
Abstract: 

THE CREATION OF SYSTEMS PROGRAMMERS 

Professor W. C. Lynch 

Case Western Reserve University/ 
Computing Laboratory, 

University of Newcastle upon Tyne, 
Newcastle upon Tyne. 

This paper examines the relationship of Computer Science 
to the art of programming. It pays particular attention 
to the question of what role the art of programming should 
play within the University and to the steps which the 
University should take in order to implement properly that 
role. 

109 





1. Introduction 

Programming, particularly systems programming, is an art, excel-

lence in which is aspired to by many and achieved by few. The processes 

and mechanisms by which these artists are created and the relationship to 

computer science and computer scientists is a topic which I wish to pursue 

in this paper. 

2. The role in computer science 

Let us begin rather obliquely by examining compute r science. If 

the name computer science is to mean anything, this discipline must f irst 

and foremost be a science. This is to say it must investigate, by theory 

and by experiment, a body of organisation or mechanism that is more or 

less beyond its direct control. Physics and chemistry obviously qualify 

as sciences; social science qualifies on the grounds that it investigates 

a mechanism, human activity, which is presumed to be beyond the direct con­

trol of the social scientists; engineering science is justified as a science 

on the grounds that it investigates the art of engineering practice and 

attempts to reduce it, via scientific methods, to a more quantitative dis-

cipline. It follows then that computer science should investigate, via 

theoretical models, observation, and experimentation, the practice of apply­

ing computers to their wide range of application. 

Computer science functions by drawing upon the successes of past 

theory and upon the experiments and observations of the art of computer 

programming, in order to formulate new models describing the processes by 

which programming is practiced. Such models must then be tested for 

accuracy and relevance against the results of the actual practice of pro­

gramming. Those models which prove useful will then, hopefully, have some 

impact upon the practice of the art. 

The computer scientist is then heavily dependent upon the practice 

of computer programming in the hands of the programming artists for the raw 

material upon which his science is built. A scientist without either the 

scientific method or the material to investigate with it is not a scientist 

at all. 

3. The art Lf computer programming 

Programming then is an art, not a science. Common experience 

with programming and programmers tells us that it contains a great many 

111 



elements which defy scientific description. One can speak meaningfully 

about technique, style, and aesthetics; the relationship of these to utility 

is roughly the same as it is in many other areas which involve both artistic 

and utilitarian aspects, architecture for example. 

If programming is an art, we may then investigate the creation of 

programmers as artists rather than as scientists. A good way to begin such 

an investigation would be by examining the creation of artists in other areas. 

3.1 Theory and technigue 

One important element in the creation of an artist in any area is 

the learning of the relevant theory and technique which have been developed 

through scientific investigation of the art form. In painting, f or example, 

this would involve the geometry of perspective, technique of painting materials 

and the techniques involved in the physical application of these materials. 

In programming, the theory and technique involve the acquisition of those 

basic principles which, through computer science, have been found to be use­

ful. A roster of courses for most computer science departments will indicate 

specifically the items which are included under the heading of theory and 

technique. 

3.2 Environment, past and present 

A vital ingredient for any artist is the environment, past and 

present, in which he finds himself. A writer cannot create significant lite-

rature without drawing from his environment significant topics on which to 

write. A programmer, operating in the business sphere, cannot construct 

meaningful systems and programs without having significant experience with 

the business area in which he is dealing. A scientific programmer certainly 

has significant difficulties if he has very little familiarity with the 

scientific area in which he is constructing the application programs. The 

artist's past environment influences to a very great extent the efficacy 

with which he is able to operate. The artist also draws upon his past 

environment and experience in another way -- the creative artist will cer­

tainly have had exposure to important past works by other people. Close 

study of significant works leads to an understanding of the techniques and 

style previously employed and certainly generates new ideas and new thought 

concerning future works o An artist's development and ability to function 

is also dependent on his present environment in the sense that he must be 

given sufficient latitude in order to innovate and express style and its 

11 2 



aesthetics. A project with too rigid a specification will be carried out 

in a mechanical rather than artistic fashion. The end result is apt to 

bear the mark of this and the artist will certainly profit very little by 

the experience. 

