
MODULARITY IN DATA BASE SYSTEM DESIGN

H. Weber

Rapporteur: Dr. S.K. Shrivastava

Abstract

This lecture focuses on the application of software engineering
techniques for the development of data base systems. It is aimed to
explain a key concept in software enginee ring - the module or
abstract data type concept - and t o demo nstrate its usefulness in
data base system structuring and design. The concept is shown to
provide a basis for the development of a unifor m framework, called
D- Graph, for the str uct uring of the data bas e , its conceptual
description and of the data base management s ystem.

1. Introduction

Data base systems, as with any other kinds of software systems,
are expensive to produce and maintain, and usually of low qualit y. In
a great number of empiriC studies the lack of a r ati onal software
technology has been identified as the main reason for this so-called
software dil emma. Thus, the identification and formulation of
fundament al prinCiples for the devel o pment of software systems in
general, and for the producti on of data base systems as well, are now
of growing interest.

Due to the very well-known human limitations i n dealing with
complexity, both the complexity of the system develo pment task , and
the complexity of the sys t em itself, are considered to be accountable
for the difficulti e s in t he developm ent of lar ge or even rat her
small, software systems. In order to manage thes e compl exities,
technologies are now available, or are under development , which
impose a discipline on software production and structuring.

A programming concept central to the discussion about a s oftwar e
technology for a number of years -frequently termed module or
abstract data-type is considered to be the base for a solution of the
princi pal problem mentioned above (PAR 71, PAR 72, PAR 74 , LIS 74,
LIS 77, WIR 77, WUL 76). Consequently, this paper is aimed at
explaining this concept and demonstrating the impact of its us e in
data base system development.

2. The Module Concept

The recent history in programming has proven that the language
us ed to formulate programs influence the style of pro gramming and
consequently the structure of the programs. It is therefore assumed
that choosing the right language features may also encoura ge good
programming . The module concept explained below is considered to

15

support the production of well-structured, reliable, robust and
verifiably correct programs. The concept will be i ntroduced here step
by step. For that purpose, we first give a definiti on of the concept
in BNF notation (for those readers who find descriptions in a meta
language mor e comprehensible) and explain then its characteristics
and advantages with a simple but nont ri vial example (for those
readers who prefer a more informal explanation of t he s ub ject) in a
number of iterations .

2. 1 Basic Defintions

In a first iteration the module concept may be defined as
follows:

(module) : : = (int erfac e) (body)
(in ~erface) ::= module (modul e identifi er) (operator list)
(body) ::= b egin (dat a definiti on) { (procedure definition)i}n ~

(The curly braces are us ed to denot e none or more repetions of the
enclosed concepts.) According to this definition, a module consists
o f two parts: a n interface and a body. The interface contains a set
of identifiers which may be referenced to gain access to the body of
the module. The body is a program in a suitable programming language .

A sample mod ule defini tion using a high-level language notation
would then take the following format.

module FLIGHT SCHEDULE (oP1, oP2 , ••• , oPn)
begin m?dulebody

•
~ modulebody

This definition i ntroduces a module called FLIGHTSCHEDULE . It is
worth noting here that the module is named after a certain sort of
data, thus indicating that the module has been designed to be invoked
for the creation and manipulation of data objects of this sort. The
interface of the module identifies, therefore, this sort of dat a, and
all the operations applicable on those data. Since the text of the
module body is not of interest for the following discussion, we will
ignore it for the moment.

A number of terms closely related to this notion of module, and
equally important, for the understanding and further explanatio n of
the module concept will be defined now in an informal way.

The desired relationship between all legal i npu ts and the
possi ble outputs of all the operations of a module will be called the
functions of the modul e.

16

The specification of a module is an impl ementation-independent
description of the fun ctions of t hat module .

The implementation of a module - its body - is the program text
for the data definition part (denoting the implementation of the s ort
of data pert inent to that module), and for all the proce dure
definitions (denoting the implementation of the operations pert i nent
to that module).

A program consists of an arbitrary number of module definitions,
as e xplained above, and an arbitrary number of stat ements each
referencing a certain module and one operation defined in that
module .

A p rocess denotes the execut ion of modul e operations for an
appropriate set of input parameters.

2.2 The Defi nition of a Module Interface

In a next r efinement step we will first compl ete the definiti on
of a module interface . Starting from the previous definition the more
detailed description of the interface may then be given as follows:

(operator list)

(parameter list)

::= (operator symbol) [(parameter li s t)J
(, (operator symbol) [(parameter list)J t)

k
"- (parameter symbol) f,(parameter symbol)}

(modul e identifi er)::= CHARACTER STRING
· (operator symbol) "- CHARACTER STRING
(parameter symbol) " - CHARACTER STRING

Acc ording to this def inition each of the n l egal operations on
the sort of data identified in the interface gets a se t of k
parameters associated with it. For the execution of an operation the
k parameters de clared for this operation nee d to be passed to the
module.

The example introduced in the previous section will be used to
explain thi s feature .

modul e FLIGHTSCHEDULE (create-schedule [idJ,
search-fl i ght [id, ft J,
schedule-fl i ght [id, f#, dest, st-t J,
cancel-flight [id, f# J) ;

This interface ident ifies the FLIGHTSCHE DULE sort of data and
four operations on it. It is the function of the create-s chedule
operation to create a data object of the sort FL IGHTSCHEDULE . For its
execution the parameter "i d" denoting the data 0 bject' s identifier
must be passed to the module in an operation call.

17

The function of the search- fli ght operation i s to access and
dis play a flight identified by a certain fligh t number fll which is
assumed to be recor ded within a flightschedule data object with
identifier id. With the schedulflight operation one may record a new
flight, that is, the flight number, fl' , the destination, dest, and
the s t a rt time, st-t, within the fligh t schedule data object id.
Final ly, with the cancel- flight operation one may delete the entry
identified by fll in the flights chedule data object id.

It is obvious now that a module may be used to create an d
man ipulate an arbitrary number of data objects wit h differe nt
identi fiers. Since t he implementation and consequently the f unct ion
of the o perations will be the same for all objects, a modul e may be
conside red as a template for t he c reation and manipul ation of data
Qb.iects whi ch exhibit exactly the same properties.

Hecause of this characteristic, the module concept closely
resembles the data type concept in high-level programmin g languages:
A variable denoting a data object may be declared to be of a cer tain
type thus determining the properties of the object, that is, its
possi ble manipulations . The type implementation is part of the
compiler and hidden for its users. Because of these similarities the
module concept is also frequently called abstrac t data type concept.

The term type will therfore be used in t he seq uel to denote t he
pr operties of a data object and also to refer to the module which
implements the operations for the creation and possible manipulation
of all obj ects of a gi ven type.

2.3 The Definition of a Module Body

The module body contains the implementation of the so-called
abstract objects and abstract operations as identifi e d in the
int erface of the modul e. For the implementation of abstract object s
and operations they need to be represented in terms of
machine- supported data objects of so-called representing type, and
operations on objects of repr ese nting type . Data obj ects and
o perations of representing types may be either primitive machine
t ypes or compositions of private type.

