
THE SPECIFICATION OF DATA TYPES •
C.B. Jones

Rapporteurs: Mr. S.B. Jones
Dr . P. Henderson

Abstract:

Work on pro ving progra.s correct has reached a fairly
sophistioated stage for programs of a numerical nature. This work has
also bee'n carried into rigorous program develoPlllent. Many people are
interested in extending this work into the data prooessing area, as
an advanoed software develoPlllent' tool, and I consider that the key to
doing this is a proper for.ulation of the notion of abstract data
types . In these leotures I shall concentrate on the formulation of
specifications of the sortWIU'tl which is to be bull t. I wish also to
show how to construct a body of knowledge about data types which will
be useful for many applications.

Lecture 1: Method of speCifying data types

Fi«ure 1 shows the "factorial" of abst ract data types; this is
the stack example. Here the method of description is algebraic, or
axiomatic. It is an implicit, or property oriented, method. The first
five lines of the figure are the syntactic part of the definition,
showing the operations which are available, and giving the domains
and ranges of each of the operations . The remaining six lines of the
figure are the semantic part which defines a last-in first - out stack
discipline by interrelating the available operations. The use of the
UNDEFINED element has made INSPECT a total function.

NE)/STACK: , -t stack
PUSH : stack El -t stack
INSPEXJT : stack -t (EIIUNDEFINED)
REMOVE : stack -t stack
ISEMPTY: Stack -t Bool

REMOVE(NENSTACK(l~ = NEWSTACK()
REMOVE(PUSH(at,el) = at
INSPECTI N»ISTACK() ~ UNDEFINED
INSPECT PUSH(at,el» = el
ISEMPTY NEWSTACK(» = TRUE
ISEMPTY PUSH(at,el» =""'F'ALSE

Figure 1 Implicit specification of stack

49

This set of axioms is consistent and complete, but how do we
know that this is so? - Guttag has done some ve ry good work in this
area, and has given a method for generating the left hand sides of
the axioms in such a way as to ensure a compl ete set.

There is no implication in th i s specification of a model for
stack implementation, such as a linear list. In contrast, however, we
can give a constructive, or model oriented, specification, as in
Figure 2, where the notation is similar to that Bjo r ner (1979) has
used. The stac k is defined as a sequence of its elements,
concatenating and removing elements from the left hand end of the
sequence . It is easy to see that this models the l ast-in first-out
stack discipline . But is there a danger in introducing such a model?
Has this forced a particular implementation, and hence restricted
your choice as an implementer of stacks?

Stack ~ El*

NEWSTACKO ~ <>
PUSH(st, el) : <el>~9t
INSPECT(st) ~ if st I < >

R»'lOVE(st) ! if st I < >

ISEMPTY(st) ~ st ~ <>

then hd st
clse UNDEFINED

the'n"t l st
el se <>

Figure 2 Constructive specification of stack

The constructive method has the advantage that extend ing
specifications is simpler. Adding a new opera tion is more
straightforward than in t he axiomatic case , or changing the stack
specification to that of a queue is much simpler in the constructive
case.

We can, of course, prove that the constructive model satisfies
the axioms. However, taking one particular implementation as your
specificat ion has its dangers. For example, consider the
specification of Figure 3. This is a constructive specification of a
stack in which use is made of a counter and the head of the stack is
not deleted during a remove operation. The specification displays
what I call implementation bias. It makes the proving of one kind of
implementation simple, but the proving of other implementations is
much more difficult. Thus the text of Figure 3 is not suitable as a
spcification, although it would be an adequate impl ementation .

