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Abstract

This lecture focuses on the application of software engineering
techniques for the development of data base systems. It is aimed to
explain a key concept in software engineering - the module or
abstract data type concept - and to demonstrate its usefulness in
data base system structuring and design. The concept is shown to
provide a basis for the development of a uniform framework, called
D-Graph, for the structuring of the data base, its conceptual
description and of the data base management system.

1. Introduction

Data base systems, as with any other kinds of software systems,
are expensive to produce and maintain, and usually of low quality. In
a great number of empiric studies the lack of a rational software
technology has been identified as the main reason for this so-called
software dilemma. Thus, the identification and formulation of
fundamental principles for the development of software systems in
general, and for the production of data base systems as well, are now
of growing interest.

Due to the very well-known human limitations in dealing with
complexity, both the complexity of the system development task, and
the complexity of the system itself, are considered to be accountable
for the difficulties in the development of large or even rather
small, software systems. In order to manage these complexities,
technologies are now available, or are under development, which
impose a discipline on software production and structuring.

A programming concept central to the discussion about a software
technology for a number of years =frequently termed module or
abstract data-type is considered to be the base for a solution of the
principal problem mentioned above (PAR T1, PAR 72, PAR T4, LIS T4,
LIS 77, WIR 77, WUL 76). Consequently, this paper is aimed at
explaining this concept and demonstrating the impact of its use in
data base system development.

2. The Module Concept

The recent history in programming has proven that the language
used to formulate programs influence the style of programming and
consequently the structure of the programs. It is therefore assumed
that choosing the right language features may also encourage good
programming. The module concept explained below is considered to
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support the production of well-structured, reliable, robust and
verifiably correct programs. The concept will be introduced here step
by step. For that purpose, we first give a definition of the concept
in BNF notation (for those readers who find descriptions in a meta
language more comprehensible) and explain then its characteristics
and advantages with a simple but nontrivial example (for those
readers who prefer a more informal explanation of the subject) in a
number of iterations.

2.1 Basic Defintions

In a first iteration the module concept may be defined as
follows:

(module ) ::= (interface) (body)

(interface)::= module (module identifier) (operator list)
(body ) $i= beg1n (data definition){(procedure definition); 1

(The curly braces are used to denote none or more repetions of the
enclosed concepts.) According to this definition, a module consists
of two parts: an interface and a body. The interface contains a set
of identifiers which may be referenced to gain access to the body of
the module. The body is a program in a suitable programming language.

A sample module definition using a high-level language notation
would then take the following format.

module FLIGHTSCHEDULE (op1,0p2,---.op )
beg& modulebody “

end modul ebody

This definition introduces a module called FLIGHTSCHEDULE. It is
worth noting here that the module is named after a certain sort of
data, thus indicating that the module has been designed to be invoked
for the creation and manipulation of data objects of this sort. The
interface of the module identifies, therefore, this sort of data, and
all the operations applicable on those data. Since the text of the
module body is not of interest for the following discussion, we will
ignore it for the moment.

A number of terms closely related to this notion of module, and
equally important, for the understanding and further explanation of
the module concept will be defined now in an informal way.

The desired relationship between all legal inputs and the

possible outputs of all the operations of a module will be called the
functions of the module.
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‘{operator symbol) ::

The specification of a module is an implementation-independent
description of the functions of that module.

The implementation of a module -~ its body - is the program text
for the data definition part (denoting the implementation of the sort
of data pertinent to that module), and for all the procedure
definitions (denoting the implementation of the operations pertinent
to that module).

A program consists of an arbitrary number of module definitions,
as explained above, and an arbitrary number of statements each
referencing a certain module and one operation defined in that
module.

A process denotes the execution of module operations for an
appropriate set of input parameters.

2.2 The Definition of a Module Interface

In a next refinement step we will first complete the definition
of a module interface. Starting from the previous definition the more
detailed description of the interface may then be given as follows:

{operator list) ::= ({operator symbol)[{parameter list)]
{, (operator symbol)[Kparameter list )] 1 )
{parameter symbol){, (parameter symbol)]

CHARACTER STRING
CHARACTER STRING
= CHARACTER STRING

it

{(parameter list)  ::

{module identifier)

{(parameter symbol)

According to this definition each of the n legal operations on
the sort of data identified in the interface gets a set of k
parameters associated with it. For the execution of an operation the
k parameters declared for this operation need to be passed to the
module.

The example introduced in the previous section will be used to
explain this feature.

module FLIGHTSCHEDULE (create—schedule [id],
search—-flight [id, f#],
schedule=flight [id, f#, dest, st=t],
cancel-flight [id, f#1);

This interface identifies the FLIGHTSCHEDULE sort of data and
four operations on it. It is the funection of the create-schedule
operation to create a data object of the sort FLIGHTSCHEDULE. For its
execution the parameter "id" denoting the data object's identifier
must be passed to the module in an operation call.
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The function of the search-flight operation is to access and
display a flight identified by a certain flight number f# which is
assumed to be recorded within a flightschedule data object with
identifier id. With the schedulflight operation one may record a new
flight, that is, the flight number, f#, the destination, dest, and
the start time, st-t, within the flightschedule data object id.
Finally, with the cancel-flight operation one may delete the entry
identified by f# in the flightschedule data object id.

It is obvious now that a module may be used to create and
manipulate an arbitrary number of data objects with different
identifiers. Since the implementation and consequently the function
of the operations will be the same for all objects, a module may be
considered as a template for the creation and manipulation of data
objects which exhibit exactly the same properties.

Because of this characteristic, the module concept closely
resembles the data type concept in high-level programming languages:
A variable denoting a data object may be declared to be of a certain
type thus determining the properties of the object, that is, its
possible manipulations. The type implementation is part of the
compiler and hidden for its users. Because of these similarities the
module concept is also frequently called abstract data type concept.