Thus, the data definition part will be expressed in BNF notation
as follows:

(data definition) : := ~ ~ (constructor) ~ (module i dentifier)
(constructor) .. - CHARACTER STRING
(module identifi er): := CHARACTER STRING

18

i

The term " constructor" in the defintion above denotes a
struct ur ing concept which ia applied to compose objects of
representing type from objects of component type. Thi s composition of
the representing types from component types (or from one component
type) is defined in a module which implements the representing type.
Thus, the term constructor refers to a ce rt ain type which is called
the representing type. Data and operations of an a bstract type as
identified in a modul e interface are then i mpl emented in terms of
objects and operations of the (machi ne-supported) representing type
which defines at the same time, a composition of component types. For
the previously introduced example the da t a definition may have the
following format:

modul e FLIGHTSCHEDULE (creat e- schedule [id] , •••)
rep ~ FILE 2f. F5-RECORD

A data o bj ect of type FLIGHTSCHEDULE is represented by an object
of the type FILES which in turn is comp osed - in a way defined in ·a
FILE module - of a number of objects of type FS-RECORD. Thus the
implementation of the types FILE and FS-RECORD is a prerequisite for
the implementat i on of the type FLIGHTSCHEDULE.

The procedure defini t ion pa rt expressed in BNF will be given as
follows:

(procedure definition) :: ; ~roc (proc edure head) (proc edure body)
(procedure head) :: ; operat o r symbol) [(parameter list)]~ (result)
(result) ::; (data objectl lBOOLEAN
(data object) . :: ; (obj ect identifi er): (module identifi er) ·
(procedure body) ::; (s tatement) i 1n .
(s tat ement) ::; (operatlon cail) I (conditional statement) I

(uncondi tional s tatement) I (for statement)
(operation call) "- (modul e identifier). (operator symbol)

(paramet er list)]

(The remaining undefined nonterminal symbols in this grammar have
either been defined be for e or should be und e rstood as in the
definition of a high- level language like ALGOL 60.)

An abstract o peration i s implemented by a procedure which
performs operations on objects of repres enting type. Thus, one may
include calls of operations o n objects of repr esenting type - as
defi ned in the module for the representi ng type - within this
procedure.

On the basis of these defini tions an d based on the assumption
that a data type FIL E (create file, search record, insert record,
de lete record) ha s already been defined, one may now give a complete
program text for the FLIGHTSHEDULE module in the following form:

19

module FLIGHTSCHEDULE

begin

rep ~ FILE 2! F&-RECORD

(create-schedule [id],
search-flight [id , flf J,
schedule-flight rid , flf, dest, st-t J,
cancel-flight rid, f# J);

proc create-schedule rid J ~ id :FLIGHTSCHEDULE;
i d :FILE:=FI LE. cr eate-file [o J;
~ create-schedule ;

proc search-flight rid, flf J ~ BOOLEAN;
"i.L.E. search-record rid , flf J;

proc cancel-flight rid , flf J~ id:FLIGHTSCHEDULE;
FILE. delete-record rid, flf J;
~ cancel-fli ght ;

proc schedule-fl i ght rid , flf, dest , st-t J -? id :FLIGHTSCHEDULE;
FIr,E. insert-record rid, flf , dest, st-t J;
~ cancel-flight;

~ module

Each of the proced ures pertinent to the FLIGHTSCHEDULE module
encloses a call of an operation of the FILE module. Assuming all the
called FILE operations are already implemented the FLIGHTSCHEDULE
module may be executed and is then implemented as well.

3. Basic Characteristics of Modules

This "data driven" module def i nition is rather different from
the more intuitive us e of the term module in today's programming
prac tice. It will, however, be shown throughout the rest of the paper
that this noti on seems to be adequate to overcome a great number of
today's programming problems .

3.1 The Abstraction Principle

Among other reasons, the module co ncept has been defined this
way to support the rather distinctive requirements of module users

' (application programmers) and module implementors (systems
programmers) •

It is the us er 's interest to employ the module concept to
cons truct programs. Provided he knows the function of a previously
defined module, only the interface, which contains all t he
information necessary to make proper use of the module, must be

20

visible to him. The details of the module implementation contained i n
its body would be an unnecessary burden and will remain hidden.

The module implementor on the other hand is responsible for an
implementation in accordance to a given specification of the
functions of the module. This partitioning of information according
to a certain need to know, that is , the reten tion of the essentia l
information fo r a certain purpos e and the suppression of inessential
details, is considered to be the key concept to master the complexity
in information handling and is usually called the abst raction
principle:

(An Aside in Specifications:
In both cases an implemen t ation-independent speci fication of the
functions of a module is necessary. The module user needs the
speci fication to make sure the employed module has the int ende d
func tions and t he module implementor uses the speci fi cation to
i mplem ent this func t ion in a complete and correct man ne r .
Consequently, an implementation-independent specification of the
functions of a module is an essent ial part of the module concept . It
would, of course, be the ul timate goal to make the specification of
the function of a module a part of the interface which can be checked
automatically to ensure the proper use of the modul e. Since a concept
for the computer r epr esenta ti on and interpretation of function
specifications does not exist at the moment , we will consider them as
aside from the module .
End of Aside.)

The concep t is not new in programming. All high-level languages,
for e xample, pro vid e means to declare and initialise dat a witho ut
forcing the programmer to assign data to spec ific memory locations.
This feature helps reducing the commplexity of the programmers' task
by hiding the memory allocation details in the languuage processing
system.

Another very wel l - known abstraction mechanism s upported in many
high-level programming languag es is the procedure concept. A
procedure is designed to display its function to its users and to
hide the implementation of this function. It is therefore considered
as a suitable mechanism for a f unctional or procedural abstraction .

The data-oriented module concept defined above - as will be
shown in the next section - is a generalisation of the known
abstraction mechanisms. It is designed to display to its users the
essential information on how to use a certain sort of data , and to
hide the information on how those data are internally represe nt ed and
manipulated. Hence, it provides a general data abstraction mechanism.

2 1

3.2 The Locality Principle

After the detai l ed definition of a module impl ementation in the
precedi ng secti on, we are now re a d y to identify another basic
priciple underlying the modul e concept. Obviously, operations and
data are closely related to each other in the module concept. Each
data object may be manipulated by only a certain predefined set of
operations. Data not associated to a certain module but rather glo bal
to a number of modules do not exist. Thus , logical r elationships
between mod ul es based on the s hared use of global data cannot occur.
The module concept also prohibits a module to refer to data declared
in the body of another module, one module to branch into the body of
another module, and one module t o modify program statements within
another module .

Hence, a module behaves like a self-contained enti ty which
cannot caus e non-local effects besides calls of other modules. To
ac hieve th is kind of locality is one of the goals in modular
programming.

