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Abstract: 

Work on pro ving progra.s correct has reached a fairly 
sophistioated stage for programs of a numerical nature. This work has 
also bee'n carried into rigorous program develoPlllent. Many people are 
interested in extending this work into the data prooessing area, as 
an advanoed software develoPlllent' tool, and I consider that the key to 
doing this is a proper for.ulation of the notion of abstract data 
types . In these leotures I shall concentrate on the formulation of 
specifications of the sortWIU'tl which is to be bull t. I wish also to 
show how to construct a body of knowledge about data types which will 
be useful for many applications. 

Lecture 1: Method of speCifying data types 

Fi«ure 1 shows the "factorial" of abst ract data types; this is 
the stack example. Here the method of description is algebraic, or 
axiomatic. It is an implicit, or property oriented, method. The first 
five lines of the figure are the syntactic part of the definition, 
showing the operations which are available, and giving the domains 
and ranges of each of the operations . The remaining six lines of the 
figure are the semantic part which defines a last-in first - out stack 
discipline by interrelating the available operations. The use of the 
UNDEFINED element has made INSPECT a total function. 

NE)/STACK: , -t stack 
PUSH : stack El -t stack 
INSPEXJT : stack -t (EIIUNDEFINED) 
REMOVE : stack -t stack 
ISEMPTY: Stack -t Bool 

REMOVE(NENSTACK(l~ = NEWSTACK() 
REMOVE(PUSH(at,el ) = at 
INSPECTI N»ISTACK( ) ~ UNDEFINED 
INSPECT PUSH(at,el» = el 
ISEMPTY NEWSTACK(» = TRUE 
ISEMPTY PUSH(at,el» =""'F'ALSE 

Figure 1 Implicit specification of stack 
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This set of axioms is consistent and complete, but how do we 
know that this is so? - Guttag has done some ve ry good work in this 
area, and has given a method for generating the left hand sides of 
the axioms in such a way as to ensure a compl ete set. 

There is no implication in th i s specification of a model for 
stack implementation, such as a linear list. In contrast, however, we 
can give a constructive, or model oriented, specification, as in 
Figure 2, where the notation is similar to that Bjo r ner (1979) has 
used. The stac k is defined as a sequence of its elements, 
concatenating and removing elements from the left hand end of the 
sequence . It is easy to see that this models the l ast-in first-out 
stack discipline . But is there a danger in introducing such a model? 
Has this forced a particular implementation, and hence restricted 
your choice as an implementer of stacks? 

Stack ~ El* 

NEWSTACKO ~ <> 
PUSH(st, el) : <el>~9t 
INSPECT(st) ~ if st I < > 

R»'lOVE(st ) ! if st I < > 

ISEMPTY(st) ~ st ~ <> 

then hd st 
clse UNDEFINED 

the'n"t l st 
el se <> 

Figure 2 Constructive specification of stack 

The constructive method has the advantage that extend ing 
specifications is simpler. Adding a new opera tion is more 
straightforward than in t he axiomatic case , or changing the stack 
specification to that of a queue is much simpler in the constructive 
case. 

We can, of course, prove that the constructive model satisfies 
the axioms. However, taking one particular implementation as your 
specificat ion has its dangers. For example, consider the 
specification of Figure 3. This is a constructive specification of a 
stack in which use is made of a counter and the head of the stack is 
not deleted during a remove operation. The specification displays 
what I call implementation bias. It makes the proving of one kind of 
implementation simple, but the proving of other implementations is 
much more difficult. Thus the text of Figure 3 is not suitable as a 
spcification, although it would be an adequate impl ementation . 
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Figure 3 

stack2:: El* Nat 

NEMSTACK2() ~ « ->, 0 > 
PUSH2 
INSPECT2 (<at, c» ~ s t ( c ) 
mMOVEZ (<at, c» ~ <s t, o-b 
ISEMPTY2(<st, c» ~ c=O 

A constructive specification with implementation bias 

How can we ensure that we do not construct biased 
specifications? One way is to consider possible implementations and 
to define retrieve functions. These are related to Hoare's 
abstraction functi o n and similar functions used by Milner . The 
retrieve functions allow us to map between implementation models, and 
in particular betwe e n eac h implementation model and the alleged 
specification. Here we can construct 

retr-stack: Stack2 ~ Stack 

but we can not define 

retr-stack2: Stack ~ Stack2 

because the implementation of Stack has discarded elements which 
Stack2 retains. 

