
Abstract: 

THE CONSTRUCTION OF ALGORITHMS IN A COMMERCIAL 
PROGRAMMING ENVIRONMENT 

Mr . M. A. Jackson 

Hoskyns Systems Research Limited, 
33, Chancery Lane, 
London, W.C.2. 

The commercial programming environment presents a class 
of problems whose complexity can easily become unmanageable. 
Creation of suitable programs is facilitated by careful 
structure. This paper presents structuring techniques 
which the author has found to be appropriate in this 
environment . 

Rapporteurs : 

Dr. J . J. Horning 
Mr. J. G. Gi vens 

97 





1. Introduction 

I would like to describe some of the problems facing people in 

a commercial programming environment and to describe some of our reactions 

to it. Unlike Mr. d'Agapeyeff, I do not feel that commercial programming 

is even remotely respectable. Some of the problems described will be 

trivial, and if their solutions are mundane that merely illustrates the 

sorry straits of commercial programming. There is a vast gap between the 

academic and commercial worlds. I hope you will bear with me if I des­

cribe problems and solutions in our own terms, rather than in the terms to 

which you are accustomed. 

2. By 'commercial programming environment', is meant a certain type 

of business data processing (normally for commerce, industry or government) 

which includes such things as accounting (payroll, sales ledger, purchase 

ledger, invoicing, costing, etc.) and optimization (route planning, stock 

control, production planning, etc.). Before the advent of computers the 

accounting problems were solved by armies of clerks, so we may be sure 

that they are computationally trivial. The optimization problems have a 

tiny nucleus of sophisticated mathematics which is almost buried by other 

considerations. 

What are the chief characteristics of these problems which 

determine the commercial programming environment? 

1. There are large volumes of data (25,000,000 records is a 

possible file size for an insurance application). 

efficiency is almost always a major concern. 

Therefore, 

2. Programs are not constructed in isolation, but as systems 

of programs, which are interdependent. 

3. Most problems are in some sense human problems, stemming 

from unpredictable human behaviour and tastes. 

4. Systems change all the time. New requirements keep them 

in a constant state of flux. 

5. Systems must continually cope with invalid data, and purge 

the results of invalid data. 

6. It is often necessary to process data retrospectively, 

correcting assumptions which have proved wrong. 

These aspects are stressed because they are the ultimate source of most of 

the difficulties in the commercial programming environment. 

99 



3. Systems and programming 

By a system, is meant a number of programs connected by a number 

of files. For example, the master employee file will be accessed by pro-

grams to calculate gross wages, process leavers and joiners, produce per­

sonnel statistics, record absences, etc. Note that different programs 

will access the same file differently. It would be expected that the 

number of leavers and joiners is small, so that program would probably use 

a direct access technique, while the volume of the payroll dictates that 

the file be accessed sequentially for calculating gross wages. 

Note that files themselves have structure. A typical file 

might consist of a number of customer groups, each containing a number of 

order record groups, which in turn ·consist of a number of item records. 

These logically related records become physically related by placing them 

in the same file. 

Normally, each program will use many files . Some of the files 

which might be needed qy a program to calculate gross wages are: master 

employee file, time sheets, tables of piecework rates, etc. Furthermore, 

for reasons of efficiency, a single program may be required to do many 

disparate things. Axiomatically: 'We can't afford to pass the master 

file more than once'. Thus, all functions which must be performed on 

the master file will be placed in the same program. (perhaps people 

shouldn't create such a system, but they do). 

ming. 

I am not talking today about systems design, but about program­

Perhaps I should explain what we take this to mean in a commercial 

environment. We distinguish four levels in the construction of a complete 

system: specifying user facilities, defining the computer model, program 

design, and program coding and testing. Firstly, we are concerned with 

what the user expects to put into and get out of the system. Secondly, 

we determine what programs and files will be needed in order to achieve 

this . Next we decompose the programs into pieces or modules, and finally 

we must decide how to code each module. The top two levels are the func-

tion of the system designer (usually misnamed 'systems analyst'), the 

bottom two, of the programmer. 

The interface between the systems analyst and the programmer is 

a program description. Typically, the analyst writes the description in 

100 



some fuzzy sort of procedural language. No compiler exists for this 

language (probably none could be written) so it is the job of the pro­

grammer to take this 'program' and translate it into a language for which 

there is a compiler available. Now the programmer reasons (usually 

correctly) that the description he is given contains errors. He there-

fore sees his role as follows: 'My job is to take this wrong procedure, 

determine what problem it is supposed to solve, and then solve that 

problem' . 