Modular programming is believed to have a number of advantages
over more tradi ti o n al program structuring conce pts: (1) the
prevention of certain types of structural relationships will force
programmers to design programs of drastically reduced structural
complexity. (2) Since the complexity of the environment in which a
module will be used may be ignored by the implementor of that module
it may al so reduce the complexi ty of the programming task . (3)
Because changes which have to be made in the implementation of a
module will not affect any other part of a system, the concept will
enhance system maintenance, adaptability and portability. (4) With
the module concept the verification of the correctness of programs -
the ultimate goal in program development - may be drastically
simplified. Obviously, it is much simpler to show that the invariant
properties of data will be preserved if the data is manipul ated by
its associated operations only, and not by other parts of a program.
The verification ma y then be performed for each of the associated
operations and not for all - usually unpredictable - uses of the
data.

3.3 Protection of Data

In a modular software system, each operation may only be applied
to a certain type of data object. The operations are tailored to
comply wi th the characteristics of the data they manipulate , for
example, it is connnon practice to manipulate integer data by a set o f
tailored arithmetic operations . Current high-level-language s
compilers enfoirce this restricted application of oper ations define d
in the language by means of a type checking capability for t he
built- in types of data. Since all the legal operations on a certain

22

type o f data are predefined in a module, the cor r ect use of these
o perations may be enforced by a similar type checking mechanism.

Thi s approach is in contrast to the current pr acti ce in systems
programmin g. Universal operations like 'delete', ' insert' or 'update '
may be applied to data of any kind. In order to preser ve the data's
characteristi cs it is usually necessary to implement access cont rol
and protection mechanisms.

Th e two aforementioned approaches to pres erve da ta
characteristics .in high-level programmi ng languages and in systems
progr amming ar e based on two fundamentally di fferent philosophies:
(1) Because of the awareness of the human limit ations , the first
approach follows the rule: anything not explicitly allowed is
f or bidden; (2) t o guarantee the des igner ' s f r ee dom and fle xibil ity,
th e second approach follows the rule: anyt hing not explicitly
forbidden is allowed.

Aft e r a long period of freedom and flexibil ity in the design of
systems it now seems to be clear that a discipline is essential for
the enhance ment of software. The module conce pt and an associated
type checking mechanism seem to be the natural means to avoid not
intended manipulations of data.

3.4 Extensibility

A module is characterised by a mini -language: the abstract data
and abstract operat i ons of that mo dule . A mini -language is
implemented in terms of another mini - language provided by the module
of representing type, for example, the mini-language

L1 : FLIGHT SCHEDULE (create-schedule,
search-flight,
schedule-flight,
cancel-flight)

is implemented in terms of the mini-language:

(create-file,
search-record,
insert-record
delet e-record).

Mor e generally, an abstract operration may be implemented by a
mnnber of representing .type operations. Each abs tract operation may
then be conside red as an ident ifier f or a macro operation on data
objects of representing types.

23

This is in fact an extension capability similar to the one found
in extensible languages. With the repeated defini tion of new modules
implemented in terms of modules of representing type, which in turn
may be implemented by other modules, one may define arbitrary
high-level (mini) languages to suit particular users.

4. Module Interconnections

A discipline for the design and implementation of small programs
(programming in the &Dall) has been defined with the module concept .
A similar discipline for the design and implementatiion of large
software systems (programming in the large) must then provide rules
for the interconnection of modules.

Since one module may employ other modules, one module
interconnection mechanism - the nesting of modules - is already
built-in in the module definition. With this structuring mechanism
the o verall structure of a software system may be organised in a
hierarchic fashion. One may assign modules to levels in a hi erarchy
according to the following rules:

(1) Level 0 contains the set of modules which employ no other
modules,

(2) Level i contains the set of modules which employ modules on
level 1-1.

An acyclic graph structure representing this interconnection of
modules, so called D-graphs, has been introduced in (Web 76).
See Figure 1.

modul e 1

1
I I

module 2 module 3

m017 mor Id9 mOdQod 10 m1
11

Figure 1 D-Graph

24

/

. -

Modules are repr esented as nodes in the graph. The arcs
represent the relationships between modul es and are supposed to poin t
downwards in the figure above. Arcs consist of a horizont al and
verti cal part for representation convenience only.

Th e hierarch ic relationship between t he modul es may be
characterised as a "us es" hierarchy because the ser vices of one
modul e may be used in a not he r module (Par 74). The module
interconnection will be kept simple beca use nei ther the used nor the
using modules impose any restrictions on each other. They all r emai n
self-contained system components which func tion t he same way in all
en vi ronments .

Th is hierarchic organisation of large softwar e systems is
accepted to pro vi de means to keep the complexity of t h e syst em
manageable and the function of the sys t em understandabl e. (It may be
important to note here t hat the hierarchic organisation of software
system s does not predetermine the way they are designed: top-down,
bottom-up, or in a more iterative fashion.) In order to keep t h e
overall structur e a si mpl e hierarchy, ot her int er connection
mechanisns - especially thos e neglec ting the locality principle as
explained above - are prohibi ted.

The grammar introduced in the previous sections of this paper is
in fact the desc r iption o f a module defi ni tion and mod ul e
int erconnecti on lan guage. The language is therefore suitable for the
programming- in-the-small and programmi ng-in- the-large. It imposes a
dis ci pline on the programming task and supports the design of simply
structured software syst ems . The language is hoped to be appropriate
to serve as a general data ba se system design and programming
l anguage.

5. Object Creation and Manipu lations

Modules have been defined to be invoked for the c r eation an d
manipulation of data objects. In the module concept, a data object
will be brought into existence through the execution of a create
operation of one particular modu l e. The data object is then
considered to be pertin e nt to that mcidule . Only those operations
defined in the modul e will ever be performed on the object . The
object is said to be of the particular type defined by that module .

Because of the possi ble hierar chic compositions of modul es, the
create operation of one module may be designed to "use" the create
operations of other modules to create and combine component objects.
With this feature the module concept all ows us to create , store and
reference data o n diff erent levels of composi t ion. At the same time,
the concept automati cally enforces the composition of objects out of
components of the correc t types as defined in the type modul e. (This
may not seem very important for the st andard composi tions of data,
like fixed format records in fil es, or files in blocks, but it is
valuable for the composition of arbitrary user-defined data types) .

25

Because of the hierarchic composition of modules, objects will
be created which exhibit exactly the same hierarchic structure as the
module composition graph.

An object composition may then be depicted as follows:

Nonterminal nodes represent composed objects, terminal nodes
represent primitive indivisible objects. The labels on arcs denote
objects identifiers and the identifiers of the type they belong to.
(Figure 2.)

Figure 2

The execution of the create operation of module m1 results in
calls of create operations on subsequent modules m2 ••• m11. The
created object 0 1 is of type t} and is composed of other objects
O2 ••• 011. Note, module m5 is re erenced in m2 and m,. Object 05 will
be created during the first call of the create operation of m5•

A second call of this operation results in the creation of a
second reference to the already created object 05.

After its creation an object may be changed by insertions of
component objects, deletions of component objects and updates of
component objects. Figure 3 illustrates this when there are three
consecutive operations.