The term type will therfore be used in the sequel to denote the
properties of a data object and also to refer to the module which
implements the operations for the creation and possible manipulation
of all objects of a given type.

2.3 The Definition of a Module Body

The module body contains the implementation of the so-called
abstract objects and abstract operations as identified in the
interface of the module. For the implementation of abstract objects
and operations they need to be represented in terms of
machine-supported data objects of so-called representing type, and
operations on objects of representing type. Data objects and
operations of representing types may be either primitive machine
types or compositions of private type.

Thus, the data definition part will be expressed in BNF notation
as follows:

(data definition) 2:= rep as {constructor) of (module identifier)

{constructor) ::= CHARACTER STRING
{module identifier)::= CHARACTER STRING
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The term "constructor™ in the defintion above denotes a
structuring concept which is applied to compose objects of
representing type from objects of component type. This composition of
the representing types from component types (or from one component
type) is defined in a module which implements the representing type.
Thus, the term constructor refers to a certain type which is called
the representing type. Data and operations of an abstract type as
identified in a module interface are then implemented in terms of
objects and operations of the (machine-supported) representing type
which defines at the same time, a composition of component types. For
the previously introduced example the data definition may have the
following format:

module FLIGHTSCHEDULE (create~schedule[idJyess)
rep as FILE of FS~RECORD

A data object of type FLIGHTSCHEDULE is represented by an object
of the type FILES which in turn is composed - in a way defined in a
FILE module - of a number of objects of type FS-RECORD. Thus the
implementation of the types FILE and FS-RECORD is a prerequisite for
the implementation of the type FLIGHTSCHEDULE.

The procedure definition part expressed in BNF will be given as
follows:

{(procedure definition)::
(procedure head)
{result)

{data object)
{procedure body)
(statement )

roc {procedure head){procedure body)

operator symbol)g(parameter list ) ]=> {(result)
(data object) |BOOLEAN

{object identifier):{module identifier)’

[(statement);}n

(operation call)|(conditional statement) |

(unconditional statement)|{for statement)

(operation call) ::= (module identifier). {(operator symbol)

[{parameter list)]

I

se ss o2 se s
e .e
||

*s g9 ae

nou

(The remaining undefined nonterminal symbols in this grammar have
either been defined before or should be understood as in the
definition of a high-level language like ALGOL 60.)

An abstract operation is implemented by a procedure which
performs operations on objects of representing type. Thus, one may
include calls of operations on objects of representing type - as
defined in the module for the representing type - within this
procedure.

On the basis of these definitions and based on the assumption
that a data type FILE (create file, search record, insert record,
delete record) has already been defined, one may now give a complete
program text for the FLIGHTSHEDULE module in the following form:
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module FLIGHTSCHEDULE (create-schedule [id],
search-f'light [id, f#7],
schedule-flight [id, f#, dest, st—t],
cancel-flight [id, f#]),

begin
rep as FILE of FS-RECORD

proc create—-schedule [id ]=—» id:FLIGHTSCHEDULE;
1d:FILE:=FILE. create-file [07];
end create—schedule;

proc search-flight [id, f#]—> BOOLEAN;
i.LE. search—record [id, f#];

proc cancel-flight [id, f#]—> id:FLIGHTSCHEDULE;
FILE. delete-record [id, f#7J;
end cancel~flight;

proc schedule~flight [id, f#, dest, st~t]—) id FLIGHTSCHEDULE,
FILE.insert-record [id, f#, dest, st-t7];
end cancel=flight;

end module

Each of the procedures pertinent to the FLIGHTSCHEDULE module
encloses a call of an operation of the FILE module. Assuming all the
called FILE operations are already implemented the FLIGHTSCHEDULE
module may be executed and is then implemented as well.

e Basic Characteristics of Modules

This "data driven" module definition is rather different from
the more intuitive use of the term module in today's programming
practice. It will, however, be shown throughout the rest of the paper
that this notion seems to be adequate to overcome a great number of
today's programming problems.

3.1 The Abstraction Principle

Among other reasons, the module concept has been defined this
way to support the rather distinctive requirements of module users
‘(application programmers) and module implementors (systems
programmers).

It is the user's interest to employ the module concept to
construct programs. Provided he knows the function of a previously
defined module, only the interface, which contains all the
information necessary to make proper use of the module, must be
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visible to him. The details of the module implementation contained in
its body would be an unnecessary burden and will remain hidden.

The module implementor on the other hand is responsible for an
implementation in accordance to a given specification of the
functions of the module. This partitioning of information according
to a certain need to know, that is, the retention of the essential
information for a certain purpose and the suppression of inessential
details, is considered to be the key concept to master the complexity
in information handling and is usually called the abstraction
principle:

(An Aside in Specifications:

In both cases an implementation-independent specification of the
functions of a module is necessary. The module user needs the
specification to make sure the employed module has the intended
functions and the module implementor uses the specification to
implement this function in a complete and correct manner.
Consequently, an implementation-independent specification of the
functions of a module is an essential part of the module concept. It
would, of course, be the ultimate goal to make the specification of
the function of a module a part of the interface which can be checked
automatically to ensure the proper use of the module. Since a concept
for the computer representation and interpretation of function
specifications does not exist at the moment, we will consider them as
aside from the module.

End of Aside.)

The concept is not new in programming. All high-level languages,
for example, provide means to declare and initialise data without
forcing the programmer to assign data to specific memory locations.
This feature helps reducing the commplexity of the programmers' task
by hiding the memory allocation details in the languuage processing
system.

Another very well-known abstraction mechanism supported in many
high-level programming languages is the procedure concept. A
procedure is designed to display its function to its users and to
hide the implementation of this function. It is therefore considered
as a suitable mechanism for a functional or procedural abstraction.