Hence a possible bias test i s to examine the feasibility of 
retrieve function s for the impl em e ntations under consideration . A 
more mathematical test is described i n Jones (1980). 

Figure 4 compares the two ki nds of specifications which we have 
used . I do not wish to sugg est that constructive methods are always 
better than implic i t methods. In Figure 4 I have compared the 
corresponding kinds of specification of programming language 
semantics. The implicit specification method is good for proving the 
properties of programs written in a language, while the constructive 
method is good for proving correct an implementation of the language. 
I think, therefore, that both kinds of specification have an 
important place. 

Most of the literature refers t o implicit specification of 
abstract data types, so let me r edress the balance a little in favour 
of constructive definitions. 
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Implicit or 
Property oriented specification 

Data 
types 

Programming 
languages 

No model - advantage 

Operations together 
-disadvantage 

? 

? 
Good for using objects 
e.g. Stacks 

cf. Hoare axioms 

Predicate 
Transformers 

For proofs of programs 
written in L 

Constructive or 
Model oriented specification 

"over specification" - disadvant age 

Operations separate - advantage 

consistent 

complete 
Good for implementing objects 

Denotational/Operational Semantics 

For proof of compilers of L 

Figure 4 Comparison of implicit and constructive methods of 
specification 

Figure 5 lists the operations which I will allow on objects of 
types set, list, mapping and tree. In the case of sets I have given a 
diagram (based on the work of Thatcher, Goguen, et all which shows 
the domains and ranges of each of the operations. 
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Set s un-

x 

Lists 

Mappings 
~ rng U + (d) 

Trees 
JlU{- s- < > :: 

Figure 5 Basic objects and operations 

I will introduce the notion of a state, and state updatin g 
operations. Figure 6 s hows th e general form of specifications for 
such an operation and an example of the definition of POP as a state 
updating operation. I give the name of the operation, the states on 
which it is defined, the types of its other arguments and results, 
and a precondition and postcondition on the use of this operation . 

Figure 6 

General form: 

OP 
states :S 
type: D-+R 
pre-OP: S D-+Bool 
post-OP: S D S R+Bool 

Example: 

POP 
states : Stack 
type:-+El 
pre-POP (st) ~ st ;, < > 
post-POP (st, st ·, el ) ~ st· = i!. st 1\ 

el = hi st 

Specification of a state updating operation 
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Consider the definition of Figure 7. This defines a data type 
which keeps track of which students have done certain exercises . Here 
the state is just two sets of students' names: those who have , and 
those who have not, done the exercises. The operation INIT is alway s 
applicable and generates a state in which both sets are empty. The 
other operation defined here is COMPL which updates the state when a 
student completes an exercise. Here we see that the student's name is 
moved from one set to the other. This is a constructive specifica tion 
because it uses a particular model. 

A more data-base oriented example is shown in Figure 8. It is 
the familiar parts explosion example. The state is a "bill of 
materials" (Bom) which is defined as a mapping. The EXP operation 
returns the set of parts which go to make up a given part, eithe r 
directly or indirectly. I have used a recursively defined function 
expl to simplify this definition. The constructive definition is 
trivial for a non-trivial problem. The trick in finding simpl e 
specifications is to choose the "correct" data types. This is the 
thesis of my forthcoming book (JONES (1980)). 

