
Abstract:

SYSTEM PROGRAMMING WITH A COMPUTER MANUFACTURER

Mr. J. Thow

Manager,
Computer and Programming Systems,

l.B.M. United Kingdom Limited,
Hursley Laboratories,

Near Winchester, Hants.

The scope of the work open to University graduates entering
the system programming department of a large computer manu­
facturer is described, and the opportunities for further
training provided within the company are outlined. The
technical environment in which this work is carried out is
illustrated by a description of the program development
process. Finally, some aspects of the physical environment
are discussed.

Rapporteurs :

Mr. M. J. Elphick
Mr. J. F. Dunn

121

1. The scope of the work

Mr. Thow began his talk with an apology on behalf of his

colleague Mr. John Nash (well known for his work on the development of

PL/1) , who had been scheduled to give this talk but was unable to do so.

Mr. Thow then went on to say that he had enjoyed the seminar very much,

and although he felt that some of the arguments made had been indefensible,

he had been vastly encouraged by the sheer enthusiasm shown for computer

science which must surely be passed on to students. For a young man

entering his department, enthusiasm is essential. 'We can channel en-

thusiasm, with apathy we can do nothing'. The ability to think without

prejudice and to discuss matters clearly and forcibly is also important,

as much work in systems programming with a manufacturer is done by talking

in groups and at meetings. It is immaterial what programming languages

are taught at colleges since students entering a programming department

will be trained in the languages they are to use.

Figure 1 shows the four broad types of work classed as systems

programming. General applications packages for the major industries are

included in 'System Programming' because, as Mr. Jackson had remarked,

many of these packages are becoming so large that they are in effect becom-

ing systems. In advanced technology, new techniques in the production and

development of products are investigated, and new languages are simulated

using old ones to see how they will work and what will be their use and

impact. The personalities required are very diverse, and each entrant to

the department tends to gravitate into whichever of the four areas of work

shown is suited to his personality: the more aggressive 'task oriented'

people go into product development and the more abstract and academic into

language ; the 'inventors' choose advanced technology and the 'salesmen'

systems support .

In Figure 2 are shown the sort of things people do in a systems

programming department. Most of these need no explanation . Programmers

are encouraged to enter any of the sections shown, even though the connec-

tion with programming may not be obvious. For example, if more programmers

join the pUblications writing section, the readability for other programmers

of the literature produced should be improved. Test development is regar-

ded by many programmers as a secondary activity, but it is important that

good programmers join this department and help to develop new tools for

123

testing products. The difficulty in test development lies in the size

of many of the programs to be tested; these programs are required before

release to be capable of handling correctly practically all of the known

test cases and should be able to cope reasonably with the few remaining

cases. Nevertheless, customers will still find errors in the programs,

showing that better tests are needed. Programmers are useful in the sys­

tems integration department, where components developed at various centres

are put together and tested prior to release. They can also help develop

programming tools which control the development of a product, its updating

and correction, and the backtracking necessary in the event of a major

error.

2. Further training

Apart from the normal induction course that most companies put

new recruits through, I.B.M. provide a four month 'graduate course'. This

is divided into four modules:

1. An Assembler course (including the use of macros).

2. A PL/1 course.

3. The basics of JCL (~ob Qontrol ~anguage).

4. Computer room procedures.

The first two courses each take almost two months, while the last two

together occupy only about one week. Teaching is by lectures and prac­

tical work; during the latter people work together in small teams. The

ability to cooperate in team work, and the realisation that different

orders of magnitude give rise to different problems, are two things that

companies like I.B.M. would like to see encouraged in Computing Science

courses.

After this initial course, the graduate is now able to make

effective use of the programming languages adopted by I.B.M. and to work

efficiently in this environment. During his second and third years as a

programmer a set of intermediate level courses are available, and Figure 3

illustrates the range of topics covered by these. This is an extract

from a handbook describing the European Laboratories Intermediate

Professional Training (ELIPT) program. Some of the courses might be

considered to be purely educational -- for example, course 060 (Formal

Definition) covers the 'Vienna technique' for the formal definition of

programming language semantics -- while others are more practical, such

124

as course 070 (Implementation of PL/1) which is intended to show someone

using PL/1 how to make the best use of the current compilers. Not all

programmers do all courses; on average, a programmer will spend one to

two weeks annually on such courses. As Mr. d'Agapeyeff observed for CAP,

the company finds that this is about as much formal classroom training as

can be afforded after the initial four months course.

Referring to Figure 3, Professor Duijvestijn asked what was

taught under the heading of course 055, 'Systems Implementation Languages'.

In reply, Mr. Thow said that at the moment the emphasis was on 'clever

ways of using macros' to help in writing systems, together with some theo­

retical speculation on, e.g. how one could use PL/1 to write a PL/1 com­

piler, and what features a good systems implementation language ought to

have.

3. The technical environment

On joining a computer manufacturer, the new programmer will

almost certainly find himself part of a team, probably workong on a rather

large system. As is well known, the complexity of such large systems

grows rapidly with their size and requires the imposition of standards,

procedures and controls to ensure their orderly development.