4. Modularity 

We need design tools. The flow chart is a hopeless tool for 

the program designer because it doesn't express structure. Figure 1, 

on the other hand, shows the hierarchical structure of a set of procedures 

without attempting to detail their flow of control. Arrows represent 

subroutine calls from one module to another. The goal is to break up a 

program into a number of such modules which can be constructed indepen-

dently by several programmers. This has a number of advantages in pro-

ject control, system maintenance, training, and especially in testing, 

but it does require that the modules be independently compilable. 

(Q. At this point Professor Dijkstra asked: 'Why independent compil-

ation? I can see the requirement that modules be independently written, 

but why must they be independently compiled?' 

A. Systems contain very many modules - hundreds, or even thousands, in 

one system. It becomes very difficult and expensive to co-ordinate 

program compilations which draw on the current work of many programmers.) 

What is a module? At Hoskyns the belief is that the appropriate 

unit is the pure procedure (one with no internal states). A stack is 

used to hold return links and procedure status and to provide working 

storage. (Recursion is thus allowed for, although seldom explicitly 

used.) How are such modules constructed? CaBaL is too restrictive and 

insufficiently flexible, while the assembler permits us to build all the 

necessary features. I will, therefore, talk in terms of assembler 

language. We start from a set of S/360 macros. A module is invoked 

(and the nece~sary stack adjustments called for) and defined using the 

OBEY and PROC macros respectively. 

101 



B 
1 

A 
1 

A 

B C D 

E F 

Figure 1: Hierarchical Structure 

A 
A 

2 

+ /~ 
C 

1 
D 

2 

C 
2 

B 

Figure 2: Compounding Data Structures 

102 

D 

C 



For example: 

5. Program design 

OBEY PROCA, (PO, ... ,P4) 

PROCA PROC (DO, • .. ,D4) 

PRO CA ENDS 

This organisation is fine so far as it goes. Let us now turn 

our attention to the problem of program design, i.e. how to draw the 

hierarchical module chart. We start by recognising (as we have already 

done) that files have structures above the record level, that is, they 

are segmented, non-homogeneous structures. This structure in the data 

provides an initial organization for the modules. Thus a picture of the 

file is taken as the picture of the program. Of course, a given program 

will deal with a number of files, so we have a preliminary step of com­

pounding these files into a single structure which is then used as the 

starting point for the modular structure. (See Figure 2). 

We then allocate each of the program functions to a module of 

this structure. There are two basic principles of 'rightness' for 

allocating functions within the module structure: the module must be 

executed the right number of times, and it must be executed at the right 

time, for the particular function under consideration. The final step 

is to recognise that some boxes may have a low density of functions, and 

can be compounded into fewer (and larger) modules. 

Because the file structures have to serve the needs of several 

programs, we may find at the preliminary design stage (of compounding 

file structures) that we have an impossible task: the file structures 

within one program may be incompatible. However, we choose to draw the 

module hierarchy, there will be modules whose relative levels a r e inverted 

with respect to the structure of one or more files. 

A tool which has been found useful is a data structure called a 

parameter set which consists of a procedure name and a set of default 

parameters, and is set up by a PARSE macro. (The choice of the name 

PARSE causes no confusion, since commercial people don't know about par­

sing.) A parameter set allows a default procedure name and/or set of 

parameter values to be passed into a procedure. For example, in solving 

the eight ~ueens problem discussed by Dijkstra, it is appropriate to set 

up the parameters of the print routine at the top level (Figure 3), but 

actually to invoke it only when a complete solution is found. 

103 



1 • PARSE 
PRINT RTN. 

2. CALL 
GENERATE 

~ 
GENERATE 
SOLUTIONS 
(RECURS lYE) 

~ 

PRINT ONE 
SOLUTION 

Figure 3: Use of PARSE in '8 Queens' Probl em 

1. PARSE 
READ RTN. 

2 . PROCESS 
FILE 

PROCESS 
CUSTOMER 

PROCESS 
ITEM RECORD 

READ ITEM 

Figure 4: Use of PARSE for File-independence 

104 



A second application is shown in Figure 4. The program is to 

be written in a file-independent form. Where should the item records 

be read? Obviously, this should be done in the item routine, but it is 

not desirable to reference the file explicitly at this level . 

the file access procedure is passed via a parameter set. 

