Abstract:

QUALITY - IN WHAT IMPORTANT WAYS DO
PROGRAMMING LANGUAGES DIFFER?

Professor A, J. Perlis

Two courses in computing science, the second and third
of a series, are described.

In one, attention is drawn to the varying qualities of
programming languages by examining data structures and
the features which are provided to handle them. Criteria
by which languages may be compared are then discussed.

The other course examines the relevant properties of pro-
grams built to handle other programs. An exercise set
during this course is described.

Rapporteurs:

Dr,
Mxr.

J. Eve

A. Alderson

89

Ofi ?‘5'_.".'{'.‘ TL“-“\TSDQ"-'J A I-”I - ‘l'fl*aﬂ".‘L..g"
FA3FI0 23DALUOHMAS D IMMARDIC T

eifaeT .U .2 tomaaTord

byrdd ben Booser sdid sonsioe yailuquos n. esmvuos oWl
Jbadiroged ova ,zakive 8 Yo

To sefdilasp gacviav ndd ol aveb of poifnmatte ,umo al
bas vequdsrds adah geicivecs vd segsusisal julmmryg
Blrodind .mefd nlbosd cr bubiverg ove doaids awanoat odd
yhomwrme b ondd wys Dasagme s s wes canatnoral dole of

~pry Mo s L E R T Pad oy i T PR vt afly =anil - 6% aitlios 3orito i
12n oz i~ £ fah o e - 4 BueDdp JL:-.!.‘u". . Jiivd L
31 BT SEESECY S TTE SO I P R |

s spnludA

RER

= kE

T
T4

=

o

1. Introduction

In hig first lecture, Professor Perlis described a first course
in computing science. In that course the object was to produce a syn-
thesis of programming issues through the use of only one language, arguing
that if little is known about programming the choice of language is of no
concern to the student. Having decided in that course not to raise the
question of choice of language one is confronted with deciding whether the

question should be raised at all.

Professor Perlis expressed the view that while using one language
gives a common base for discussion, attempting to widen the scope of the
problems beyond a set hand-tailored for solution in, for example, Algol 60
raises questions which are of no relevance to Algol 60. Thus, if omne
considers the rate of growth of scope and of problem generation, one cannot
tell students that one language is all they need ever know. Indeed, it is
instructive that there exists no language which is of equal facility in all

fields of problem solving.

2. A second course in computing science

One object of the second course, which Professor Perlis described,
is to convey to the student the dual purpose of a programming language: as
a notation for human communication and as a carrier of algorithms which are
to be executed. Another object of the second course is to show why certain
problems should be programmed in a particular language. Part of students!'
education is to examine problems from different areas of the whole problem
space and to make reasoned judgements as to which languages are most approp-
riate for attacking these problems. A number of points arise from this
exploration.

: [How many languages should be taught?

2 Why are languages so disparate in their capabilities even

though they may succeed one another in time? Why do new lan-

guages discard good as well as bad features of previous languages?

B Since a choice between languages exist can their important

features be characterised?

4. It must be realized that the environment in which a program

is executed may be a factor as important as the characteristics

of the problem when making the choice of programming language.

91

It is just beginning to be realised, Professor Perlis commented, [
that to design a language and hope that it will remain independent
of the system is silly.

3. Data structures in programming languages

In discussing these matters one is led naturally to examine the
qualities of programming languages. Data representations are one of the
first features to which Professor Perlis draws attention. He introduces at
an eﬁrly stage problems which demand special forms of data representation.
Data structures are examined from the point of view of the ease with which
complexity may develop and to display the features which differentiate one

class of data structures from another. Differentiation is made as follows.

A string is a collection of data which is linearly ordered and
which has the property that any arbitrary subsegment can be replaced by any
other arbitrary subsegment of any length and after the replacement the
boundaries of the replacement are no longer determinable by examination of
the string itself. That is, the ordinal position of the data is of no
interest. Having discarded the use of ordinal position to locate data we
must use some other method and the concept of patterns is utilized. Thus,
if a programming language does not have this capability on a natural level
then it is not a string processing language. The natural language for

string processing is Snobol.

A list is a data structure in which the law of substitution is
such that any primitive element in the structure may be replaced by an
arbitrary structure. When the substitution has been made the process of
finding that data is a simple reversal of the method of substitution. The
natural way to handle lists is by recursion and since at any node in the
list one wishes to obey conditional statements, these capabilities must be
very near to the surface in a list processing language. Thus Lisp is the

natural choice. ‘

Faced with the unfortunate problem which involves both lists and
strings, in Snobol one would suffer due to the former and Lisp for the
latter. Professor Perlis commented that the most natural way to attack
such a problem would be to program the list part in Lisp and the string
part in Snobol and join them by transfer functions. Unfortunately, systems

with this capability do not exist yet. Only in these sad cases, in

92

Professor Perlis' opinion, should one use a language such as PL/1 which

attempts to provide both.