The data-oriented module concept defined above - as will be
shown in the next section - is a generalisation of the known
abstraction mechanisms. It is designed to display to its users the
essential information on how to use a certain sort of data, and to
hide the information on how those data are internally represented and
manipulated. Hence, it provides a general data abstraction mechanism.
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3.2 The Locality Principle

After the detailed definition of a module implementation in the
preceding section, we are now ready to identify another basic
priciple underlying the module concept. Obviously, operations and
data are closely related to each other in the module concept. Each
data object may be manipulated by only a certain predefined set of
operations. Data not associated to a certain module but rather global
to a number of modules do not exist. Thus, logical relationships
between modules based on the shared use of global data cannot occur.
The module concept also prohibits a module to refer to data declared
in the body of another module, one module to branch into the body of
another module, and one module to modify program statements within
another module,

Hence, a module behaves like a self-contained entity which
cannol. cause non-local effects besides calls of other modules. To
achieve this kind of locality is one of the goals in modular
programming.

Modular programming is believed to have a number of advantages
over more traditional program structuring concepts: (1) the
prevention of certain types of structural relationships will force
programmers to design programs of drastically reduced structural
complexity. (2) Since the complexity of the environment in which a
module will be used may be ignored by the implementor of that module
it may also reduce the complexity of the programming task. (3)
Because changes which have to be made in the implementation of a
module will not affect any other part of a system, the concept will
enhance system maintenance, adaptability and portability. (4) With
the module concept the verification of the correctness of programs -
the ultimate goal in program development - may be drastically
simplified. Obviously, it is much simpler to show that the invariant
properties of data will be preserved if the data is manipulated by
its associated operations only, and not by other parts of a program.
The verification may then be performed for each of the associated
operations and not for all - usually unpredictable - uses of the
data.

3.3 Protection of Data

In a modular software system, each operation may only be applied
to a certain type of data object. The operations are tailored to
comply with the characteristics of the data they manipulate, for
example, it is common practice to manipulate integer data by a set of
tailored arithmetic operations. Current high-level-languages
compilers enfoirce this restricted application of operations defined
in the language by means of a type checking capability for the
built-in types of data. Since all the legal operations on a certain
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type of data are predefined in a module, the correct use of these
operations may be enforced by a similar type checking mechanism.

This approach is in contrast to the current practice in systems
programming. Universal operations like 'delete'!, 'insert' or 'update'
may be applied to data of any kind. In order to preserve the data's
characteristics it is usually necessary to implement access control
and protection mechanisms.

The two aforementioned approaches to preserve data
characteristics in high-level programming languages and in systems
programming are based on two fundamentally different philosophies:
(1) Because of the awareness of the human limitations, the first
approach follows the rule: anything not explicitly allowed is
forbidden; (2) to guarantee the designer's freedom and flexibility,
the second approach follows the rule: anything not explicitly
forbidden is allowed.

After a long period of freedom and flexibility in the design of
systems it now seems to be clear that a discipline is essential for
the enhancement of software. The module concept and an associated
type checking mechanism seem to be the natural means to avoid not
intended manipulations of data.

3.4 Extensibility

A module is characterised by a mini-language: the abstract data
and abstract operations of that module. A mini-language is
implemented in terms of another mini-language provided by the module
of representing type, for example, the mini-language

L, : FLIGHTSCHEDULE (create—schedule,
1 "
search—flight,
schedule~flight,
cancel—-flight )

is implemented in terms of the mini-language:

L,: FILE (create~file,
search—record,

insert—record

delete~record 5 .

More generally, an abstract operration may be implemented by a

number of representing type operations. Each abstract operation may
then be considered as an identifier for a macro operation on data
objects of representing types.
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This is in fact an extension capability similar to the one found
in extensible languages. With the repeated definition of new modules
implemented in terms of modules of representing type, which in turn
may be implemented by other modules, one may define arbitrary
high-level (mini) languages to suit particular users.

y, Module Interconnections

A discipline for the design and implementation of small programs
(programming in the small) has been defined with the module concept.
A similar discipline for the design and implementatiion of large
software systems (programming in the large) must then provide rules
for the interconnection of modules.

Since one module may employ other modules, one module
interconnection mechanism - the nesting of modules - is already
built-in in the module definition. With this structuring mechanism
the overall structure of a software system may be organised in a
hierarchic fashion. One may assign modules to levels in a hierarchy
according to the following rules:

() Level 0 contains the set of modules which employ no other
modules,

(2) Level i contains the set of modules which employ modules on
level i-1.

An acyclic graph structure representing this interconnection of
modules, so called D-graphs, has been introduced in (Web T76).
See Figure 1,

module 1

I

module 2 module 3

module 4 moduge 5 module 5 module 6
r—L7 ,L./ | L

mod 7 mo SHIE; mod10mod10 mo 11

|

Figure 1 D~Graph
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Modules are represented as nodes in the graph. The arcs
represent the relationships between modules and are supposed to point
downwards in the figure above. Arcs consist of a horizontal and
vertical part for representation convenience only.

The hierarchic relationship between the modules may be
characterised as a "uses" hierarchy because the services of one
module may be used in another module (Par T4). The module
interconnection will be kept simple because neither the used nor the
using modules impose any restrictions on each other. They all remain
self-contained system components which funection the same way in all
environments.

This hierarchic organisation of large software systems is
accepted to provide means to keep the complexity of the system
manageable and the function of the system understandable. (It may be
important to note here that the hierarchic organisation of software
systems does not predetermine the way they are designed: top-down;
bottom-up, or in a more iterative fashion.) In order to keep the
overall structure a simple hierarchy, other interconnection
mechanisms - especially those neglecting the locality principle as
explained above - are prohibited.