50

Figure 3

stack2:: El* Nat

NEMSTACK2() ~ « ->, 0 >
PUSH2
INSPECT2 (<at, c» ~ s t (c)
mMOVEZ (<at, c» ~ <s t, o-b
ISEMPTY2(<st, c» ~ c=O

A constructive specification with implementation bias

How can we ensure that we do not construct biased
specifications? One way is to consider possible implementations and
to define retrieve functions. These are related to Hoare's
abstraction functi o n and similar functions used by Milner . The
retrieve functions allow us to map between implementation models, and
in particular betwe e n eac h implementation model and the alleged
specification. Here we can construct

retr-stack: Stack2 ~ Stack

but we can not define

retr-stack2: Stack ~ Stack2

because the implementation of Stack has discarded elements which
Stack2 retains.

Hence a possible bias test i s to examine the feasibility of
retrieve function s for the impl em e ntations under consideration . A
more mathematical test is described i n Jones (1980).

Figure 4 compares the two ki nds of specifications which we have
used . I do not wish to sugg est that constructive methods are always
better than implic i t methods. In Figure 4 I have compared the
corresponding kinds of specification of programming language
semantics. The implicit specification method is good for proving the
properties of programs written in a language, while the constructive
method is good for proving correct an implementation of the language.
I think, therefore, that both kinds of specification have an
important place.

Most of the literature refers t o implicit specification of
abstract data types, so let me r edress the balance a little in favour
of constructive definitions.

51

Implicit or
Property oriented specification

Data
types

Programming
languages

No model - advantage

Operations together
-disadvantage

?

?
Good for using objects
e.g. Stacks

cf. Hoare axioms

Predicate
Transformers

For proofs of programs
written in L

Constructive or
Model oriented specification

"over specification" - disadvant age

Operations separate - advantage

consistent

complete
Good for implementing objects

Denotational/Operational Semantics

For proof of compilers of L

Figure 4 Comparison of implicit and constructive methods of
specification

Figure 5 lists the operations which I will allow on objects of
types set, list, mapping and tree. In the case of sets I have given a
diagram (based on the work of Thatcher, Goguen, et all which shows
the domains and ranges of each of the operations.

52

..

Set s un-

x

Lists

Mappings
~ rng U + (d)

Trees
JlU{- s- < > ::

Figure 5 Basic objects and operations

I will introduce the notion of a state, and state updatin g
operations. Figure 6 s hows th e general form of specifications for
such an operation and an example of the definition of POP as a state
updating operation. I give the name of the operation, the states on
which it is defined, the types of its other arguments and results,
and a precondition and postcondition on the use of this operation .

Figure 6

General form:

OP
states :S
type: D-+R
pre-OP: S D-+Bool
post-OP: S D S R+Bool

Example:

POP
states : Stack
type:-+El
pre-POP (st) ~ st ;, < >
post-POP (st, st ·, el) ~ st· = i!. st 1\

el = hi st

Specification of a state updating operation

53

Consider the definition of Figure 7. This defines a data type
which keeps track of which students have done certain exercises . Here
the state is just two sets of students' names: those who have , and
those who have not, done the exercises. The operation INIT is alway s
applicable and generates a state in which both sets are empty. The
other operation defined here is COMPL which updates the state when a
student completes an exercise. Here we see that the student's name is
moved from one set to the other. This is a constructive specifica tion
because it uses a particular model.

A more data-base oriented example is shown in Figure 8. It is
the familiar parts explosion example. The state is a "bill of
materials" (Bom) which is defined as a mapping. The EXP operation
returns the set of parts which go to make up a given part, eithe r
directly or indirectly. I have used a recursively defined function
expl to simplify this definition. The constructive definition is
trivial for a non-trivial problem. The trick in finding simpl e
specifications is to choose the "correct" data types. This is the
thesis of my forthcoming book (JONES (1980)).

