on the value set of
the key component (s) additional selecti on mechanism on relations can
be introduced that return the value of a relation el ement:

The procedure low (rel,relem) assigns the val ue o f t he r elation
el ement with the lowest key value to a variabl e, r elem; the procedure
n ext (reI, relem) returns the value of t he n ext hi ghest element.
Analogously, the pair of procedures high and p rior can be defi ned.
The procedure this ' (rel,relem) is defined to be equival ent t o the
statement
g rel<relem.key>!!! reI ~ relem := rel<relem.key>;

A Boolean procedure end-of-relation, eor(rel), becomes t rue if and
only if the element to be selected does not exist.

With these selection mechanisms the previous version of t he pr ogram
reading a data base may be replaced by the f ol lowing one :

112

Example: Reading a Dat abase

program dbuser (reldb)j {imports the relational database , reldbl
~ ktype = 1 • 100j

re l emtype = record • key:ktype j •• • ~j
reltype = relation <key> 2f. relemtypej .. -j

~ reldb: database ••• rel:reltypej ••• ~j
ree : relemtypej

begi n ~ reldb £2
b egin low (rei, ree)j

end . -

while not eor (rei) do
begin :-: • (processing of ree 1 • . .,

next (rei, ree)

~

These examples show that a data base model with just a minimal
set of o perators, assignment and test, and element-orientated,
key- base d selection mechanisms can easily be interfaced to a
programming language if the data structures for element definition
correspond, and if appropriate control structures exist. The
interface requirements definitely become harder to fulfill if the
selection mechanisms for relations are generalised.

6. Predicate-Oriented Selection Mechanisms

The two selection mechanisms introduced for relations both
operate key-orientated and one-element-at-a-time: the denotation
rel<key > selects one element as a variablej the procedures 10'<1, next,
this, high, and prior return the value of one relation element. These
selection mechanisms are based on some predicates that either test
key values for equality or for some minimum or maximum condition. And
since key values are guaranteed to be unique within relations, at the
most one element is selected.

For some purposes it is of interest to equip a data base model
with a selection mechanism based on a more general class of selection
predicates. Users should be able to specify the data to be selected
all at once, and this in turn may enable an implementation to find
these data - or at least some of them - by one effort. Subsequently,
a notation for a general predicate-orientated selection mechanism
will be proposed.

In the Pas cal language the elements for a set-valued expression
can be specified by the denotation nlow •• nhigh; the expressions,
nlow and nhigh, return values from some base-type value set and
nlow •• nhigh denotes each value of that value set between these
limi ts. In other words, set elements are selected from a base value
set - that is unstructured and constant - by a denotation equivalent
to
each e in base-set: (e > = nlow) and (e < =nhigh)

113

The (free) element variable, e, has to be introduced to denote the
relation elements so that a selection criterion can be specified by
the predicate following the colon. Adopting this notation for
relation selection leads to
each I" in reI: p(r),
~e three generalisations have been made:

(a) the structure of the elements to be selected is no longer
restricted to some unstructured base type as, for example,
integer; instead any type that is admitted as a relation
element type is allowed;

(b) the value set is no longer given by a constant set, for
example, set of integers or a subset thereof; instead, it
is given by any relation expression;

(c) the selection predicate is no longer restricted to
predicates defining closed intervals; instead, any Boolean
expression is admi tted.

A data base model equipped with this . general content-orientated
mechanism that selects n elements at a time is, of course, more
powerful than one supporting only one-element selection. On the other
hand, it demands more, not only from the data base management system
implementing that general content-orientated selection mechanism on
address-orientated storage hardware, but also from the programming
environment that wants to make use of this more powerful selection
mechanism. In the next chapter, some of the consequences and
alternatives for the interface between data base models and
programming languages will be discussed.

7. Data Base Manipulation Revisited: Control Structures vs.
Data Structures

In the previous chapter, a selection mechanism for relational
data bases was introduced which selects n elements at a time. A data
manipulating environment - as defined by some programming language -
has to meet certain requirements before it can profi t from t hi s
selection mechanism. In essence, there are two alternative solutions:
the programming language has to provide structures either for
controlling the execution of statements so that the elements selected
from the data base are assigned one after the other, or for
structuring variables so that the elements selected from the data
base can be assigned all at once.

The two alternatives may be characterised by a trade-off between
time and space. The time-oriented solution requires one assignment
statement for each selected element; however, it needs only minimal
space - that is, space for one relation element. The space-oriented

114

s o lution requires space for all the selected elements at once;
h oweve r, it needs only time for one relation assignment. Both
a l ternati ves will be discussed in seme detail.

7 . 1 Control Structures

The time- oriented solution demands a control structure that
executes statements for each element of a given selection. The
repetitive statement used when the number of repetitions is known
b e forehand is commonly called a for-loop. The interface between
Pascal and the re lational dataoase model may be achieved by
admi tting the n-element selection mechanism ~ r .!!2 reI : p (r) as a
cont r ol mechanism within the for- statement:

f or each r in reI: per) do
begin-:-• • --(processing-of r 1 . . . ~;
It s hould be noted that this is the first time within our approac h
t hat an exten s ion of the programming language is demanded; and the
extension refers to a construct that is already present in the
language .