3.3 Clinical Practice 

A third major facet in the creation of an artist is the opportunity 

for practice and critique. One would certainly have no chance of creating 

an accomplished artist, writer or musician without giving them sufficient 

practice in their art, together with ample critiques of their style and 

accomplishment. This clinical experience occupies a major portion of the 

time spent in the training in the arts. 

4. Science vs. Art 

The aspects that I have dwelt on are then summarised in Figure 1. 

Science 

------. Past analysis 

Successful artistic practice 
Art~ ____________ ________ __ 

":>. l. 
Practice Environment 

\ 
Theory and 
Technique 

The science area at the top depends for raw material upon the past analyses 

created by previous scientists and upon the current successful artistic 

practice as determined by the contemporary artists. The results of the 

scientific endeavour then provide new analyses upon which science can be 

partially based and provide new theory and technique which can be applied 

to the art. The artists clinical practice then depend upon the theory and 

technique provided by the science, and upon the environment and experlence 

which is provided primarily by the actual practice of the art. The practice 

of the art provides the endeavour which the science the proceeds to investi­

gate. 

It may strike the reader that the above comments are so obvious 

to be hardly worth stating. It is worthwhile to contrast the above 

principles with some of the current states of affairs of Computer Science 

in universities. Let us imagine for a moment that the interaction between 

the science and the art is broken. The interaction paths in Figure 1 will 

be erased. We may then easily predict the results of such an isolation; 

first of all the scientists will, on the basis of past analysis, continue 

to propound theroies which will not be subjected to experimentation. There 

113 



will thus be no way to determine the truth, validity, or relevance of the 

theory. The scientists will then be in the same position as mediaeval 

scientists who believed it beneath their dignity to attempt an experiment 

to determine whether or not their theory was valid. An even more serious 

and subtle difficulty also practiced by the mediaeval scientists is the 

tendancy to propound theories which predict everything and fer which no 

experiment can be devised to disprove the theory. Such a theory fails the 

test of Occam's razor, and is useless on the ground that it says nothing. 

Such a science will wander rapidly away from reality and provide no help 

whatsoever for the practice of the art. Once this has happened, the 

scientists will have little to say in the way of theory, the technique of 

which is of use to the artists. The artists in turn will have little use 

for the scientists or their trappings and an anti-scientific outlook is very 

likely to develop on the part of the artists. With a disdain for things 

theoretical and scientific, the artists are likely to produce creations in 

which scientific exploration is morr than usually difficult. Such a separation 

once created, is not likely to spontaneously heal itself. 

5. Implications 

5.1 Computer Science Department vs. Computation Centre 

Let us now try and identify these components within the typical 

university. Computer Science is centred within the Computer Science 

Department and its graduate programmes. The programming art is generally 

located within the Computing Centre and to some extent, within the under­

graduate curriculum. In some cases, the Computer Science Department is 

estranged from the Computing Centre with virtually no communication between 

the two organisations. This has the obvious effect of almost totally 

cutting the interaction between science and art, leading to the above 

mentioned problems. The Computer Science goes off in some direction which 

is not particularly useful. A little more subtl e is the effect upon the 

actual practice of programming within the computation centre itself. Without 

theorectical guidance, such centres are apt to dissipate their resources in 

a fruitless frontal attack upon massive programming problems. 

One might expect the science and art to meet in the undergraduate 

curriculum. A perusal of many undergraduate curricula will reveal that they 

are usually woefully deficient in terms of providing an environment for the 

growth of the student and in terms of providing significant practice and 

114 



criticism. Such a curriculum is apt to be so full of theory and technique 

that there are very few course hours left for other environmental subjects 

contributing to the student's education. As I commented earlier, the artist 

must have some background dealing with the rest of the world that he is to 

operate with. It is likely that it is much more important that he be educated 

in physics or business or any of a number of other areas than it is for him 

to be up on the latest form of tree processing. 

5.2 Practice of the Art - Personal Experience 

Advanced practice of the art occupies so much time and effort that 

this aspect is either given little time or eliminated completely from the 

curri culum . Of course, short 2xercises are always included in any computer 

science curriculum. Many curricula however, present insufficient opportunity 

for the student to design, undertake and construct significant programming 

project in a form which lends itself to significant critique. Such major 

efforts are usually restricted to individual study projects where the 

opportunity for criticism, particularly from other students, is quite limited. 