The grammar introduced in the previous sections of this paper is
in fact the description of a module definition and module
interconnection language. The language is therefore suitable for the
programming-in-the-small and programming-in-the-large. It imposes a
discipline on the programming task and supports the design of simply
structured software systems. The language is hoped to be appropriate
to serve as a general data base system design and programming

language.
5. Ob ject Creation and Manipulations

Modules have been defined to be invoked for the creation and
manipulation of data objects. In the module concept, a data object
will be brought into existence through the execution of a create
operation of one particular module. The data object is then
considered to be pertinent to that module. Only those operations
defined in the module will ever be performed on the object. The
object is said to be of the particular type defined by that module.

Because of the possible hierarchic compositions of modules, the
create operation of one module may be designed to "use" the create
operations of other modules to create and combine component objects.
With this feature the module concept allows us to create, store and
reference data on different levels of composition. At the same time,
the concept automatically enforces the composition of objects out of
components of the correct types as defined in the type module. (This
may not seem very important for the standard compositions of data,
like fixed format records in files, or files in blocks, but it is
valuable for the composition of arbitrary user-defined data types).
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Because of the hierarchic composition of modules, objects will
be created which exhibit exactly the same hierarchic structure as the
module composition graph.

An object composition may then be depicted as follows:

Nonterminal nodes represent composed objects, terminal nodes
represent primitive indivisible objects. The labels on arcs denote
objects identifiers and the identifiers of the type they belong to.
(Figure 2.)

I 10 I3 ]

oT:‘t7 08:1;8 09:1;9 010.'1:‘10 01O:t‘10 011=t11

I I R Y e |

Figure 2

The execution of the create operation of module m4 results in
calls of create operations on subsequent modules mg..,m . The

created object 04 is of type t and is composed of other objects
05..2014. Note, module m E is referenced in m, and mg. Object Og will

be created during the firsf call of the create operat on of mg .

A second call of this operation results in the creation of a
second reference to the already created object Og¢

After its creation an object may be changed by insertions of

component objects, deletions of component objects and updates of
component objects. Figure 3 illustrates this when there are three

consecutive operations.
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C.insert(c,v3:=3)

b:B
1

B.delete(b,v1)
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Figure 3
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The insert operation leads to the insertion of a link and a node
in the data object graph; a deletion results in a deletion of a link
(or to the deletion of a link in a node in case the node is only
referenced once); an update leads to a change of the value associated
with a node,

6. The Module Oriented View of Data Base Systems

6.1 The Object Model of a Data Base

In accordance with common terminology a data base may be defined
as the collection of all data objects stored on some storage devices
and administered by a data base management system (DAT 75). The data
base will be brought into existence through the initialisation and
execution of transactions of the administering data base management
system.

Within the framework of the module concept one may then define
the object model of a data base in the following way (WEB 76:)

(1) A data base is a time-varying set of data base objects.
(2) Data base objects may encompass other data base objects.

(3) Data base objects may belong to a number of different enclosing
objects.

(4) Data base objects are identified by names. They are uniquely
identified within one enclosing object. They may be differently named
in different enclosing objects.

(5) Data base objects are characterised by a type and each object is
characterised by exactly one type.

(6) The type of an object is defined in the associated type module
which provides a definition of the composition of object of other
type and a definition of all permissible operations on composed
objects.

The object model of a data base may be graphically represented

as a Do-graph (Data Object Graph). The graph may be defined as
follows:

(1) Nodes of the D_-graph represent data object.

(2) The directed arcs represent an "is part" relationship between
objects. If an object i is component of an object j, a directed arc
is drawn from j to i.

(3) Labels on arcs identify component objects and the type of
component objects.
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Clearly, the "is part" relationship between data base objects
defines an acyclic graph because the whole (for example, a file)
includes parts (for example, records) but a part never includes the
whole. All non-root nodes may be in an "is part" relationship with a
number of nodes. One may call them "shared" among a number of higher
level nodes. A sample graph may then be depicted as follows: Arcs are
again supposed to point downward. Nonterminal nodes represent
composed objects, terminal nodes represent primitive indivisible
objects. The labels on arcs denote the objects' identifier and the
identifier of the type they belong to (Figure 14).

data base

res tRESERVATIONS aps : AIRPORTSCHEDULE m:MATNTENANCE

] ) |

pl :PASSENGERLIST fs ¢ FLIGHTSCHEDULE p:PLANE c :CREW
5 l l D
Figure 4

The graph depicts a simple data base with only a few objects
representing some information about flights. The data base contains
information on reservations and encompass information on passengers
who have made reservations and on flights and their scheduling. The
component of the data base termed airportschedule contains
information on flights and their scheduling, and on planes which are
allocated to those flights. The component termed maintenance contains
the information on planes and on maintenance crews allocated to
maintain those planes.

The possible changes of a data base by insertions, deletions and
updates may be represented now in terms of modifications of the
Do-graph by insertions or removals of nodes or links and by
replacements of nodes.
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The object model conforms with the commonly accepted definition
of a data base as quoted before, although the object model definition
does not refer to the data base management system for the
determination of the membership of a data object to the data base.
For the object model, each module may be considered as the
administering (mini-) data base management system for a particular
type of data object. The entire data base management system may be
thought of as the set of all defined and implemented modules. (A more
elaborate definition of such a modular data base management system
will follow later.)

The D _-graph model is different from existing data base models
in the f‘olciowing sense. Existing data base concepts support the
composition of data according to one particular structuring model
usually called data model (for example, the DBTG concept (DBTG 71)
supports the owner-coupled-set data model, the relational concept
supports the relational data model, etc.). The D -graph model of a
data base supports the representation of differently structured data
within the same structuring framework.