States:

studx :: N: Student-set
y: Student-set

Operations:

INIT
states: Studx
pre-INIT(s) ~ TRUE
post-INIT(s,<n' ,y'» ~ n'

ENROL

COMPL
states: Studx
type: Student-+

{ } I\y' { }

pre-COMPL(<n,y>,nm) ~ run En
post-COMPL(<n,y>,nm,<n',y'» ~ n '=n-{run} 1\ y'=yU{nm}

Figure 7 Students doing exercises

54

' -

'-

States:

Born = Part~Part-set

Operations:

EXP
states: Born
type: Part-+Part-set
post-EXP (born,p,born',ps) 6

born' = born A ps = expl(born,p)

expl(born,p) ~
(p}U uni on (expl(bom,c)! c E bom(p)}

Figure 8 The parts explosion problem

Consider the problem of speoifying the greatest common divisor ,
Figure 9. Here I have defined it as a state updating operation. This
is an unusual but adequate definition of GCD, but is it a good
specification for building a program? Of course not; we know that the
Euclidean algorithm is much better. We would not want to implement
directly the specification of Figure 9, so we must be wary of direct
implementation of specifications and take this as a warning about the
use of abstract data types in programming languages . We must use
specifications for proving implementations, and expect professional
programmers to design reasonable implementations for us.

States:

Sgcd:: X:Nat
Y:Nat

Operations!

GCD
states: Sgcd
post-GCD(<x:,y>,<x:', » ~

x' = maxs (divisors(x)nctivisors(y))

maxs: lnt-set ~ lnt
divisor s(x) ~ (d I x ~ d = O}

Figure 9 Greatest Common Divisor

55

Lecture 2: Theories of data types

We have describ ed the process of specification and now we
proceed towards an implementation. We use a process of refinement . A
more concrete representation, and realisation, of a specification can
be related to that specification by retrieve functions (Figure 10) .
We must consider the consistency of this diagram.

-~ post /

(I J~

~ ~ V

retr r e

pre1 --
~

tr

\v
. t J

post 1

Figure 10 Refinement of a specification

In Figure 11 we define the notion of an invariant on a state,
whi ch restricts a valid state to be a me mber of a subset of all
possible states. Good operations preserve the invariant . Bad
operations do not. The i nvariant for the student-doing-exerci ses
problem is shown in Figure 11. It says that the set of those students
who have done exercises does not overlap wit h the set of those
students who have not done exercises.

56

'.

Invariants form an important part of the documentation of a
specification. They can help with proving implementations, and can
indicate the motivations for certain decisions.

state

bad
'---"'\

Ex:ample:

Students doing Ex:ercises

Studx :: N: Student-set
Y: Student-set

inv-studx(<n,y» ~ n n y ~ (}

Figure 11 Data type invariant

inv

Consider an implementation which gives each student a ' number and
then defines the two properties by a sequence of bits. The retrieve
function whi c h relates this implementation to its specification is
shown in Figure 12. A retrieve function maps the implementation state
to the abstract state. The retrieve function should form a part of
the documentation of the implementation.

57

Specification: State

Representation : State 1

retr-state: State 1-+ State

Exampl e:

Students doing Exercises

Studx :: N: Student-set
Y: Student-set

Studx1 : : NOS : Student -+ Nat
RES : Bool*

retr-studx(<nm,rl» ~
<(n \n E ~ nm A ~ rl(nm(n))},

(n nE ~nm A rl(nm(n))}>

Figure 12 Retrieve functi on for the students problem

Another noti on we need is that of adequacy (Figure 13). This
formulates the notion that for every abstract state there is at least
one implementation state.

In addition, we need to relate t he before and after states at
both the abstract and i mplementation l evels, as shown in Figure 14.

('Is EState)(:;rs1E State1)
(s=retr-state (s1))

With data type invariants :

aa.

abo

(Vs1) (inv1 (s1) ~ (:!Is) (retr-state(s1)=s))A
inv(retr(s1)))

(Vs)(inv(s) ~ (:!Is1)(inv1(s1)As=retr-state(s1)))

Figure 13 Adequacy criteria

58

. '

0 0

' 0

post-OP1 (s1 ,s1 ,) =>

da.

ra.

post-OP(retr(s1),retr(s1'))

(Vs1)(inv1(s1)Apre-OP(retr(s1))
=> pre-OP1 (s1))

(Vs1)(inv1 (s1)Apre-OP1 (s1)A
post-OP1 (s1 , s1')

=> post-OP(retr(s1),retr(s1')))

Figure 14 Relating abstract and implementation levels

Let me summarise what we have achieved so far. We can give two
kinds of specifi cation of an abstract data type, either implicit or
constructive. I have argued that for some purpose the constructive
definition is to be preferred. Such definitions are short, precise
and we do have a test to determine whether or not there is any bias
which over-constrains the implementer. When refining a constructive
specification we find it useful to define an invariant on the state.
In terms of this we can define the notion of the adequacy of an
implementation.