26

I
a :A b:B c:C

I 1 I \ / t \ / t
V1 V2 V3 VyV1

V2 V3 V1 V2

c6c1 6 I \j I
G) ® CD (0

! C.insert (c,v
3

:=3)

I I
a : A b:B c:C

I 1 I \ / t \ / t
V1 V2 v3 v 4 v1 v2 v3 v1 v2 v3

cb I I V I ~ cb I
1 00 0) 0 Q)

! B. delete(b,v1)

I b ~ B I a:A c:C

I
1

I \ ~ / f
v1 v

2 v3 v
4

v2 v3 v1 v2 v3

I I cb \ I V
cD

I
C)@ 3 CD CD CD CD

J B.uPdate(b,v
3

:=3)

I
b)B

I
a:A c:C

I ~ I \ t \ / t
v1 v2 v3

V\
v2 "2l'

v2 v3

I I I cb 0 cb 000 CD

Figure 3

27

The insert oper a tion leads to the insertion of a l ink and a node
in the data object graph; a deletion results in a del e tion o f a link
(or to the delet ion of a link in a node in case the node is only
referenced once); an update leads to a change of the value associated
with a node.

6. The Module Oriented View of Da ta Base Systems

6.1 The Object Mode l of a Data Base

In accorda nce with common terminology a data base may be defined
as the collection of all data objects stored on some storage devices
and administered by a data base management system (DAT 75). The data
base will be brought into existence through the initialisation and
execution of transactions of the admi nistering data base management
system.

Within the f ramework of the module concept one may then define
the object model of a data base in the following way (WEB 76:)

(1) A data base is a time-varying set of data base objects.

(2) Data base objects may encompass other data base objects.

(3) Data base objects may belong to a number of different enclosing
objec ts.

(4) Data base objec t s are identified by names . They are uniquely
identified within one enclosing object. They may be differently named
in di fferent enclosi ng objects .

(5) Data base objects are characterised by a type and each object is
characterised by exactly one type.

(6) The type of an object is defined in the associated type module
which provides a definit i on of the composition of object of other
type and a definition of all permissible operations on composed
obj ec t s.

The object model of a data base may be graphically represented
as a D -gra ph (Data Object Graph). The graph may be defined as o follows:

(1) Nodes of the Do-graph represent data object.

(2) The di r ected arcs represent an "is part" relationship betwee n
objects. If an object i is component of an object j, a directed arc
is drawn from j to i .

(3) Labels on ar cs identify component objects and the typ e of
component objects .

28

..

Clearly, the "is part" relationship between data base objects
defines an acyclic graph because the whole (for e xample, a file)
includes parts (for example, records) but a part never includes the
whole. All non-root nodes may be in an "is part" re lations hip with a
number of nodes . One may call them "shared" among a number of higher
level nodes . A sample graph may then be depicted as follows : Arcs are
again supposed to point do wnward. No ntermi nal nodes represent
composed objects, terminal nodes represent primitive i ndiv isible
objects. The l abe l s on arcs denote the objects' identifier and t he
identifier of the type they belong to (Figure 4) .

dat a base

j
r6s:RESERVATIONS aps : AIRPORT SCHEDULE m:MAINTENANCE

V
1 v

pl:PASSENGERLIST fs:FLIGHTSCHEDULE p:PLANE c:CREW

1 1 1 1
Figure 4

The graph depic t s a simple data base with only a few objects
representing some information about flights. The data base contains
information on reservations and encompass information on passengers
who have made reservations and on flights and their scheduling. The
component of the data bas e termed airportschedule contains
information on flights and their scheduling , and on planes which are
allocated to those fligh ts. The component termed maintenance contains
the information on planes and on maintenance crews all ocated to
maintain those planes.

The possible changes of a da ta base by insertions, deletions and
updates may be represent ed now in terms of modifications of the
Do-graph by inser tions or removals of nodes or links and by
replacements of nodes.

29

The object model confor ms with the commonly accepted defini tion
of a data base as quoted before, although the object model definition
does not ref er to the data base man ageme nt syst e m fo r the
determination of t he members hip of a data object to the data base.
For the object model, each module may be considered as the
administering (mini-) data base manageme nt system for a partic ular
type of da ta object. The entire data bas e management system may be
thought of as the set of all defined and implemented module s. (A more
elaborate definition of such a modular data base management system
will follow later.)

The D -gra ph model is diff erent from existing data base models
in the fOI~owing sense. Existing data base concepts support the
composition of data according to one particular structuri ng model
usually called data model (for example, the DBTG concept (DBTG 71)
supports the owner-coupled-set data mod e l , the relational concept
supports the relational data model, etc.). The Do-graph mod e l of a
data base supports the representation of differently structured data
within the same structuring framework .

6.2 The Conceptual Descript ion of a Modular Data Base

Data bases are reposito ries of all the data of interest in an
organisation . They contain the information the organisation needs for
its operations. Thus, data in the data base have a perceivable
information content.

Data in the data bas e are of course subject to change . A data
base object may be changed by i nsertions, del et ions and upd ates of
component objects. It is therefore important to distinguish two
different aspec ts of its i nformation content: the extension and the
intension of the data base . Th e term exte nsion refers to the
instantaneous and time de pendent aspects of the information content
(for example, all the tuples in a relation at a certain point in
time). The term intension refers to the time invariant aspects of the
information content, (for example, the set of all permissible values
an object can take). Data base obj ects may then be manipulated (that
is, the extension may be changed) according to their time invariant
properties (that is , according to their intension) .

The Do- graph model introduced above is clearly a representation
for the data base's extensiort. To represent the data base's extension
at different times the Do-graph was changed through the inserti on or
removal of nodes and node connections. In order to manipulate the
data base correctly, both its extension and its intension must be
represented within the data base . The data base's intension is
represented in a so -called conceptual description . Conceptual
description of data bases are usually aimed to provide:

30

I

(1) a high-level user-oriente d description of the data base for its
users;
(2) support f or a correct interpretation of the data base's
information content;
(3) means for the representation of restriction on the use of data in
different applications, etc. All these aspects wi ll not be co nsidere d
here . It is the sole aim of this description to refer to t he support
it provides for the correct manipulation of the data base . Elaborate
proposals f or co nce ptua l description may be found in t he l iterature
on data dictionaries or concept ual schemata (ANS 75, BCS 77 , NIJ 76,
VLDB 75 , VLDB 76) .

The time invariant aspec t s of the i nformation of interest t o an
organisation may be modelled in terms of the following concepts:

('1) Entity types or short enti ties are all concrete and abstrac t
things or events an organisation needs to know of for its operation.
An entity is meant to denote a collection of instances with ident i cal
characteristics, fo r example the entity FLIGHTNUMBER denot es a
variable set of i nstances

F#l' F#2 ••• which have t he identical characteristic to identify
flights.

Instances have values, FII . : =fll , or sets of values
1

e.g., Flli= [100 , 200, 300J.

Instances and val ues are subject to change. They are part of the
extensional aspects of i nformation .