6.2 The Conceptual Description of a Modular Data Base

Data bases are repositories of all the data of interest in an
organisation. They contain the information the organisation needs for
its operations. Thus, data in the data base have a perceivable
information content.

Data in the data base are of course subject to change. A data
base object may be changed by insertions, deletions and updates of
component objects. It is therefore important to distinguish two
different aspects of its information content: the extension and the
intension of the data base. The term extension refers to the
instantaneous and time dependent aspects of the information content
(for example, all the tuples in a relation at a certain point in
time). The term intension refers to the time invariant aspects of the
information content, (for example, the set of all permissible values
an object can take). Data base objects may then be manipulated (that
is, the extension may be changed) according to their time invariant
properties (that is, according to their intension).

The D _-graph model introduced above is clearly a representation
for the data base's extension. To represent the data base's extension
at different times the D _-graph was changed through the insertion or
removal of nodes and node connections. In order to manipulate the
data base correctly, both its extension and its intension must be
represented within the data base. The data base's intension is
represented in a so~called conceptual description. Conceptual
description of data bases are usually aimed to provide:
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(1) a high-level user-oriented description of the data base for its
users;

(2) support for a correct interpretation of the data base's
information content;

(3) means for the representation of restriction on the use of data in
different applications, etc. All these aspects will not be considered
here. It is the sole aim of this description to refer to the support
it provides for the correct manipulation of the data base. Elaborate
proposals for conceptual description may be found in the literature
on data dictionaries or conceptual schemata (ANS 75, BCS 77, NIJ 76,
VLDB 75, VLDB 76).

The time invariant aspects of the information of interest to an
organisation may be modelled in terms of the following concepts:

(1) Entity types or short entities are all concrete and abstract
things or events an organisation needs to know of for its operation.
An entity is meant to denote a collection of instances with identical
characteristics, for example the entity FLIGHTNUMBER denotes a
variable set of instances

F#., F#,... which have the identical characteristic to identify
flights.

Instances have values, F#i:=f#, or sets of values
Fit:= (£, £h,...04 ] e.g., F#, =[100, 200, 300].

Instances and values are subject to change. They are part ofthe
extensional aspects of information.

(2) Conceptual relationships are associations between the
entities of interest in an organisation, for example a conceptual
relationship between the FLIGHTNUMBER and DEST NATION entitles refer
to the fact that each flight identified by a flight number has a
destination.

Some problems arise for the representation of the time invariant
aspects of information in a communicable form in a suitable language.
The representation of information in a language is in fact an
assignment of labels, that is, words, to entities and relationships.
Representations in 'a data base are then encoded representations of
labels in computer store. In a simple representation each label is
assigned to one entity or relationship and each entity or
relationship gets only one label, thus, providing means for a unique
representation and identification.

Words in a natural language however, usually do not identify
things uniquely. They rather denote collections of things which are
identical with respect to some properties and distinct with respect
to others. For example, the word FLIGHTSCHEDULE denotes things which

31



are identical because they all identify flights, destinations and
starting times. At the same time the denoted things may be distinct
because some of them identify regular flights, and others, night
coach flights. Due to the different properties of interest in
different situations the very same word refers to different sets of
values the things can assume in the different contexts, for example,
if the FLIGHTSCHEDULE label is intended to denote flightschedules for
regular flights all starting times must be within the time span 5am
to 10pm; if it is intended to denote night coach flights, all
starting times must be within the time span 10pm to 5am.

For a proper use of words for the representation of entities and
relationships, the information about the intended set of legal values
and their instances must be represented as well. It is common
practice to represent this information in terms of constraints
associated with entities and relationships, for example, the set of
legal values of instances of the FLIGHTNUMBER entity may be defined
by the constraint 0<f#<100. The computer representation of entities
and relationships may then be based on the use of

(1) labels which denote entities and relationships, and
(2) constraints associated with entities and relationships.

As for the representation of the data base's extension a
representational schema is usually defined for the representation of
its intension.

It is common practice to depict entities and relationships by
the following kind of graphs:

@ntity label D_CR label _@ntity label 2)

This building block may be used to construct
entity-relationship-nets of arbitrary shape and complexity. (For the
sake of simplicity, the terms entity and relationship are used now to
denote both real things and their representation by labels as well.)
Nets of this kind are then suitable to depict the information of
interest in an organisation.

So far this schema does not permit the representation of
constraints. The constraints associated with entities and
relationships will be represented as conditions which will be checked
whenever modifications of the values of instances take place, for
example, for each execution of the operation add-number on an
instance F of entity FLIGHTNUMBER the following check will be
performed
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if' 0 #<100
then FLIGHTNUMBER .add-number (F#,f#)

else return FALSE

to make sure that new flightnumbers f# will only be added if they are
taken from the set of natural numbers between 0 and 100,

The representation of entities, conceptual relationships, and
their properties may therefore be given in terms of
entity-relationship-nets and constraints.

It remains to be shown now that the module concept suffices for
the representation of a data base's intension in terms of
entity-relationship-nets and of constraints.

~6.2.1 The Representation of Entities

As one may conclude from the previous discussion, data types and
entities (labels denoting entities) seem to be very similar tools for
the representation of information: they both denote (real or
abstract) things with common properties. Because of this similarity
it seems to be natural to use modules as a means for the definition
and implementation of entiities in the same way they were used to
define and J.mplement types of data.

(1) Module interf‘aces denote entities and the set of permissible
operations on instances of entities.

(2) The implementation of entities and of operations on their
instances is defined in module bodies.

(3) Modules may be invoked to create and delete instances and to
modify the values associated to them.