Therefore, 

Similarly, probl ems may be resolved where the file structure 

does not match the logical structure of the routines (e.g. in preparing 

an invoice, the page heading will occur in the file above the line items, 

but whenever a line caus es a page to overflow the heading routine - passed 

in by a parameter set - must be called as a lower-level procedure). 

Another use comes in data validation, where errors may be de­

tected at many different level s , but a common error recovery procedure is 

to be used. We may PARSE a cal l of a system procedure which unwinds the 

stack to the level at which the PARSE has been executed and returns to a 

point in the procedure at that level. 

6. Structure within modules 

The macros discussed so far have served to clarify and improve 

the structure of a program constructed of modules, but there still remains 

the problem of a free-for-all within a module . This is undesirable , thus 

leading us to the development of macros for structuring modules internallyo 

In particular, we have found that GO TO's lead to an inordinate number of 

bugs, crossed loops, etc ., so several control macros have been introduced 

to replace them with more nicely structured forms. DOGRP ... ENDS serves 

to group a set of statements as a subroutine (without implying iteration). 

IF • •• ELSE ••• ENDS provides the cu s tomary conditional statement, and 

LOOP •• 0 ENDS specifies iteration . These structures all nest within them­

selves and each other . 

These macros greatly assist the structuring of modules, but there 

are still situations where it is hard to cope. For example, we may often 

wish to exit from a loop at some point other than its final instruction . 

The QUIT macro can be used for this purpose. In a more complex situation, 

suppose that there are two conditions VALID1 and VALID2 and five procedures 

P1, ' 0 ', P5. P1 computes VALID1 and P2 computes VALID2. If both VALID1 

and VALID2 are true it is required to invoke P1, •. . , P4, otherwise to invoke 

P5. This can be done using DOGRP and IF: 

105 



A DOGRP 
P1 

B IF VALID1 
P2 

C IF VALID2 
P3 
P4 

C ELSE 
PS 

C ENDS 
B ELSE 

PS 
B ENDS 
A ENDS 

This solution is cumbersome and inelegant because a. the invocation of 

PS must be repeated, and b. it requires a nesting structure three deep 

for a computational structure which is clearly not three deep. The 

POSIT macro avoids both these objections. The clause following POSIT 

is executed until a successful QUIT, (or the end) is found . The clause 

following ADMIT is executed following any successful QUIT, but not other­

wise. 

Repeating the previous example: 

A POSIT VALID1,2 
P1 
QUIT A VALID1 
P2 
QUIT A VALID2 
P3 
P4 

A ADMIT INVALID 
PS 

A ENDS 

{Q: 'Why is it necessary to label the ENDS and ELSE macros if these 

structures properly nest?' 

A: 'In the simple case they are not needed and a default label is 

supplied. However, (as in PL/1) a single labelled ENDS can be used to 

close all levels up to and including the one with the specified label.') 

POSITs can be passed as parameters . One could be used in the 

eight queens problem (POSITing failure, and ADMITing success by executing 

a QUIT) . There are many other such applications. 

106 



7. Generalisation 

Since our design method gives a module hierarchy largely deter­

mined by the file structures, we often find that programs containing 

different functions share a similar or identical high-level structure. 

It is possible to regard a program as a file processor, determined by (and 

generable from) the file structures, together with a number of functions 

and a scheduler to select the functions to be activated at each point in 

the file processing. Something like this is the basis of RPG (Report 

Program Generator) systems. 

8. Summary 

The commercial programming environment is not technically very 

exciting. It can be a struggle even to persuade people that a pure pro­

cedure is possible (they don't understand the stack). Most commercial 

data processing installations are in a shambles. They are suspicious of 

academics and don't read the literature. The manager has a big office 

with the schedule on the wall (that's why he needs a big office). Pro­

grammers come in and report the bad news, and he sits there and takes it 

on the chin. Most programmers are far too 'helpful' when schedules are 

made up -- they will agree to deliver in whatever time the manager asks . 

Unfortunately, however, most programmers overestimate their capacity_ 

'They told him it couldn't be done. 

(Q: 

He smiled and went straight to it. 

He tackled that program that couldn't be done, 

And he couldn't do it.' 

(Professor Michaelson) 'What attitude should we convey to our 

students who will be entering the commercial programming environment?' 

A: 'Your current university courses seem to me pretty good; they cover 

the fundamentals. For example, a course in ALGOL conveys an understanding 

of the most important principles. What the student needs in addition is 

experience with certain types of problems. Somewhat like natural languages, 

these problems are not readily reducible to mathematics. What he needs is 

a systematic way of thinking about that type of problem.'} 

107 