(2) Conceptual relationships are associations bet ween the
entities of interest in an organisation, for example a concept ual
relationship bet ween the FLIGHTNUMBER and DEST NATION entitles refer
to the fact that each flight identi fie d by a flight number has a
destination.

Some problems arise for the repre~entation of the time i nvari ant
aspects of i nformation in a communicable form in a suitable language.
The representation of information in a language is in fact an
assignment of labels, that is, words , to entities and relationsh i ps .
Representations in ' a data base are then encoded representations of
labels in computer store . In a simple representation each label is
assigned to one e ntit y or relations hip and each entity or
relationship gets only one label , thus , providing means for a unique
representation and identification .

Words in a natural language howe ver, usually do not identify
things uniquely . They rather denote collections of things which are
identical with respect to some properties and distinct with respect
to others. For example, the word FLIGHTSCHEDULE denotes things which

31

/

are identical because they all i dentify flights, desti nations and
starting times. At the same time the denoted things may be distinct
because some o f them identify regular flights, and others , nigh t
coach flights . Due to the differ e nt properties of interest in
different si tuati ons the very same word refers to different sets of
values the th~ngs can assume in t he differe nt contexts, for example,
if the FLIGHTSCHEDULE label is intended to denote fli ghtsche dules for
re gular fli ghts all starting times must be within the time span 5am
to 10pm; if it is intended t o denote night coach fli ghts, all
starting times must be within the time span 10jXll to 5am.

For a proper use of words for the representation of entities and
relationships, the information about the intended set of legal values
and their instances must be represented as well. It is common
practice to represent this information in terms of constraint s
associated with entities and relationships, for example, the set of
l e gal val ues of instances of the FLIGHTN UMBER entity may be defined
by the constraint 0<fll<100. The computer repres entat ion of entities
and rel ations hips may then be based on the use of

(1) labels which denote entities and relationships, and

(2) cons trai nts associated with enti t i es and relationships .

As for the representation of the data base's extension a
representational schema is usually defined for the repres entation of
its intensi on.

It is common practice to depict entities and relationships by
the follow:i.ng kind of graphs:

~nt itY l~be~CR label ~ntitY label 2)

This building block m a y be us e d to construct
entity-relationship-nets of arbitrary shape and complexity. (For the
sake o f si mpl ici ty, the terms enti ty and relationship are used now to
denote both real things and their representation by labels as well.)
Nets of this kind are then suitable to depict the informat ion of
interest in an organisation.

So far this schema does not permit the repres entation of
constraints. The constraints associated with entities and
r elationships will be represented as conditions which will be checke d
whenever modifications of the values of instances take place , for
example, for each execution of the operation add-number on an
instan ce F of entity FLIGHTNUMBER the following check will be
performed

32

if 0<flk100
then FLIGHTNUMBER .add-number (FII, fll)
erse return FALSE

to make sure that new flightnumbers fll will only be added if the y are
taken from the set of natural numbers between 0 and 100.

The representation of entities, conceptual relationships, and
their properties may therefore be given in term s of
enti ty-relati onship-nets and constraints.

It remains to be shown now that the module concept suffi ces for
the representation of a data base's intension in terms of
entity-relations hip- ne ts and of constraints.

6.2.1 The Representation of Entities

As one may conclude from the previous discussion , dat a types and
enti ties (labels denoting entities) seem to be very similar tools for
the repres.entation of information: they both denot e (real or
abs tract) t hi ngs wi th common properties. Because of this similari ty
it seems to be natural ·to use modules as a means for the defini tion
and implementation of entiities in the same way they were used to
define and implement types of data.

(1) Module interfaces denote entities and the set of permissible
operations on instances of entities.

(2) The implementation .of entities and of operat ions on their
instances is defined in module bodies.

(3) Modules may be invoked to create and delete instances and to
modify t he values associated to them.

Although there exist some obvious similarities between entities
and abstract data types a couple of important differences must be
kept in mind:

(1) Entities have n9t been def·ined in conjunction with the set of
permissible operations on their instances.

This feature of a module to define data and operations together,
however, seems to be quite adequate for the representation of the
invariant properties of entities. As one may recall, those properties
have been represented in terms of constraints on the values of
instances and have been enforced during value modifications. Because
all possible value modifications are defined in a module, constraints
on the possible values may be defined within the framework of a
module and enforced in module operation executions in a
straightforward way: Operation execution conditions may be associated
with all value changing operations of a module. The operation will be

33

executed on ly if the conditions set forth are satisfied. These
conditions may be represented i n a module within the procedures which
are defined to implement those operations , f or example,

modul e FLIGHTNUMBER (add-number , del et e-number)

begin

~ ~ SET of NAT

proc add-number [FI , f#] ~ FI ;
if 0<1'# <1 00 TRUE;
then SET. add- element [S, f# J;
else return FALSE;
~ add-number ;

~ module

The add-element operat i on will be executed only i f the operation
execution condi tion (O<f#<1 00) is satisfied.

For the representation of entities and constraints on the val ues
of t heir instances a module definition may then take the followi ng
general format:

modul e ENTITY IDENTIFIER (oper 1, oper 2 , • •• oper n)
begin

ent ity representation

proc oper 1
operation execution condition 1
operation execution condition 2

•
•

statement 1
stat ement 2

•

•
~ oper 1

•
•

~ module

34

Thus, the de finition and implement ati on of an ent i ty by a module
results in a rather implicit repres ent ati o n o f cons tr aints on the
values of its instances in terms of constraint pres erving operations.
But this feature supports at the same time , t he repres entation of the
dy namic properties of the data as an essential part of the data basse
i ntension.

(2) The second di fference between entities and abstract data types
r esults fran another characteristic of modules. Modules have bee n
designed to employ other modules for ' the implementation of obj ects
and operations of abstract type in terms of objects and operations of
r epresenting type . The mapping between objects of abs tract. t ype and
of objects of representing type implies always a c l assification: All
l egal values of objects of abstract type will be mapped onto a s ubset
of legal values of objects of the representing . type. This

... c l assification of the set of legal val ues of representing type takes
place because of the likeness of the selected values with respect to
a certai n property, for example, an abstract object of type
NIGfITCOACHFLIGHTSCHEDULE may be represented i n terms of objects of
t ype FLIGHTSCHEDULE; t he set of legal values of objects of type
NIGHTCOACHFLIGHTSHEDULE is a subset of the legal v alues of type
FLI GHTSCHEDULE; the legal values of obj ects NIGHTCOACHFLIGHTSCHEDULE
are alike with respect to a certain starting time. This property is
no t common to all values of objects of the FLIGHTSCHEDULE type. Thus ,
obj ects of abs t ract types have pr operties which will not be inheri ted
by objects of representing type.