Although there exist some obvious similarities between entities
and abstract data types a couple of important differences must be
kept in mind:

(1) Entities have not been defined in conjunction with the set of
permissible operations on their instances.

This feature of a module to define data and operations together,
however, seems to be quite adequate for the representation of the
invariant properties of entities. As one may recall, those properties
have been represented in terms of constraints on the values of
instances and have been enforced during value modifications. Because
all possible value modifications are defined in a module, constraints
on the possible values may be defined within the framework of a
module and enforced in module operation executions in a
straightforward way: Operation execution conditions may be associated
with all value changing operations of a module. The operation will be
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executed only if the conditions set forth are satisfied. These
conditions may be represented in a module within the procedures which
are defined to implement those operations, for example,

module FLIGHTNUMBER (add-number, delete—number)

begin
rep as SET gi NAT

proc add-number [Ff, f#]—> Ff;
if O<f#<100 TRUE;

then SET.add-element [S, f#7;
else return FALSE;

end add-number;

end module

The add—element operation will be executed only if the operation
execution condition (0<f#<100) is satisfied.

For the representation of entities and constraints on the values
of their instances a module definition may then take the following
general format:

module ENTITY IDENTIFIER (oper 1, oper 2, s.. Oper n)
begin

entity representation

proc oper 1

operation execution condition 1
operation execution condition 2
statement 1

statement 2

end oper 1

end module
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Thus, the definition and implementation of an entity by a module
results in a rather implicit representation of constraints on the
values of its instances in terms of constraint preserving operations.
But this feature supports at the same time, the representation of the
dynamic properties of the data as an essential part of the data basse
intension.

(2) The second difference between entities and abstract data types
results from another characteristic of modules. Modules have been
designed to employ other modules for the implementation of objects
and operations of abstract type in terms of objects and operations of
representing type. The mapping between objects of abstract type and
of objects of representing type implies always a classification: All
legal values of objects of abstract type will be mapped onto a subset
of legal values of objects of the representing type. This
classification of the set of legal values of representing type takes
place because of the likeness of the selected values with respect to
a certain property, for example, an abstract object of type
NIGHTCOACHFLIGHTSCHEDULE may be represented in terms of objects of
type FLIGHTSCHEDULE; the set of legal values of objects of type
NIGHTCOACHFLIGHTSHEDULE is a subset of the legal values of type
FLIGHTSCHEDULE; the legal values of objects NIGHTCOACHFLIGHTSCHEDULE
are alike with respect to a certain starting time. This property is
not common to all values of objects of the FLIGHTSCHEDULE type. Thus,
objects of abstract types have properties which will not be inherited
by objects of representing type.

If modules are used to define and implement entities, the above
capability may be exploited to define classifications of instances
according to certain properties. One may call this classification
abstractive, since it has been made on the basis of some distinctive
properties of interest, while all other properties have been
neglected. Thus, those abstractive classifications may be introduced
for the definition of new entities with new common characteristics.
At the same time classifications delimit the scope of attention to
some properties of the entities, and ignore all others. One may refer
to those classifications as schema abstraction which are equivalent
to the data abstractions- introduced in Section 2.2 Based on this
abstractive classification, information may be represented on
arbitrary levels of detail or abstraction. This supports the
representation of abstraction as an essential part of the data base's
intention.

6.2.2 The Representation of Relationships

At first glance the module concept does not seem to be very
useful for the representation of relationships. Some considerations
about the nature of entities and relationships, however, may offer
some help. The distinction between entities and relationships is
certainly not absolute: things may be considered as entities in one
context and as relationships in another, for example, a
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FLIGHTSCHEDULE may certainly be considered as an entity. It
materialises, however at the same time a relationship between
FLIGHTNUMBERS, DESTINATIONS, and STARTTIMES. If it is in general true
that the distinction between entities and relationships is Jjust a
matter of the context and not a matter of their representation, the
question may be asked whether there is any real need to represent
entities and relationships in a different manner. It seems to us that
no principal difficulties exist to treat relationships in the same
way as entities. A relationship and the entities connected through
this relationship may be considered as a composed entity in its own
right. For the representation of relationships by modules, a
capability is needed for the representation of compositions of
entities and for the definition of the characteristies of the

composed entity which reflect the relationship between the
components! entities.

The module concept has been defined to offer exactly this
capability: arbitrary module interconnections may be defined in the
module of representing type and the characteristics of the module
reflect the nature of a rulationship between the component modules.

The following example illustrates such a composition. Suppose
the data base contains the following two entities.

FLIGHTSCHEDULE (F$, DEST, ST-T) (create—schedule,
search—flight,
schedule~flight,
cancel-flight)

PLANE (P#,TYPE,N°S) (create-plane,

search~plane,
reserve~plane,
cancel-planereservation)

The relationship which must hold between these two entities is
of the following nature:

The scheduling of a flight requires the corresponding allocation
of a plane to this flight. The data base contains for each entry in
the FLIGHTSCHEDULE instance a corresponding entry in the PLANE
instance.

We therefore define a new entity whose specification reflects
this relationship and which encloses the entities FLIGHTSCHEDULE and
PLANE as components. This new entity will be called AIRPORTSCHEDULE :

ATRPORTSCHEDULE (FLIGHTSCHEDULE, PLANE) (create-apschedule,
search—entry,
add=entry,
delete—entry)
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The relationship will be preserved if the operations on
ATRPORTSCHEDULE instances are designed in such a way that the
component instances of FLIGHTSCHEDULE and PLANE will be manipulated
correspondingly, for example,

module ATRPORTSCHEDULE (eee, add—entry,...)

rep as INTERCONNECTION of (FLIGHTSCHEDULE, PLANE)

oper add—entry [aps, f#, dest, st—t, p#, type, n°s]—> aps:ATRPORTSCHEDULE;
FLIGHTSCHEDULE.add-flight [fs, f#, dest, st~t7;

PLANE.reserve-plane [p, p#, type, n°s7;

end add—entry;

end module

The add-entry operation will be performed by performing both the
add-flight and the reserve-plane operations.