A !.£!:- statement may be used to implement queries against a data base
t hat have Boolean results. As an example, take

program dbuser (reldb);
~ relemtype = record ••• key:ktype; ••• ~;

reI type = relation <key> £f relemtype; •••
~ reldb : database ••• rel:reltype; ••• ~;

q : boolean;
begin ~ reldb do

~.

begin q := false;
for each r in reI true ~ q := q 2£ per);
if q then .-••

The Bo olean va r iable, q, becomes true as soon as a relation element
e xists that makes the predicate p (r) true. The for-statement
essentially implements a disjunction of Boolean expressions, p(ri),
ea ch evaluated for another relation element, rio In terms of
first - order predicate calculus this disjunction is equivalent to an
expression defined by an existential quantifier. If q is initialised
by false and if the operator or is replaced by ~ the value computed
for q is equal to the value of a universally quantified expression.

It i ncreases the e xpressive power of the model, the efficiency
of its i mplementation, and is of notational convenience if the data
base model allows quantified expressions. In this case the previous
example reads:

11 5

program dbuser (reldb);
~ relemtype = record ••• key:ktypej ••• ~;

reltype = relat i on <key> of relemtype; •••
~ reldb: database ••• rel:reltype; ••• ~;
begin ~ reldb i£

begin • • • i f ~ r in rel (p(r)) then • • • ~
~.

Furthermore, quantified expressions substantially extend the
sel ection mechanism for relations. Given two relations, re11 and
re12, a selection ~ r 1 in re11 some r2 in re12 (p(r1,r2))
can be formed.

7.2 Data Structures

The s pace-orientated solution demands a data structure such that
operands can be defi ned that accept all the selected elements by one
assignment. It fits into our approach to extend the programming
language for that purpose by the same data structure relation
introduced with t he data base model. Then, any selection of elements
can be transferred fran a data base into a program by one assignment
operation, provi ded that the relation cons tructor, [••• J,
introduced in section 5 .2 is generalised so that it constructs
relation- valued expressions from n- element selections.

program dbuser (reldb);
~ relemtype = record ••• key: ktype ; ••• ~;

reltype = relation <key> of relemtype;
~ reldb: database. .rel:reltyp9; ••• ~;

result: reltype;
begin ~ reldb i£

result := [~ r in rel per)]; . . .
~.

This space-orientated solution may be contrasted with its
t ime-orientated equivalent:

program dbuser (reldb);
~ relemtype = record ••• key:ktype ; ••• end;

reltype = rel ation <key> of relemtype; •••
~ re l db: database ••• rel:reltype; ••• ~;

result : rel type;
begin result : = [J;

with reldb do
~each r In rel p (r) do result + [1'J; . . .

116

Extending a programming langua ge by the intrinsic structuring
method of a data base model provides, of course, -the most intimate
interface between program s and data bases: relation variables from
programs and data bases now can be used intermixed in element
selections, relation expressions, and in statements .

A final example will demonstrate that the relation update operators ,
: +, : &, : - , introduced in section 5.2 are just shorthand notations of
ordinary assignment statements.

An insert statement, for example,

reI 1 :+ re12;

is equivalent to the assignment statement

re11 := [each r 1 in re11 : true,
e;;:cli r2 in re12 : all r1 i n re11 (r1.key <> r2.keyJ.]; - - ---

In this example, a relation expression is given by a list of
selections (for the full syntax, see appendix); the first list
element consists of all the relation elements of reI 1 , the second
list element is a selection of those elements of re12 that have key
values different to those in rell. This intimate interface between
programs and data bases allows, for example, that the data base
components can even be used as parameters in procedures and
functions . If the procedure concept has the appropriate parameter
mechanisms 'transaction procedures' may be formed that can be treated
as units of operation even if several of them are executed in
parallel on the same data base.

8. Summary and Concluding Remarks

The paper addresses two topics. At first it defines data base
models in terms of programming language concepts. Type generators
(data base models) ar e used to write specifications (data base
s chemat a) that define how data are structured and identified,
manipulated and constrained . Expression (data base queries) are
formed out of operands (data base components) and operators and
denote rules for obtaining results. Statements (data base actions and
transactions) denote operations that may modify their operands when
being executed. Furthermore, the paper discusses some of the mutual
requirements to be met by programming languages and data bas e model s
so that operands from both sources can be mixed within statements.
The example given by the programming language Pascal and the
relational data base model shows that, depending on the selection
mechanism defined for relations, interfacing needs either no
modification of the language at all 01' it requires the generalisation
of an existing control str ucture 01' the introduction of a new data
structure.

117

Neither the conventional approach for an interface based on a
third component (user working area) which is mainly defined by a dat a
structure mediating between programs and data bases nor the more
advanced idea of extending a data base model by a control structure
are discussed in this paper. Also, new concepts for data definitions,
for example, user-defined type generators as in Euclid, Modula, or
Ada (cluster, module, or package) are not exploited.