If modules are used to define and implement enti ties, the above
capa bility may be exploited to define classifications of instances
according to certain properties. One may call this classification
a bstractive, since it has been made on the basis of some distinctive
pr operties of interest, while all other properties have bee n
ne glected. Thus, t hose abstractive classifications may be introd uced
f or the definition of new entities with new common characteristics ".
At t he same time classifications delimit the sco pe of attention to
s ome properties of the entities, and ignore all others. One may refer
t o those classifications as schema abstract ion which are equival e nt
to t he data abstractions - i ntrod uced i n Section '2.2 Based on t his
abstractive classification, information may be r epres ente d on
ar bi trary levels of detail or abstraction. This support s t he
r e presentation of abstraction as an essential part of the data base 's
int entibn.

6 .2.2 The Representation of Relationships

At first glance t he module concept does not seem to be very
useful for the representation of relationships. Some considerations
about the nature of entities and relationships, however, may offer
s ome help. The distinct ion between entities and relationships i s
certainly not absolute: things may be considered as entities in one
c ontext and as relationships in another, for example , a

35

PLIGHTSCHEDULE may c er t ai nly b e co n s ide r e d as an entit y . It
materialises, however at t he sam e tim e a relationship between
PLIGHTNUMBERS, DESTINATIONS, and STARTTIMES . If it is in general true
that the distinction between e nti t ies and relationships is just a
matter of the context and n o t a matter of their representation, the
questi on may be a sked wh e th e r the r e i s any real need to represent
c ntities and rel a t ionships in a different mann er. It s eems to us that
no principal diff icul ties exist t o t r eat relati o nships in the same
way as ent iti es. A r elat ions hi p a n d the ent i ties connect e d through
this rela tions hip ma y be consider e d a s a composed entity in i t s own
right. For the repr es en tati o n of relationships by modules, a
capability is needed for t he re p res entation of composi tions of
entities and for t he de fi ni t i on o f the characteristics of the
composed entity wh ic h r e flect the relationship between the
component s ' entiti es.

The modu l e c once pt has been de fined to offer exactl y this
capability: ar bit rary module interconne cti ons may be defined in the
module o f r epresenting type an d t he char a cteristics of the module
reflect the nature of a r"lat ionship between the component modules.

The f ollowi ng example ill ustrat e s s uch a composition. Suppose
the data bas e contains t he f ollowing t wo entities .

FLI GHTSCHEDULE (FI , DEST , ST- 1) (create-schedule ,
search- fl i ght,
schedule- f light ,
cancel- fl i ght)

PLANE (Pt , TYPE,No S) (create-plane ,
search- plane ,
r e serve-plane ,
cancel-plan er eserva tion)

The relations hip l~ hich mus t hold between these two entities is
of the following nature :

The scheduling of a flight r equires the corresponding allocation
of a plane to this flight. The data base contains for each entry in
the FLIGHTSCHEDULE instance a corresponding entry in the PLANE
instance.

We therefore define a new enti ty whos e specification reflects
this relationship and which encloses the entities FLIGHTSCHEDULE and
PLANE as components . This new entity will be call ed AIRPORTSCHEDULE:

AIRPORTSCHEDULE (FLIGHTSCHEDULE, PLANE) (c reat e-apschedule,
search-entry,
a dd-entry,
delet e-entry)

36

' ..

The relationship will be preserved if the operations on
AIRPORTSCHEDULE instances are des igned in such a way that the
component instances of FLIGHT SCHEDULE and PLANE will be manipulat ed
correspondingly, for example,

module AIRPORTSCHEDULE (••• , add-entry, •••)

begin

rep ~ INTERCONNECTION 2! (FLIGHTSCHEDULE, PLANE)

oper add-entry raps, ft, dest, st-t , pi , type, nOs]~ aps:AIRPORTSCHEDULE;
FLIGHT SCHEDULE. add-flight [fs , ft, dest, st-t];
PLANE. reserve-plane [p, pi, type, nOs];
~ add-entry;
•
•

~ module

The add-entry operation will be performed by performing both t he
add-fl ight and the reserve- plane operations.

6.2.3 Conclusion

Both entities and relationships were represented as modules,
t heir instances as objects of the respective ty pe. The differe n t
values instances may assume were represented as differe n t
i nstantiations of changeable objects. Modules provide representation
capabilities whi ch are shown to be general enough for the conceptual
description of a data base. Because of the built-in modu l e
interconnection mechanism in modules, the representational schema
consists then of a collection of modules which are hierarchical l y
structured in a graph which we will call a D -graph (Figure 5). Nodes
now represent entities, links point to alf nodes which represe n t
r elat ed component entities. The D -graph may be considered as an
e ntity/relationship composition g~aph. A D -graph is in fact a
strict l y modular conceptual description of tire intension of the dat a
base. It incor porates a specification of al l possib l e d ata base
o perations, all kinds of integrity constraints, and supports a
description on different levels of abstraction.

A number of consequences follow from this rather uncommon
concept, which incorporates the representation of declar ative and
procedural knowledge, and of schema abstractions. An elaborat e
comm ent on it must be left aside here .

37

I
ent 7

1

ent ity 1

1

enti ty 2 enti ty 3

t

enti ty 4 enti ty 5 ent i ty 5

\)
I r I I

ent 8 ent 9 cnt 10 ent 10

1 1
Figure 5 D -Graph c

enti ty 6

6.3 The Representat ion of Data Base Views

ent 11

1

The term view is used here to denote a conceptual description
(frequently called external descri ption) of the data base which suits
one user or one group of users . It is of particular interest to
represent the data incorporated i n each view in a suitable structural
form and to pro vide an appropriate data ba se interrogation and
manipulation language to the users of each view. For that reason it
seems to be natural to define view modules which exhibit the desired
characteristics to their users and calIon the services of other
underlying modules.

Differ ent users may be i nter"ested in different but overlapping
parts of the data base . Diff erent views may then incorporate
different subsets of data bas e entities may have entities in common,
and may see the entities they shar e involved in different
relationships (Figure 6).

38

PL

1

view 1
RES

FS

1

community vi ew
data base

I
view 2

APS

Figure 6

P

1

view 3
M

Crew

1

view 1: the flight reservation view sees a FLIGHTSCHEDULE enti ty in a
relations hip with a PASSENGERLIST entity.

view 2: the flight scheduling view sees a FLIGHTSCHEDULE entity in a
relationship with the PLANE entity.

view 3 : the maintenan ce view sees the PLANE entity in a relationship
with t he maintenance CREW entity.

As a consequence the same instan ces of e ntities and
rel ationships - the data base objects - may be interrogated and -
more importantly - manipulated via different views. One may call t he
objec ts seen through different user views as shar ed objects.

If we allow the manipulation of shared data base obj ects via
different user vi ews, we have to make sure that different view agree
on the intensional characteristics of the shared objects. Other wise
the integrity of the data base may suffer. It is shown in (WEB 76)
that modu l es are sui table to define these shari ng properties of data
base objects . A brief description of the concept fol lows in t he next
paragraphs .