6.2.3 Conclusion

Both entities and relationships were represented as modules,
their instances as objects of the respective type. The different
values instances may assume were represented as different
instantiations of changeable objects. Modules provide representation
capabilities which are shown to be general enough for the conceptual
description of a data base. Because of the built-in module
interconnection mechanism in modules, the representational schema
consists then of a collection of modules which are hierarchically
structured in a graph which we will call a Dc-graph (Figure 5). Nodes
now represent entities, links point to all nodes which represent
related component entities. The D _-~graph may be considered as an
entity/relationship composition graph. A D_-graph is in fact a
strictly modular conceptual description of the intension of the data
base. It incorporates a specification of all possible data base
operations, all kinds of integrity constraints, and supports a
description on different levels of abstraction.

A number of consequences follow from this rather uncommon

concept, which incorporates the representation of declarative and
procedural knowledge, and of schema abstractions. An elaborate

comment on it must be left aside here.
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6.3 The Representation of Data Base Views

The term view is used here to denote a conceptual description
(frequently called external description) of the data base which suits
one user or one group of users. It is of particular interest to
represent the data incorporated in each view in a suitable structural
form and to provide an appropriate data base interrogation and
manipulation language to the users of each view. For that reason it
seems to be natural to define view modules which exhibit the desired
characteristics to their users and call on the services of other
underlying modules.

Different users may be interested in different but overlapping
parts of the data base. Different views may then incorporate
different subsets of data base entities may have entities in common,
and may see the entities they share involved in different
relationships (Figure 6),.
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view 1: the flight reservation view sees a FLIGHTSCHEDULE entity in a
relationship with a PASSENGERLIST entity.

view 2: the flight scheduling view sees a FLIGHTSCHEDULE entity in a
relationship with the PLANE entity.

view 3: the maintenance view sees the PLANE entity in a relationship
with the maintenance CREW entity.

As a consequence the same instances of entities and
relationships - the data base objects - may be interrogated and -
more importantly - manipulated via different views. One may call the
objects seen through different user views as shared objects.

If we allow the manipulation of shared data base objects via
diff'erent user views, we have to make sure that different view agree
on the intensional characteristics of the shared objects. Otherwise
the integrity of the data base may suffer. It is shown in (WEB 76)
that modules are suitable to define these sharing properties of data
base objects. A brief description of the concept follows in the next
paragraphs.
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6.3.1 The State Space and Substate Spaces of Data Base Objects

In order to explain the notion of agreement about the intension
of data base objects, it is convenient to introduce the concept of a
statespace and of substate spaces for changeable data base objects.
An object has a particular set of components at a certain time. It
may be changed by changes of the set of its components. Consequently,
it may be considered to be in a certain state at a certain time and
its state will change in object manipulations. The set of all legal
states may be called the state space of an object. Each subset of the
set of legal states may be called a substate space. The state space
of an object is in fact the only invariant property of an object.
Obviously, different views agree then on the intentional
characteristics of an object if they agree on the object's state
space or focus on a substate space only.

As explained before, the description of the representation of
objects and the description of the associated manipulations in a
module embodies in fact an implicit definition of the space of all
legal states for this object. A user who inserts a new object
defines, with the declaration of its type, its state space, and will
be called the owner of the object.Different views may share an object
in a non-conflicting manner, if they resepct the defined state space.
This however, is guaranteed in the module concept because all changes
of an object's state initiated from any view will be executed by
(local) operations of the associated module and this module has been
designed to guarantee the desired intensional properties.

It is however also legal for a view to focus on a substate space
of a data base object only. This may be achieved by defining a view
modula which enforces an appropriate restriction. Given this, views
may be distinct with respect to the set of entities and relationships
they encompdss, as explained in the previous paragraph, and with
respect to the set of instances of common entities and relationships.
Although different views may be distinet with respect to the set of
instances at a certain time (that is, with respect to their
extensional properties) they must agree on the state space of common
entities and relationships (that is, on their intentional
properties).

6.3.2 The Image of Data Base Objects

Views have been defined to exist continuously. They will not be
created and maintained temporarily but are a user's permanent window
to the data base. In order to represent different permanent windows
to the data base we introduce the notion "image of an object".

If the substate spaces of an object are different in different
views, components of this object may exist at a certain time which
may legally belong to one view (that is, to one substate space) but
not to another. One may say the different views have different images
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of an object, that is, they see different instantiations of an
object. One may represent images of a data base object within the
D -graph framework as in Figure 7.

view 1 view 2
_— — _—
F#1,P#1 P#l 000

___| P2, Pf2 o e
APS . B s
PN, PN P#N+My e 00
F#'],... --15#1,0'0 _‘
F#E,... P#zj"'
Fs | )
F‘#N,loO P#N!'.'
PHN4M, oo
Figure 7

View 2 sees an object P which embodies an instantiation of P
which represents all available planes. View 1 contains instantiations
which represent all allocated planes. The different images of the
object are defined through the selector relations APS (F#,P#) and
F(P#,...). They both identify different subsets of the set of
components of P and make them visible in different views.

The two different views may be created and maintained because of
the following definition of the twoo view modules:

Assume the type of P is defined by a module

PLANE (P#,TYPE, Nos) (create~plane,
search-plane,
insert—plane
delete-plane 5

Different instantiations of an object P may be created and maintained
in the two different views if different subsets of the set of legal
operations may be called from the two different views.
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VIEW 1 {The Schedulers' View)

search-plane

Semantics: None of the changing operations on P can be initiated from
view 1. This is to express the fact that view 1 is only authorised to
initiate the allocation of already recorded planes. The set of
components of P in view 1 will then be at any time a subset of the
set of components seen in the subsequently defined view 2.
Consequently, the set of possible states of P in view 1 is a subset
of the set of possible states of P in view 2.