States: 

studx :: N: Student-set 
y: Student-set 

Operations: 

INIT 
states: Studx 
pre-INIT( s ) ~ TRUE 
post-INIT(s,<n' ,y'» ~ n' 

ENROL 

COMPL 
states: Studx 
type: Student-+ 

{ } I\y' { } 

pre-COMPL(<n,y>,nm) ~ run En 
post-COMPL(<n,y>,nm,<n',y'» ~ n '=n-{run} 1\ y'=yU{nm} 

Figure 7 Students doing exercises 
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States: 

Born = Part~Part-set 

Operations: 

EXP 
states: Born 
type: Part-+Part-set 
post-EXP (born,p,born',ps) 6 

born' = born A ps = expl(born,p ) 

expl(born,p) ~ 
(p}U uni on (expl(bom,c )! c E bom(p)} 

Figure 8 The parts explosion problem 

Consider the problem of speoifying the greatest common divisor , 
Figure 9. Here I have defined it as a state updating operation. This 
is an unusual but adequate definition of GCD, but is it a good 
specification for building a program? Of course not; we know that the 
Euclidean algorithm is much better. We would not want to implement 
directly the specification of Figure 9, so we must be wary of direct 
implementation of specifications and take this as a warning about the 
use of abstract data types in programming languages . We must use 
specifications for proving implementations, and expect professional 
programmers to design reasonable implementations for us. 

States: 

Sgcd:: X:Nat 
Y:Nat 

Operations! 

GCD 
states: Sgcd 
post-GCD(<x:,y>,<x:', » ~ 

x' = maxs (divisors(x)nctivisors(y)) 

maxs: lnt-set ~ lnt 
divisor s(x ) ~ (d I x ~ d = O} 

Figure 9 Greatest Common Divisor 
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Lecture 2: Theories of data types 

We have describ ed the process of specification and now we 
proceed towards an implementation. We use a process of refinement . A 
more concrete representation, and realisation, of a specification can 
be related to that specification by retrieve functions (Figure 10 ) . 
We must consider the consistency of this diagram. 

-~ post / 

( I J~ 

~ ~ V 

retr r e 

pre1 --
~ 

tr 

\v 
. t J 

post 1 

----

Figure 10 Refinement of a specification 

In Figure 11 we define the notion of an invariant on a state, 
whi ch restricts a valid state to be a me mber of a subset of all 
possible states. Good operations preserve the invariant . Bad 
operations do not. The i nvariant for the student-doing-exerci ses 
problem is shown in Figure 11. It says that the set of those students 
who have done exercises does not overlap wit h the set of those 
students who have not done exercises. 
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Invariants form an important part of the documentation of a 
specification. They can help with proving implementations, and can 
indicate the motivations for certain decisions. 

state 

bad 
'---"'\ 

Ex:ample: 

Students doing Ex:ercises 

Studx :: N: Student-set 
Y: Student-set 

inv-studx(<n,y» ~ n n y ~ (} 

Figure 11 Data type invariant 

inv 

Consider an implementation which gives each student a ' number and 
then defines the two properties by a sequence of bits. The retrieve 
function whi c h relates this implementation to its specification is 
shown in Figure 12. A retrieve function maps the implementation state 
to the abstract state. The retrieve function should form a part of 
the documentation of the implementation. 
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Specification: State 

Representation : State 1 

retr-state: State 1-+ State 

Exampl e: 

Students doing Exercises 

Studx :: N: Student-set 
Y: Student-set 

Studx1 : : NOS : Student -+ Nat 
RES : Bool* 

retr-studx(<nm,rl» ~ 
<(n \n E ~ nm A ~ rl(nm(n ))}, 

(n nE ~nm A rl(nm(n ))}> 

Figure 12 Retrieve functi on for the students problem 

Another noti on we need is that of adequacy (Figure 13). This 
formulates the notion that for every abstract state there is at least 
one implementation state. 

In addition, we need to relate t he before and after states at 
both the abstract and i mplementation l evels, as shown in Figure 14. 