39

6.3.1 The State Space and Substate Spaces of Data Base Objects

In order to explain the notion of agreement about the intension
of data base objects, it is convenient to introduce the concept of a
statespace and of substate spaces for changeable data base objects.
An object has a particular set of components at a certain time. It
may be changed by changes of the set of its components. Consequently,
it may be considered to be in a certain state at a certain time and
its state will change in object manipulations. The set of all legal
states may be called the state s pace of an object. Each subset of the
set of legal states may be called a substate space. The state space
of an object is in fact the only invariant property of an object.
Obviously, different views agree then on the intentional
characteristics of an object if they agree on the object's state
space or focus on a substate space only.

As explained before, the description of the representation of
objects and the description of the associated manipulations in a
modul e embodi es in fact an impl ici t defini tion of the space of all
legal states for this object. A user who inserts a new object
defines, with the declaration of its type, its state space, and will
be called the owner of the objec t.Different views may share an object
in a non- conflicting manner, if they resepct the deftned state space.
This however, is guaranteed in the module concept because all changes
of an object's state initiated from any view will be executed by
(local) operations of the associated module and this module has been
designed to guarantee the desired intensional properties.

It is however also legal for a view to focus on a substate space
of a data base object only. This may be achieved by defining a view
modula which enforces an appropriate restriction. Given this, views
may be distinct with respect to the set of entities and relationships
they encompass, as explained in the previous paragraph, and with
respect to the set of instances of common entities and relationships.
Although different views may be distinct with respeot to the set of
instances at a certain time (that is, with respect to their
extensional properties) they must agree on the state space of common
entities and relationships (that is, on their intentional
properties) •

6.3.2 The Image of Data Base Objects

Views have been defined to exist continuously. They will not be
created and maintained temporarily but are a user's permanent window
to the data base. In order to represent different permanent windows
to the data base we introduce the notion "image of an object".

If the substate spaces of an object are different in different
vi ews, components of this obj ect may exi st at a certain time which
may legally belong to one view (that is, to one sUbstate space) but
not to another. One may say the different views have different images

40

of an obj ect, that is, they see different instantiations of an
object. One may represent images of a data base object . withi n the
Do-graph framework as in Figure 7.

FS

view 1

F/f1 , PfF1
_ F/f2 , P/2
APS

•
FJfN , PfFN

FJf1 , •••
F41=2, • ••
•

I

•
F#=N, •••

view 2

PfF1 , ...

p •

'(
PfF1 , •••
Pf2, ...

•
PfN, ...

PfN+M, ...

Fi gur e 7

•
PfFN+M, •••

I

View 2 sees an object P which embodies an instantiation of P
whi ch represents all available planes. View 1 contains instantiations
whi ch represent all allocated planes. The different i mages of the
obj ect are defined t hrough t he selector relations APS (FI! ,P I/) and
r(PII , ...) . The y both identify different subsets of the set of
components of P and make them visible in different views.

The two different views may be created and maintained because of
the f ollowing defini tion of the twoo view modules:

Assl.ID e the type of P is defined by a modul e

(create-plane,
search-plane,
insert-plane \
delet e-plane)

Different instantiations of an objec t P may be created and maintained
in the two different vi ews if different s ubsets of the set of l egal
operations may be called from the two different views.

41

VIEW 1 ' The Schedulers ' Vi8W)

search-plane
Semantics: No ne of the changing operations on P can be initiated from
view 1. -Thi. s is to express t he fact that view 1 is only authorised to
initiate the allocation of already recorded planes . The s e t of
com ponents of P in view 1 will then be at any time a subset of the
set of co mp onents seen in the subsequently defined view 2.
Consequently, the set of possible states of P in view 1 is a subset
of the set of possible states of P in view 2.

VIEW 2 (The Inventory View)

search- pl ane;
insert-plane ;
Semant ics : Insertions of com ponents into P may be initiated f r om view
2 without any r estriction to indicat e its authority to record the
exist e nce of planes for further use. The de letion and update of
compo ne nts, however, must be reserved to a nother view which has
cont rol o ver both views and is abl e to prevent the deleti on or update
of already all ocated planes. (One may call this a superview.)

6.3.4 Communication Among Views

One may disti ngui sh t wo basi ca lly di fferent interrelationships
between views in a data bas e . They may ei ther coexist (that is, there
is no interferen ce bet ween views al though they have components in
common) or they may cooperate (that is, a strictly controlled
communicat ion may occur by making changes of a shared object visible
to all views whi ch see the object). Both concepts will be briefly
discussed in the following paragraphs.

Views may be defined to coexist because the D -graph concept
allows one to maintain and manipul a te just imaggs of data base
objects . It t herefore provides means to manipulate the data base via
one view without affecting any other view. Views coexist in the data
base, in general, if the followin g o peratiOns are performed:

(1) insert (component of object). Its effect would be a modificati on
of the i mage of the object and o f its set of components. The
component inserted via one view, how ever, would not be visible in
other views, si nce the object's image seen in the other views has not
been changed .

(2) delete (component of object). Its effect may be just a change of
the image of the object without aff ecting the state.

Views cooperate if update operations on shared objects may be
performed. Update operations preserve all the images and change the
state of an object. The resulting c hanges are therefore visible in
all views which reference the object. In order to keep the data base
in a

42

I

c o nsi s tent state, a general policy for the performance of updat es via
different vi ews must be established.

(1) If a non- owner view seeks the shar i ng of an object, it mus t agree
to all possi ble changes of this object made by the owner o f t he
obj ect .

(2) An owner view may grant the opportunity to change an object i t
owns to all or a selected number of other views. A non- owner may t he n
accept t hi s opportunity.

Bas e d on a more detailed explanation in (WEB 16) one ca n
concl ude that i nsertions and del etions may be performed not causi n g
conflicts among user views. Upda tes may be performed to enabl e the
communicati on be tween views if pr oper rules for this communica t i on
are set fort h.

6.4 Th e Module Oriented View of Data Base Management Systems

Sane e xis ting and most proposed data base management systems are
structured in a l ayered f a s hion . The l ayers cor r es pond t o the

. different modes f or the r epr esent at i on of i nf ormation in t he data
bas e (u sua ll y called l o gi ca l and ph ysical in a two- l e vel
architecture, or in a t hree-level architectur e, extern al , conce ptual
and int e r nal). The laye r s are empl oyed successively for dat a base
interrogations and ma nipulations (Figure 8) .

6) (S)

t
E1 E

• • • n

:
c

I
~

I

Figure 8

43

A number of external "machines" will be designed to process
different users' interacti on languages. The external "machin es" will
be implemented in terms of a conceptual "machine" which in turn will
be implemented by an internal "machine". Usually different types of
data (that is, differ ent ly structured or differently manipulatable
data) will be processed by each of thes e "machines".

The module concept provides means for the implementation of
those "machines" and co nforms t herefore with this principle dat a base
management system architecture. It offers, however, some further
system structuring capabilities which are appropriate to d e fine
arbi trary structural refinements for each machine. Refinements may be
either functional (that is, the gross function of a machin e is
decomposed into sub- functions of component machines) or data driven
(that is, a machine which processes a number of types of data wil l be
decomposed in a number of component mach i nes each processing a subset
of the types of data). Such an ar chitecture may then be depicted as
in Figure 9.

c

I

Figure 9

This architecture may be de veloped in a coherent way in an
overall design process. It may be also the result of an extension of
already existing data management systems (which will then be employed
by the modularily designed levels above) .