Set Specification
Q,INIT •••

Map to Key

r-------------~I LI ___ Qm __ ,I_N_I_TM ____________ -.

I
Fischer-Galler J LF_,_I_N_IT_F ______ ,

Dijkstra Rem

Figure 15 Recording Equivalence relations

59

Ring
Rm,INITR

I would like to turn now to the problem of avoiding the
repetition of proofs required when small changes are made to a
specification. Let us take a specific example. Figure 15 shows the
relationship between various approaches to the problem of recording
equivalence relations . Can we build up a body of knowledge about
programming this problem which will be useful for others using the
same data structure? In fact we can give constructive specifications
for each of the approaches in Figure 15 and relate these to each
other using t he concepts of refinement.

I will begin at the map- to-key level of specification, because
that will allow me to make the necessary points. Figure 16 defines
the domains and operations at this level. This specification relates
each element to a key. The idea is that equivalent elements map to
the same key. The update operation EQUATEM records a new equivalence
and the equivalences recorded in the state are examined using the
operation TESTM. Figure 17 shows a worked example of adding five
relationships and then testing them. You see that the specification
properly implements symmetry, reflexivity and transitivity. The
specification of Figure 16 would be an adequate implementation if we
had a sufficiently high-level language, but it is not by any standard
an efficient algorithm. The Fischer-Galler algorithm gives us a very
cunning way of recording the key mappings which leads to a more
efficient implementation.

Qm = EI-+Key
invm(qm) ~ ~ qm EI

(>.
= dom qm ' = El II

INITM
post-INITM(,qm')

e1 ;, e2 .. qm' (e 1) ;, qm' (e2)

EQUATEM
type:El El -+
post-EQUATEM(qm , e1, e2 , qm ,)g

qm' = qm t [e ... qm(e1) I qm(e) =

TESTM
type: El El -+ Bool
post-TESTM(qm, e1, e2 , qm ',b) ~

(b # qm(e1)=qm(e2))lIqm'=qm

qm(e2)]

Figure 16 Map-to- key specification

60

--

"

-.

El = {a,b,c,d,e,f} Key = {ka, .•• }
INITMO = [a -+ ka,b-+kb , ,f->kf] =m1
EQUATEM(a,b)(m1) = [a-+ka,b-+ka,c-+kc, ... ,f-+kf] =m2
EQUATEM(b,a)(m2) =m2
EQUATEM~b, c) (m2) = r,...ka, b-+ka, c-+ka, d-+kd, ••• ,f-+kf] =m3
EQUATEM e,f)(m3) = [,...ka ,b-+ka,c-+ka,d-+kd,e-+ke,f-+ke] =m4
EQUATEM a ,f)(m4) = [,...ka ,b-+ka,c-+ka,d-+kd ,e-+ka,f-+ka] =m5

TESl'(b,a) = ~
TEST(d,d) = TRUE
TEST(f,d) = FALSE

Figure 17 Map-to-key example

The idea behind this algorithm is shown in Figure 18. The
elements are organised into a tree in such a way that we can regard
the root of the element as that element's key. Both updating and
retrieving of this representation are very efficient.

m4 represented by:

d:>

a 0-> f
/" "ka"

bo-> f
c f
dO-> d
e f
fH f

Figure 18 Fischer-Galler algorithm

61

Before defining the Fishe r - Galler algorithm I develop the not ion
of a forest, Figure 19. A forest is a mapping fro m elements t o
elements which satisfies the invariant invf. Four useful operations
are defined. Some properties of a forest are shown in Figure 20. The
first says that a forest is a disjoint partition of the contained
elements. The second concerns grafting two trees in a forest. When a
tree is grafted a t a root, the property o f being a forest is
retained. With these properties the proof of the Fischer-Galler
algorithm becomes not only simpler but much more int uitive .
Furthermore, the collection of properties can be built into an
"Engineering Handbook" for use with other problems.