(At this point in his lecture, Mr. Thow illustrated some of the

problems of management and control in large organisations by a number of

slides, of which we reproduce one in Figure 4.

This demonstrates several points, including:

1. The tendency for the 'workers' to sit down and cheer from

the sidelines; in a large organisation, it is often difficult

to appreciate that things ~ be changed.

2. The need for complete (as well as exact) specifications

here, each team has followed its specification, building the

second rail on the right of the central one.

3. The need for a pragmatic solution to such calamities

as a pragmatist, the speaker would insert an S-bend (of a

length depending on the time left before completion) and issue

an appropriate warning. An academic might possibly devise an

inversion operator which, when applied to a train at the junction,

would reflect it about its left-hand wheels!)

125

Standards cover a wide range, from the way code should be laid

out (for ease of reading) and the precise amount of documentation required

to the naming of variables and the maximum size for a module. They are

collected together in a manual for the programmer's guidance. Procedures

and controls are as essential as they are numerous, and can all be rather

confusing to a new programmer. One aspect particularly difficult for

someone coming from a University is the change from an environment in which

knowledge is unrestricted and publication encouraged to one in which every­

thing he knows and learns about some particular concept is restricted, and

will not become public until some future 'announcement date'. This is

illustrated by Figure 5, showing the variation in the information available

for a typical product over the period from its design and development to

final release.

In order to demonstrate the sort of control encironment that the

new programmer will find, Mr. Thow went briefly through the program develop­

ment process as used by I.B.M., and illustrated by Figures 6 to 9. In

Figure 6 the various stages in this development process are listed; with a

large system, the average time elapsing between acceptance of detailed pro­

gramming objectives and final system test is about two years. Programming

objectives are prepared by marketing people and programming specifications

by those who will implement the system -- there is an iteration round here

until agreement has been reached, before detailed logic specifications are

prepared and coding starts. Tests are down at both component and system

level; the 'alpha' test is an initial test of feasibility which may be on

paper, or may include some running code, while 'beta' tests are designed

to prove that the product is ready for shipment. These final acceptance

tests are followed by release, maintenance and eventually withdrawal.

An analysis of how resources are used in the successive phases

of development is shown by Figure 7. It is interesting to note that at

the peak of the project the real programming activity (in the top shaded

area) accounts for rather less than half of the total resources being used.

The next figure (Figure 8) details the manner in which the development of

such a system is controlled, and shows the division of the project into

'phases' (0 to VI). Control is applied by having a 'phase meeting' of

all people concerned at the management level who must agree that the project

has met the objectives of the current phase (the end-points) before moving

126

onto the next one. Even more detail is shown in Figure 9; basically,

this indicates which documents (plans, estimates, objectives, etc.) will

be required at the various phase meetings listed along the top. The

number of people involved in such meetings will typically be around 20;

they will get detailed presentations by the project manager and his team,

raise objections if necessary, and eventually decide whether the project

is ready to move to the next phase. A lot of the documentation for a

project will be gathered into a System Manual; the responsibility for

this lies with the project manager but the programmers themselves will be

heavily involved in the preparation of the various documents.

4. The physical environment

Mr. Thow continued with a number of slides showing some of the

very attractively situated buildings in which I.B.M. carries on its

business; these included the laboratories at La Gaude (France, Uithoorn

(Netherlands), Yorktown (U.S.A.) and Hursley (England). Although the

atmosphere and surroundings in which the programmer finds himself are

important, they are not as important as what he finds inside the buildings.

Some experiments in interior planning had been carried out in

I.B.M., attempting to introduce the concept of the open plan 'landscaped

office ' t in which a single large space is broken up into work, discussion

and rest areas by the layout of furniture, plants, etc. rather than by

internal partitions. The noise level in such an office is an important

factor, and most programmers have not been convinced that their style of

working, alternating between intense (and often noisy) discussion and

long periods of uninterrupted concentration, would fit into this environ­

ment .

In general, programmers still work in 'conventional' offices

holding between two and six (occasionally eight) people. Where possible,

access to computing services will be via a terminal, serving two to four

people and providing both interactive and remote job entry facilities.

Continued thinking about the needs of programmers has given

rise to the idea of a 'programmer work station', providing in a compact

unit lots of storage space and flat working surfaces. Several proto­

types had been built; these were in most cases L-shaped, for reasons

both of privacy and of concentrating the working surfaces.

127

This, then has been a very brief outline of the type of work

that awaits your graduates and some idea of the environment in which

they will find themselves.

5. Discussion

Professor Pengelly remarked that there was clearly a very large

information-handling problem in this sort of work, and asked what role

the computer might play in solving this.

Mr. Thow replied that this was a difficult program in its sheer

size, as was the type of commercial data-processing problem discussed

earlier; in his department, a Laboratory Information Systems Group had

been set up, with the aim of getting the computer to assist in controlling

the vast amount of information generated and presenting it in a timely

fashion.

Professor Randell observed that Mr. Jackson had referred

earlier to 'those programmers who won't read, don't know and don't want

to know'. Clearly, I.B .M. put a lot of effort into training programmers

should the company be their sole source of information, or should there be

journals and other sources of information available, Which programmers

themselves regard as essential to keep up with?