A Pascal system extended by relations and relational data bases
(Pascal/R, see appendix) is implemented on a DECsystem/10.

Discussion

Professor van de Riet asked why, in Pascal/R, relations were
taken as a generalisation of the set type rather than the file type,
and also since relations are collections of records and Pascal allows
pointers to records, why were there no pointers to tuples in
relations? Professor Schmidt replied that they had started with the
set type because it provided a mechanism already present in Pascal
for the non-procedural generation of a collection of elements. Work
had been done on attempting to integrate the notion of reference with
that of relation - he recalled a paper from University of Toronto
CSRG of a couple of years back - the techniques were similar to those
used in Euclid: a reference had to be bound not merely to a type but
to a variable.

Dr. Atkinson asked why, since they had i ntrod uced a new data
type, had they not also introduced new operators for that type - for
example the algebraic operat·ors. Professor Schmidt replied that they
had introduced primari l y a new data structuring tool. Since
quantification is allowed in relation selectors, operators such as
join etc. can be built up out of these more basic things. But,
Dr. Atkinson continued, since they provided expressions like R:-E,
why not generalised set differences, for example? Professor Schmidt
responded that these things can be done with the basic tools
provided; R: -E is not a new operator - merely a shorthand.

Closing the discussion, Professor Randell asked what experience
they had with Pascal/R as a teaching tool. Professor Schmidt said
that they had taught it for a number of terms and had recently used
it for student exercises. He thought their experience could be summed
up in the words of one student who, after taking a course, asked
'what has PascallR to do with Data Bases? - it's just programming'.
Professor Schmidt regarded this as a compliment and suggested that it
proved that relational data bases were more naturally seen as an
extension to the data structuring tools available in programmming
languages, not as some special subject.

118

APPENDIX

Syntax of the Pascal/R language gl ven as extensions to the definition
of the Pascal language (see Pascal Re port in K. Jensen, N. Wirth:
Pascal User Manual and Report. Springer Ver l ag , New York, Heidelberg,
Berlin 1975, 2nd Edition):

Notation. terminology. and vocabulary

<special symbo!> ::;
:+ I :- I :& I all I

Data type definitions

...
~ I relat i on I dat abase

<unpacked structured type> ::; <array type>
<record type> , <set type I <file t ype>
<relation type> I <database type>

<relation type> ::;
relation < <relation key:> > of <rel ation element type>

<relation key.> ::;
<key component identife~ (,<key component identi fier.>}

<key component identifie~ ::; <identifie~

<database tYPE!> ::;
database <database section> (~database section>} end

<database section> ::; <database component identifier.>
{,<database component identifie~}
<relation type> I <empt y:>

Declarations and denotations of variables

<component variable> ::; <indexed variable> I
<field designator> I <file buffe~ I
<database component desi gnator.> I <select ed variable>

<database component designatoI~ ::;
<database variable>.<dat abase component identifier>

<database variable> ::; <identifier.>
<database component identifie~ ::; <identifie~

< selected variable> ::;
<relation variable> (<expression> (,<expression> } J

<relation variable> ::; <variable>

119

Expressions

<factor> ::= <variabl~ I <unsigned integer> I
<function designator> I <set> I <relation> ,
<quantified expression> , «expressioIt>) I
not <factor>

<relatioIt> : := ' r <relation element list;.]
<relation element list> ::=

<relation element> {,<relation element>; , <empty,>
<relation element> ::= <expression> I <selectioIt> I

<component selectioIt>
<selection> ::= <element denotation list;. : <selection expressioIt>
<component selection> ::= <component list> of <selectioIt>
<element denotation list;. ::=

. <element denotation> {,<element denotatioIt>}
<element denotation> ::=

~<element variabl~ in <relation expression>
<component list;. ::=

< <component designator.> {,<component designator.>; >
<component designator ::=

<element variable>.<component identifier.>
<element variable> ::= <variable identifier.>
<variable identifier.> ::= <identifier>
<selection expression> ::= <Boolean express ion>
<relation expression> ::= <expression>
<Boolean expression> ::= <expression>

<quantified expreSSion> ::= <quantifier.> <element variabl~
in <relation expression> <predicat~

<quantifier> ::= ~ I ill
<predicate> ::= «selection expression»

<quantified expression>

Statements

<assignment statement> ::= <variable> := <expressioIt>
<function identifier.> := <expressioIt> I
<relation variable> <relation update operator>

<relation expression>
<relation update operator.> ::= :+ , :- I :&

<for statement> ::=
for <control sectiOn> ££ <statement;.

< control section> ::=
<control variable> := <for list;. , <selection>

<with statement;. ::=
wi th <wi th variable list> do < statement;.

<wi th --;;ariable list;. ::= <with Variable> (,<wi th variabl~ 1
<with variable> ::= <record variable> I <database variable>

120

Relation handling procedures and functions

low (r, relem), next (r, relem), this (r, relem),
high (r, relem), prior (r,relem),
ear (r) .

121