F = El->El

i nvf (f) ~ dom f = El A
-rYe) (i s-root(e ,f)V

e ~reach(f(e), f »
i s-root(e , f) ~ f (e) = e
r each: El F -> El- set

root(e ,f) e i f is-root(e , f) then e
el se root (f (e), f;---

coller.t(f,r) ~
(el e E ~ f A root(e , f)=r}

F1

F3

Figure 19 Forests

for invf(f)Ai s- root(r 1,f)Ais-root(r2,f):
r1/r2 ~ col lect(f ,r1)ncollect(f , r2)= {}

f or invf(f) Ad , e ,E El:
i s-root (e , f) ~ invr-(f t [d ... e])

Fi gure 20 Forest properties

Mr. Jones did not have time to complete his development of the
Fischer-Galler algori thm in the lecture. The definitions and an
example are, however , shown in Figures 21 and 22.

62

.'

.'

INITF
states : F
post-INITF(, f')~f ' = [e e le E El]

EQUATEF
s t at es : F
t ype : El El-+
Post-EQUATEF(f, e1, e2,f')~

f ' =f + [root (e1, f) -+ root (e2 ,f)]

TESTF
states : F
type : El El -+ Bool
post-TESTF(f , e1 , e2 , f ' , b) ~

(b# r oot(e1, f)=r oot(e2 ,f»Af'=f

Figure 21 Definitions for the Fisher-Galler algorithm

INITFO = [?-+a , b-+b, ... , f-+f]
EQUATEF(a,b)(f 1)=[arib,b-tb,C-+c, ••• , f-+f]
EQUATEF(b, a)(f 2)= f2
EQUATEF(b,c)(f2)=[a-+b,b-tc ,C-+c, ••• ,f-+f}
EQUATEF(e , f)(f 3)=[a-+b,b-tc , C-+c, ••• ,e-.f,f-+f]

TESTF(d, d) f 4) = TRUE
TESTF(b , a)~f4) = TRUE

TESTF(f,d) f 4) = FALSE

=f1
=f2

=f3
=f4

Figure 22 Example of the Fischer-Galler algorithm

The concepts of the cons tructive theories of data types are
beginning to give us tools with which we can construct programs and
proofs where the proofs can be modified along with the program. They
do not have to be thrown away whenever the program is changed.

A col lection of the properties of data stuctures enables a
higher level of discussion during proofs of algorithms, and from an
educati ona l viewpoint it would be beneficial to encourage students to
explore and collect such properties.

63

Discussion

Dr. Scoins pointed out that Mr . Jones appeared to have
'specified ordered trees and not distinguished these from unordered
trees', and that this might make certain operations unnecessarily
difficult. Mr. Jones agreed that he had probably tackled the
definitions wrongly. 'The characterisation of trees I have given in
the paper is of ordered trees. I should rather have developed a
specification of unordered trees and then specialised them, thus
bringing in more useful properties!'

References

Bjorner, D. (1979)

Jones, C.B. (1980)

Additional mat erial

Bjor ne r , D. (1978)

Jones, C. B. (1979)

These proceedings.

Software Development: A rigorous approach.
Prentice-Hall International .

The Vienna Deve l opment Met h od: Th e
Meta-Language, Springer-Verlag 'Lecture
notes in Computer Science', Vol. 61, 1978.

Constructing a Theory of a Data Structure
as an Aid to Program Development, Acta
Informatica, Vol. 11 , pp. 11 9- 137, 1979.

64