Mr. Thow pointed out that the Company was interested in training

programmers to do a job - and the education given was directed towards

this end . They could do no more than encourage people to join societies

(and give them time off for committee work) and to read the journals pro-

vided in the libraries.

programmer.

The initiative must come from the individual

Mr . Jackson asked how the speaker regarded the classical dilimma

of management : either one has professional managers who are not themselves

competent programmers, or one promotes good programmers to manage others

and loses their talents?

In reply, Mr. Thow said that he tried both approaches (and per­

haps fell between two stools in doing so!) As with all dilemmas, one

adopted the best solution to the problem at the time it presented itself.

128

TYPES OF PROGRAMMING

PRODUCT DEVELOPMENT

LANGUAGE

System Control Programs

Program Products

General Application Packages

Development

Control

Standardisation

ADVANCED TECHNOLOGY

Investigate New Techniques

Model New Language

SYSTEM SUPPORT

Technical Support to Sales Force

After-Sales Service

Figure 1

129

Schedulers

Dispatchers

Access Methods

Utili ties

Assemblers

Compilers

Banking

Insurance

Manufacturing

PROGRAMMING FUNCTIONS

Product Development

Product Programming (Maintenance)

Market Planning

Mission Planning

Test Development

Computer Services

Systems Integration and Release

Programming Tools

Publication Writing

Systems Management

Product Measurement and Analysis

Figure 2

130

LIST OF AVAILABLE COURSES

Courses Specifically for Progr ammers

COURSE
NUMBER

001

050

051

055

060

070

650

655

705

720

The ELIPT Handbook

Advanced Programming Techniques

Compiler Techniques - I

Compiler Techniques - 11

Systems Implementation Languages

Formal Definition

Implementation of PL/1

Job Control Language and utilities

Data Management

Modelling and Simulation

Test Technology

Figure 3

1 31

PAGE

15

17

18

19

20

22

23

26

29

31

Page 11

Picure 4-

INFORMATION OUTPUT

RESTRICTED PUBLIC

University ...
Research

Industrial
Research

Advanced ...
Technology

Product ...
Development

Product ...
Engineering

Manufacturing ...

Analysis ...

Figure 5

133

Yrs

1

THE DEVELOPMENT PROCESS

Market Analysis

Statements of Requirement

Programming Objectives

Programming Specifications

Logic Specifications

Alpha Test

Component Test

Component Beta Test

Integration and Test

Beta System Test

)

---.....)

Maintenance

Local Maintenance

Withdraw

Figure 6

134

Announce

Ship to PID

Resources
(men, $)

The Programming Development Process

Design Review

Phases and Functions

Implementation r- -,
I I Product Review

Distribution I
I
I
I
I
I

\

("I \ \Jl
o \~

\ ~ \~ \~ ~. ~ ~
-<\\ \A\~\.A
t)t.\~\~\".A\~""

\(.0\"\(0\ q ~
g,.\ \) loo),

Machine Operation

"Follow - Up
~~ ."
'"

}Lioe
Documentation }

__ _ 1est Development = = _ Support

C· Control and Administration

Time ..

PHASES

Phase Title End Point
No.

0 Planning Entry 2-Year Plan

I Archi tecture Approved Program

Objectives and Initial

Program

Functional Specifications

II Specification Approved Final

Programming Functional

Specifications

III Design/Implementation Alpha Test

Complete

IV-V Implementation/ Beta Test

Integration Complete

VI Maintenance Transfer to

Local Maint.

Figure 8

136

Sununary
Description

Justification

System Plan

Programming
Objectives

Program
Functional Specs.

Program
Logic Specs.

Documentation
Plan

Publiclations
Plan

Program
Publications

Integration and
Test Plan

Distribution and
Maintenance Plan

Schedules
- Firm

- Tentative

Cost
Estimate

- Firm

_ Tentative

Hardware
Obj/Spec.

Market
Review

Cost to Date

Phase Review
and
Pro j. Sununary

SUMMARY OF REQUIREMENTS

o
Initial

Estimate

Prelim.

I

Il - V

Informal

I

2-Year

Entry into
2-Year
Plan

I
Update

Update

Comp and
Subcomp
Level

Approved

Approve
Initial

Il

III - V

Formal

Il

III - IV

Il
Update

Group
Forecast

Detail
Level

Revisions

Approve
Final

Alpha
Plan

Alpha
Plan

Prelim.

Prelim.

III

IV - V

Formal

III

IV - VI

(Identify
Technical Problem)

Obj.

I

Approved
Obj. and
Initial
Spec.

Figure 9

137

Spec.

I - II

Approved
Final
Spec.

III
Update

Group
Forecast

Update

Revision

Complete

Beta
Plan

Beta
Plan

Alpha

Complete

Approve

IV - V

VI

Formal

IV - V

VI

I - III

Alpha
Test
Complete

IV-V
Update

Analysis

Analysis

Revisions

Analysis

Analysis

Beta

Analysis

Analysis

Analysis

VI

I - IV

Beta
Test
Complete