44

7. Other Related Work

The modul e concept has been appl ied to a number of other
problems in data base management which will not be described in
detail here .

(1) A software design st rat egy based on the module notion has been
applied to develop a methodology for t he design of a family of dat a
base systems . The strategy supports a top-down desi gn of modular data
base systems (Yeh 77, Yeh 78) .

(2) A few attempts have been report e d to develop a methodology for
the formal specification and verification of data base systems. The
methodology is bas ed on concepts for the algebraic specification of
modules (PAO 77, EKW 78 , BR 78).

(3) The benefits which can possibly be gained from an application of
the conce pt in designing distributed data base systems have been
described in (HEB 78) .

(4) Last, but not l east , the concept has been applied to model
security and privacy enforcement mechanisms (MIN 76).

8. Conclusion

The modul e conce pt has been shown to be sui table to model the
main features of data base sys tems. It s hould consequently contribute
to the simplification of the data base system developnent and to the
enhancem ent of data bas e systems. The use of modul es as a descriptive
tool does not imply any redefini tion of accepted basic concepts in
data base management. It offers however, in some cases, a more
precise definition of the concepts.

Al though an i ncr eas i ng number of peopl e are doing work on the
subject , experimental pr ojects along this line have not yet been
report ed so far. The presentation was aimed at stimulating some
further work on the application of the concept to database systems.

Acknowledgement

The author gratefully acknowledges the careful reading of an
earlier draft of the paper by M. Brodie and H. -J. Kreowski, and many
helpful comments by N. Roussopoulos, H. Ehrig, and K. Kreplin.

45

lJiscussion

There was some discussion about the module concept and whether
it helps in sp8cifying integrity constrai nts in a data base. Dr . King
enquired f rom t he point of view o f dat a ba ses and their
implementa tio n in FL1 and aske d what was n ew about the proposed
methodology. In PL1, a procedure with multiple entry pOints can be
used to obtain the e ff ect of a module - so are there any new language
f eat ures that are needed in order to program in the manner s uggested?
Dr . Weber replied t hat he is proposing a n ew philosophy where t he
notion of unive rs al operations (insert, delete, update etc.) on a
data base is absent. Rather, specific operations on objects are
associated. This has t he fu r ther advantage that the additional notion
of integrity co nstraInts is not neede d since it is capture d in the
speci fi c operat ions on objects. Dr. Ki ng disagreed with the last
point and said that such const r aints must be spec i f ie d .
Prof. Wass e rmann intervened and said that there can be two approaches
to the specification of integr ity constraints. One is to collect all
such constraints on the data bas e together and then thes e constraints
must somehw be chec ke d; we are not sur e as to how, whi ch one and
when, but we have some vague ideas abo ut it . The second approach
associated with the module concept is to associate constraints with
modules such that the specified operations maintain the constraints.
This considerably simplifies integ rity checking.

Bibliography

(ANS 75)

(BCS 77)

(BR 78)

(COD 70)

(OAT 75)

(DBTG 71)

(EKW 78)

ANSI/X3/SPARC Study Group on Data Base Management
Systems, Interim Report, ACM FDT Bulletin vol. 7, No.2
(1975).

The British Computer SOCiety Data Dictionary, Systems
Working Party Re port, AC M SI GMOD RECORD, vol. 9, No . 4
(1977) .

Brodi e, M., Specification and Verification ofo Data Base
Semantic Integrity, TR CSRG-91 1978, Uni v. of Toronto .

Codd, E . F . , A relational model of data for large shared
data banks, Comm . ACM, vol . 13, No . 6 (June 1970).

Date , C . J. "An Introduction to Data Base Systems" ,
Addison Wesley (1975) .

CODASYL Systems Committee, Report of the CODASYL data
base task group, ACM (April 1971).

Ehrig, H ., Kreowski , H.J . , Weber, H. "Algebraic
Specification Schemes for Data Base Systems" Technical
Report HMI-B266 , Hahn- Meitner- Institut Berlin (1978) .

46

(llEB 78)

(LIS 74)

(LIS 77)

(MIN 76)

(NIJ 76)

(PAO 77)

(PAR 71)

(PAR 72)

(PAR 74)

(VLOO 75)

(VLOO 76)

(VLOO 77)

(WEB 76)

" .

(WIR 77)

Heb a lk a r , P . G., "Appl i c at ion Specification for
Distributed Data Base System s" s ubmitted for publicati on,
1978 .

Lisko v, B ., Zill es , S ., " Programming with Abstract Data
Types" ACM SIGPLAN Notices , vol. 9 , No . 4 (April 1974).

Liskov , B . , "Abstrac tion Mechani sms i n CL U, " Comm. ACM,
vol. 20, No . 8 (Augus t 1977) .

Minsky , N. , Intens i onal resolut i on of privacy protection
in data base systems , Comm. ACM, vol. 23, No . 2 (April
1976) .

Nijssen, G. M. (ed .) Model l ing in Data Base Management
Systems, North Holland (1976).

Paol i ni, P ., Pe l agatti , G. , "Fo r mal definition of
Mappings in s Da t a Base" , ACM SIGMOD Confere nc e
Proceedings (1977) .

Parnas, D., "Information Distribution Aspects of Design
Methodology", Information Processing 71, North Hol land
(1971) .

Parnas, D. , "On the Criteria to be Used in Decomposing
Systems into Modules", Comm. ACM, vol, 15, No. 12 (Dec.
1972) •

Parnas, D. , "On a Buzzword': Hierar chical Struct ure",
Information Processing 74 , North Holland (1974).

Kerr, D., ed . Proceedings of the First International
Confernece on Very Large Data Bases , available thro ugh
ACM (1975).

Lockemann, P . , Neuhold, E . Proceedings of the Seco nd
International Conference on Very Large Data Bases, Nort h
Holland (1976) .

Proceedi ngs of the Third International Conference on Very
Large Data Bases, a vailable through ACM (1977) .

Weber , H. , "The D- Graph Model of Large Shared Data Bases:
A Representation of Integrity Constraints and Views as
Abstract Data Types", IBM Research Report RJ 1875 (Nov.
1 976) •

Wirth, N . , "Modula: A Language for Mod ular
Multiprogramming", Software Practice and Experienc e , vo l.
7 (1977) .

47

(WUL 16)

(YEH 11)

(YEH 18)

Wulf, W.A., LONDON, R.L., and SHAW, M., "An Introduction
to the Construct io n and Verification of Alphard
Programs", IEEE Transactions on Software Engineering,
vol . SE-2, No.4 (Dec. 1916).

Yeh, R.T., Baker, J .W. , "Toward a Design Methodology for
DBMS: A Software Engineering Approach" in (BLDB '71)

Yeh , R.T., Roussopoulos, N. , Chang, P., "Data Base Design
- An Approach and Some Issues" Technical Report S DB EG-4,
Universi ty of Texas at Austin.

48