VIEW 2 (The Inventory View)

search-plane;

insert-plane;

Semantics: Insertions of components into P may be initiated from view
2 without any restriction to indicate its authority to record the
existence of planes for further use. The deletion and update of
components, however, must be reserved to another view which has
control over both views and is able to prevent the deletion or update
of already allocated planes. (One may call this a superview.)

6.3.4 Communication Among Views

One may distinguish two basically different interrelationships
between views in a data base. They may either coexist (that is, there
is no interference between views although they have components in
common) or they may cooperate (that is, a strictly controlled
communication may occur by making changes of a shared object visible
to all views which see the object). Both concepts will be briefly
discussed in the following paragraphs.

Views may be defined to coexist because the D,-8raph concept
allows one to maintain and manipulate just images of data base

objects. It therefore provides means to manipulate the data base via
one view without affecting any other view. Views coexist in the data
base, in general, if the following operations are performed:

(1) insert (component of object). Its effect would be a modification
of the image of the object and of its set of components. The
component inserted via one view, however, would not be visible in
other views, since the object's image seen in the other views has not
been changed.

(2) delete (component of object). Its effect may be just a change of
the image of the object without affecting the state.

Views cooperate if update operations on shared objects may be
performed. Update operations preserve all the images and change the
state of an object. The resulting changes are therefore visible in
all views which reference the object. In order to keep the data base
in a
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consistent state, a general policy for the performance of updates via
different views must be established.

(1) If a non-owner view seeks the sharing of an object, it must agree
to all possible changes of this object made by the owner of the
object.

(2) An owner view may grant the opportunity to change an object it
owns to all or a selected number of other views. A non-owner may then
accept this opportunity.

Based on a more detailed explanation in (WEB 76) one can
conclude that insertions and deletions may be performed not causing
conflicts among user views. Updates may be performed to enable the
communication between views if proper rules for this communication
are set forth.

6.4 The Module Oriented View of Data Base Management Systems

Some existing and most proposed data base management systems are
structured in a layered fashion. The layers correspond to the
~different modes for the representation of information in the data
base (usually called logical and physical in a two-level
architecture, or in a three-level architecture, external, conceptual
and internal). The layers are employed successively for data base
interrogations and manipulations (Figure 8).

& ®
: '

Figure 8
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A number of external "machines" will be designed to process
different users' interaction languages. The external "machines" will
be implemented in terms of a conceptual "machine" which in turn will
be implemented by an internal "machine". Usually different types of
data (that is, differently structured or differently manipulatable
data) will be processed by each of these "machines".

The module concept provides means for the implementation of
those "machines" and conforms therefore with this principle data base
management system architecture. It offers, however, some further
system structuring capabilities which are appropriate to define
arbitrary structural refinements for each machine. Refinements may be
either functional (that is, the gross function of a machine is
decomposed into sub-functions of component machines) or data driven
(that is, a machine which processes a number of types of data will be
decomposed in a number of component machines each processing a subset
of the types of data). Such an architecture may then be depicted as
in Figure 9.
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This architecture may be developed in a coherent way in an
overall design process. It may be also the result of an extension of
already existing data management systems (which will then be employed
by the modularily designed levels above).
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T Other Related Work

The module concept has been applied to a number of other
problems in data base management which will not be described in
detail here.

(1) A software design strategy based on the module notion has been
applied to develop a methodology for the design of a family of data
base systems. The strategy supports a top-down design of modular data
base systems (Yeh 77, Yeh 78).

(2) A few attempts have been reported to develop a methodology for
the formal specification and verification of data base systems. The
methodology is based on concepts for the algebraic specification of
modules (PAO 77, EKW 78, BR 78).

(3) The benefits which can possibly be gained from an application of
the concept in designing distributed data base systems have been
described in (HEB 78).

(4) Last, but not least, the concept has been applied to model
security and privacy enforcement mechanisms (MIN 76).

8. Conclusion

The module concept has been shown to be suitable to model the
main features of data base systems. It should consequently contribute
to the simplification of the data base system development and to the
enhancement of data base systems. The use of modules as a descriptive
tool does not imply any redefinition of accepted basic concepts in
data base management. It offers however, in some cases, a more
precise definition of the concepts.

Although an increasing number of people are doing work on the
subject, experimental projects along this line have not yet been
reported so far. The presentation was aimed at stimulating some
further work on the application of the concept to database systems.
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Discussion

There was some discussion about the module concept and whether
it helps in specifying integrity constraints in a data base. Dr. King
enquired from the point of view of data bases and their
implementation in PL1 and asked what was new about the proposed
methodology. In PL1, a procedure with multiple entry points can be
used to obtain the effect of a module - so are there any new language
features that are needed in order to program in the manner suggested?
Dr. Weber replied that he is proposing a new philosophy where the
notion of universal operations (insert, delete, update etc.) on a
data base is absent. Rather, specific operations on objects are
associated. This has the further advantage that the additional notion
of integrity constraints is not needed since it is captured in the
specific operations on objects. Dr. King disagreed with the last
point and said that such constraints must be specified.
Prof. Wassermann intervened and said that there can be two approaches
to the specification of integrity constraints. One is to collect all
such constraints on the data base together and then these constraints
must somehow be checked; we are not sure as to how, which one and
when, but we have some vague ideas about it. The second approach
associated with the module concept is to associate constraints with
modules such that the specified operations maintain the constraints.
This considerably simplifies integrity checking.
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