Many curricula are therefore long on techniques and the latest programming fads, 

and short on the clinical aspects which lead to growth in the art. 

This practice at Case Western Reserve University is implemented by 

embedding a term project within the second semester of the systems programming 

course. This course is a two semester sequence, the first semester of which 

is concerned with the specific techniques of systems programming, such as 

symbol table techniques, scanning techniques, parsing techniques, code 

generation techniques and list processing techniques. A number of relatively 

short exercises to be run on the computer are included within this first semester 

material. The second semester material deals with two quite different topics -

the first, and perhaps the most important aspect of the course, is the project 

which has been referred to whereby each student constructs and operates a 

compiler for an algebraic language. The l ecture material of the course deals 

with something quite different, the topic of antext and operating systems. 

The sixty students within the course are divided up into teams of 

two. They are given the complete specification of a compiler to be produced. 

The language of this compiler is called Rational and it is an algebraic 

language which deals with arithmetic variables of types rational, integer 

and boolean. A normal complement of computation and jumping operators are 

included . The language contains no block structure, and only the most 

primitive procedure calls . Both the language and the output to be produced 

115 



are rather rigidly specified. This rigid specification has been imposed 

after much past experience so that the students may compare notes on their 

implementation and criticise each other's efforts. This rigidness also 

aides in providing a meaningful grade and meaningfl11 critique from the 

course instructors. Such critique, as I have indicated previously, is most 

important. 

Within these rigid guidelines, the students are allowed a great 

deal of freedom. They are free to choose their implementation language and 

students have chosen, from time to time, assembly language, Algol 60, 

FORTRAN, and CaBaL. They are advised that it will be easiest in Algol 60, 

and in fact, most students do choose this route. The teams of two are also 

free to divide the effort in any way they see fit. In this way they are 

taught the value of teamwork and also the difficulties of communications 

that arise when more than one person works on a project. This also allows 

them a more intimate way of reviewing and criticising each other's work. 

The division of effort is usually along the lines of one partner taking the 

scanner and pars er and the other partner taking the code generator. Neither 

one of them realises at the outset that the bulk of the coding effort is 

involved in producing the output and particularly the listings of object 

code. As a result this is about a tit division of labour. This in itself, 

provides the students with a valuable lesson. 

Of the thirty teams that initially begin the project, we find that 

perhaps 26 or 27 of them will successfully complete it, obtaining a compiler 

which produces code which operates more or less correctly . The brighter 

students will go beyond the specification and will build translators which 

will accomplish much more than is required. Usually the best four or five 

teams in the course will attempt global optimisation within the compilers, 

usually with a great deal of success. The code will use a multiplicity of 

registers and will retain register contents across statements. It is usually 

the case in such beginning efforts that these globally optimised compilers 

do a less than perfect job of local optimisation so that there is still a 

good real of room for improvement. The test deck applied by the instructors 

contains the usual repertoire of extremely nasty examples. Most of the 

compilers have at least several blatant errors in them resulting from the 

instructors applying cases which they had not thoug~of. This grading 

procedure which is possible because of the standard and rigid specification 

is itself a revelation to the students. 

116 



This project has been on-going for approximately ten years at 

Cas ' Western Reserve, and the format of the project has evolved over the 

years to the one described. There is thus a very large backlog of practical 

experience indicating that this is an appropriate format for balancing the 

various factors involved in the practice of the programming art. 

5.3 Management vs. Structure 

One might expect these aspects to be supplied after graduation 

in the form of employment experi ence. On the university campus, this would 

mean within the computation centre . In such circumstances, computation 

centres particularly take on an aspect of education; if in fact such clinical 

education is sponsored and fostered by the computation centre, particularly 

in conjunction with the computer sciences, a very pleasing organisation 

can result. In many cases, however, the centre functions in a very goal 

oriented way leading to projects which are very highly structured and 

organised and therefore constrained in such a way as to not leave much room 

for creativity or development of style. Such a short sighted attitude would 

be a computation centre's contribution to its estrangement with the computer 

sciences. 