('Is EState )( :;rs1E State1) 
(s=retr-state ( s1 )) 

With data type invariants : 

aa. 

abo 

(Vs1 ) (inv1 (s1 ) ~ ( :!Is) (retr-state( s1 )=s ) )A 
inv(retr( s1 ))) 

(Vs)(inv(s) ~ (:!Is1 )(inv1( s1)As=retr-state(s1))) 

Figure 13 Adequacy criteria 
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0 0 

' 0 

post-OP1 (s1 ,s1 ,) => 

da. 

ra. 

post-OP(retr(s1 ),retr(s1')) 

(Vs1)(inv1(s1 )Apre-OP(retr(s1)) 
=> pre-OP1 (s1 )) 

(Vs1 )(inv1 (s1 )Apre-OP1 (s1 )A 
post-OP1 (s1 , s1') 

=> post-OP(retr(s1 ),retr(s1'))) 

Figure 14 Relating abstract and implementation levels 

Let me summarise what we have achieved so far. We can give two 
kinds of specifi cation of an abstract data type, either implicit or 
constructive. I have argued that for some purpose the constructive 
definition is to be preferred. Such definitions are short, precise 
and we do have a test to determine whether or not there is any bias 
which over-constrains the implementer. When refining a constructive 
specification we find it useful to define an invariant on the state. 
In terms of this we can define the notion of the adequacy of an 
implementation. 

Set Specification 
Q,INIT ••• 

Map to Key 

r-------------~I LI ___ Qm __ ,I_N_I_TM ____________ -. 

I 
Fischer-Galler J LF_,_I_N_IT_F ______ , 

Dijkstra Rem 

Figure 15 Recording Equivalence relations 
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I would like to turn now to the problem of avoiding the 
repetition of proofs required when small changes are made to a 
specification. Let us take a specific example. Figure 15 shows the 
relationship between various approaches to the problem of recording 
equivalence relations . Can we build up a body of knowledge about 
programming this problem which will be useful for others using the 
same data structure? In fact we can give constructive specifications 
for each of the approaches in Figure 15 and relate these to each 
other using t he concepts of refinement. 

I will begin at the map- to-key level of specification, because 
that will allow me to make the necessary points. Figure 16 defines 
the domains and operations at this level. This specification relates 
each element to a key. The idea is that equivalent elements map to 
the same key. The update operation EQUATEM records a new equivalence 
and the equivalences recorded in the state are examined using the 
operation TESTM. Figure 17 shows a worked example of adding five 
relationships and then testing them. You see that the specification 
properly implements symmetry, reflexivity and transitivity. The 
specification of Figure 16 would be an adequate implementation if we 
had a sufficiently high-level language, but it is not by any standard 
an efficient algorithm. The Fischer-Galler algorithm gives us a very 
cunning way of recording the key mappings which leads to a more 
efficient implementation. 

Qm = EI-+Key 
invm(qm) ~ ~ qm EI 

(>. 
= dom qm ' = El II 

INITM 
post-INITM(,qm') 

e1 ;, e2 .. qm' ( e 1 ) ;, qm' ( e2 ) 

EQUATEM 
type:El El -+ 
post-EQUATEM(qm , e1, e2 , qm ,)g 

qm' = qm t [e ... qm(e1) I qm(e) = 

TESTM 
type: El El -+ Bool 
post-TESTM(qm, e1, e2 , qm ',b) ~ 

(b # qm(e1)=qm(e2))lIqm'=qm 

qm(e2)] 

Figure 16 Map-to- key specification 
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El = {a,b,c,d,e,f} Key = {ka, .•• } 
INITMO = [a -+ ka,b-+kb , .... ,f->kf] =m1 
EQUATEM(a,b)(m1) = [a-+ka,b-+ka,c-+kc, ... ,f-+kf] =m2 
EQUATEM(b,a)(m2) =m2 
EQUATEM~b, c) (m2) = r,...ka, b-+ka, c-+ka, d-+kd, ••• ,f-+kf] =m3 
EQUATEM e,f )(m3 ) = [,...ka ,b-+ka,c-+ka,d-+kd,e-+ke,f-+ke] =m4 
EQUATEM a ,f)(m4) = [,...ka ,b-+ka,c-+ka,d-+kd ,e-+ka,f-+ka] =m5 

TESl'(b,a) = ~ 
TEST(d,d) = TRUE 
TEST(f,d) = FALSE 

Figure 17 Map-to-key example 

The idea behind this algorithm is shown in Figure 18. The 
elements are organised into a tree in such a way that we can regard 
the root of the element as that element's key. Both updating and 
retrieving of this representation are very efficient. 