A theorem due to Dr. MelyYll Conway is here relev~t concerning 

the structuring of programs and programmers. A statement of his theorem 

is as follows: 

Theorem 

The structure of a program (as a graph) is 

isomorphic to the organisation chart (as a graph) of the 

organisation producing the program. 

Conway proves this theorem as follows: First of all, he argues 

that the organisation chart is a homormorphic image of the structure of the 

program being produced. This is due to the fact that each module of the 

program must be assigned as an entity to a single subdivision within the 

corporation. If one attempts to assign a module to more than one subdivision 

within corporation, they will themse lves have to devise a communication 

path between halves of the module so as to be able to divide the effort. 

The program will then acquire additional structure reflecting the division 

across the organisation producing it. It may, of course, at this stage , 

be possible for a single organisation entity to implement more than one 

module of the program. Thus, Conway has establ ished the homomorphism from 

the program structure to the organisation structure. Conway then extends 

this homormorphism to an isomorphism by an application of Parkinson's Law. 

117 



If an organisation is to design and construct programs in a 

rational way, it then follows that the organisation must adapt its structure 

to the program rather than the other way around. This means that the 

concept of mobility is a highly important one for programming organisations. 

We then infer that an enlightened organisation must take into account the 

maintenance of a creative environment in the design and organisation of its 

programs, and hence of the organisation of itself. The organisation of, 

for example, the computation centre must be mobile enough to accommodate 

itself to these principles. 

If several systems are under development simultaneously, we infer 

that the organisation producing them must itself be organised along several 

different pathways simultaneously. Such seemingly amorphous organisations 

are typical of very small companies and in many ways account for their 

spectacular success. With such a small company or computation centre, one 

far-sighted manager can keep in his mind all the various organisational 

subtleties involved in the production of the various systems he is concerned 

with. He can also keep in mind development of the appropriate environment 

for his programmers. Retaining such mobility in medium-sized organisations 

is a challenging and largely unsolved problem. It is obvious that the 

computation centres of many universities are in a position to make signifi­

cant contributions in this area. 

6. Conclusion 

Ideally then we have the computer sciences and the programming arts 

in a symbiotic relationship, each bene fitting from the developments in the 

other; the programming art benefits from the relevant theories and techni~ues 

developed by the computer scientists, and the computer scientists using the 

results and the systems proved in practice as basic material upon which to 

build relevant models. The strength or weaknesses of the products of the 

universities will depend in large measure as to how well or how poorly this 

relationship has been established within the university. A poor relationship 

will lead to a narrow-minded and inferior product; an excellent relationship 

and an excellent environment will lead to graduates who are able to function 

effectively in a broad spectrum of areas and whose education will carry them 

over a considerable time span. 

We have then reviewed the relationship of computer science to the 

art of programming . We have examined some of the ramifications and impacts 

of this relationship upon the development of computer science and computer 

118 



scientists. We have investigated some specific ways by which the practice 

of the art of programming has been implemented in the past and we have 

examined some of the philosophical issues with which university computation 

centres are or ought to be concerned with respect to the relationship of 

computer science to the art of programming. 

Questions and Answers 

Professor Dr. H. Wedekind offue Technische Hochschule Darmstadt 

raised the question early in the talk as m whether programming could be 

treated as an art. He expressed the point of view that since an end 

product of some economic values was involved, the technical and professional 

considerations could not be ignored in favour of an aesthetic approach. 

Professor Lynch replied that he was in complete agreement with the point 

of view expressed by Professor Wedekind but as the previous speakers in 

the Symposium had dealt extensively with the scientific and professional 

aspects of programming, he wished to concentrate upon the artistic aspects 

arguing that the art of programming beyond that encompassed by science and 

professionalism was not a null object. As a result, Professor Lynch stated 

that his talk would be very heavily biased towards the artistic aspects of 

programming which as yet had not been dealt with by the Symposium. 

During a discussion of the compiler project, Professor Sidney 

Michaelson of the University of Edinburgh inquired as to what level were 

the students involved in the programming course. Professor Lynch replied 

that about t of the students were advanced undergraduates, and t of the 

students were beginning graudate students. For both of these classes of 

students the systems programming course was perhaps the third programming 

course that they had had. 

119 