m4 represented by: 

d:> 

a 0-> f 
/" "ka" 

bo-> f 
c .... f 
dO-> d 
e .... f 
fH f 

Figure 18 Fischer-Galler algorithm 
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Before defining the Fishe r - Galler algorithm I develop the not ion 
of a forest, Figure 19. A forest is a mapping fro m elements t o 
elements which satisfies the invariant invf. Four useful operations 
are defined. Some properties of a forest are shown in Figure 20. The 
first says that a forest is a disjoint partition of the contained 
elements. The second concerns grafting two trees in a forest. When a 
tree is grafted a t a root, the property o f being a forest is 
retained. With these properties the proof of the Fischer-Galler 
algorithm becomes not only simpler but much more int uitive . 
Furthermore, the collection of properties can be built into an 
"Engineering Handbook" for use with other problems. 

F = El->El 

i nvf (f ) ~ dom f = El A 
-rYe ) (i s-root( e ,f)V 

e ~reach(f( e ), f » 
i s-root( e , f ) ~ f ( e ) = e 
r each: El F -> El- set 

root( e ,f) e i f is-root( e , f ) then e 
el se root (f ( e ), f;---

coller.t(f,r) ~ 
(el e E ~ f A root( e , f )=r} 

F1 

F3 

Figure 19 Forests 

for invf( f )Ai s- root( r 1,f )Ais-root(r2,f): 
r1/r2 ~ col lect( f ,r1)ncollect( f , r2)= {} 

f or invf( f ) Ad , e ,E El: 
i s-root ( e , f ) ~ invr-(f t [d ... e ]) 

Fi gure 20 Forest properties 

Mr. Jones did not have time to complete his development of the 
Fischer-Galler algori thm in the lecture. The definitions and an 
example are, however , shown in Figures 21 and 22. 
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INITF 
states : F 
post-INITF(, f' )~f ' = [e .... e le E El] 

EQUATEF 
s t at es : F 
t ype : El El-+ 
Post-EQUATEF(f, e1, e2,f')~ 

f ' =f + [root ( e1, f ) -+ root (e2 ,f)] 

TESTF 
states : F 
type : El El -+ Bool 
post-TESTF( f , e1 , e2 , f ' , b) ~ 

(b# r oot( e1, f )=r oot(e2 ,f»Af'=f 

Figure 21 Definitions for the Fisher-Galler algorithm 

INITFO = [?-+a , b-+b, ... , f-+f] 
EQUATEF(a,b)( f 1 )=[arib,b-tb,C-+c, ••• , f-+f ] 
EQUATEF(b, a )( f 2)= f2 
EQUATEF(b,c)(f2)=[a-+b,b-tc ,C-+c, ••• ,f-+f} 
EQUATEF( e , f)( f 3 )=[a-+b,b-tc , C-+c, ••• ,e-.f,f-+f] 

TESTF(d, d ) f 4 ) = TRUE 
TESTF(b , a)~f4) = TRUE 

TESTF(f,d) f 4) = FALSE 

=f1 
=f2 

=f3 
=f4 

Figure 22 Example of the Fischer-Galler algorithm 

The concepts of the cons tructive theories of data types are 
beginning to give us tools with which we can construct programs and 
proofs where the proofs can be modified along with the program. They 
do not have to be thrown away whenever the program is changed. 

A col lection of the properties of data stuctures enables a 
higher level of discussion during proofs of algorithms, and from an 
educati ona l viewpoint it would be beneficial to encourage students to 
explore and collect such properties. 
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Discussion 

Dr. Scoins pointed out that Mr . Jones appeared to have 
'specified ordered trees and not distinguished these from unordered 
trees', and that this might make certain operations unnecessarily 
difficult. Mr. Jones agreed that he had probably tackled the 
definitions wrongly. 'The characterisation of trees I have given in 
the paper is of ordered trees. I should rather have developed a 
specification of unordered trees and then specialised them, thus 
bringing in more useful properties!' 
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