Professor Perlis felt that APL has in a sense provided a standard
for the handling of arrays, and he thought it inconceivable that any future
language allowing arrays as units of operation should be significantly
inferior in this respect than APL, It is unforgivable, he said, that any
new global language should ignore the good points of earlier languages, and
the design of a new language should be a synthesis of the best parts of the
four standards which we have today, namely, of Algol 60, Snobol, Lisp and
APL.

4., The comparison of programming languages

Once the student is aware of these reference points for data
structures, he is encouraged to examine other languages to see with what
facility they are capable of handling these structures. He is also asked
to classify a number of languages in terms of the following qualities.

1. Generality. Even though the student may not have written

many programs he acquires a feeling for the generality of a

language.

2. Conciseness. Although it is commendable that comments

should be made in programs, Professor Perlis expressed the view

that aids to writing should take precedence over those of read-
ing programs. Indeed, languages which are conveniently concise
provide the necessary comment.

3. Consgistency. Van Wijngaarden has introduced the concept

of orthogonality, in that a concept of a language should be

easily and naturally used everywhere that it ought to be used.

4. Simplicity. All of the apparent complexity of the language

should be on the surface.

5. Familiarity. If there exist notations which are adequate

does the language use them in a familiar manner?

6. Intuitiveness. The language should reflect human thought

processes permitting ideas to be written in an order and form

which is natural when thinking about them.

Te Legibility. The language should be a good vehicle for the

communication of algorithms.

93

8. Implementability. What in the language, would make compi-
lation or interpretation difficult? Some of the better students
are asked to consider what would have to be removed or inserted
to transfer the language from one form of implementation to the
other.

9. Efficiency. The language should be constructed and imple-
mented to take advantage of efficient constructions in the target
machine.

10. Machine-independence.

11. Best treatment for common cases. Do those things most
commonly needed come easily in the language?

12. Acceptability. Does the language have properties which
will attract users?

13. Adaptability. Can the language be extended?

14. Richness. Does the language have within it a wide variety

of programming techniques?

Professor Perlis summarized the aim of this second course in
Computing Science as trying to have the student realize that there are
certain features which one should look for in programming languages and

that these features divide into data structures, operations and control.

D A third course in computing science

Having acquainted the student with a point of view which it is
hoped will make him confident in the use of several programming languages
in general problem solving situations, the third course concentrates upon
a specific problem area, namely, structures which are built to manage other
programs, i.e. assemblers, compilers, interpreters, etc. The only con-
venient language for communicating the algorithms and structures encountered
in this course was, in Professor Perlis' view, APL. It alone is suffi-
ciently concise for this purpose. In this course the major programming
entities are examined to uncover their relevant properties. For example,
the properties which assemblers should have are as follows:

1, It should be possible to write in the machine code into

which the programs are assembled, within the assembler language.

2 There should be psuedo-operations.

3. Macros should be available.

4. It should be possible to have macro definitions and macro

calls within other macros.

94

54 It should be possible to instruct the assembler to map
output into various kinds of storage maps.

6. Partial assembly should be available.

Te Linking of the assembler code with other programming
languages should be possible.

8. One should be able to write an assembly program and put
it into a library.

9. Programs should be easily altered.

10. Tracing and monitoring facilities should be available.

Each of the major program management systems are examined in
this manner, and it is found that all of them are very similar in that

they all have certain standard features.

A typical exercise set during the course is the following.
Snobol is available on a machine under a batch operating system. Define
and build a Snobol interactive system so that the programmer may interact
with the running program in a number of ways, and so that he may keep his
program stored in a number of different representations. Students
quickly realize that the obvious way in which to attack the problem is to
program in Snobol, since one has available the statement 'compile this
string'. Eventually the students find that they would like a facility
similar to the quad in APL which allows entries from the terminal in the
middle of a statement. Unfortunately, Snobol did not anticipate this
with the consequence that, since the Snobol executor assumes that all
parsing will be done before execution commences, the parser has disappeared
from view and a piece of program text cannot be entered in the middle of

a statement.

With experience, such as may be afforded by the above problem,
by the end of the course the students are realizing that in structuring
systems at present we never guess correctly and so decomposition of them
will be necessary because of new contingencies. The final theme of the
course is that processors should be designed in small pieces which are

'screwed'! rather than 'welded! together.

95

qam of veldmyens ad® rosseni od sldiesoq sd Sloofds 41 .E | E
Jfgam ogarode 0 ebaid ausolvey otn e digdie ffa

Alel rpve nd Ripssdr vidmmzas Ladtse®l il

Fdd e r e sedda e #0as Teldinesd s il Lo gadddnid it

snldizroq od Blirode wenauginnl

Yigg bun maagorg wldumeas g adlkyw od ofde =4 blyode sad .5
Jriazdil & odab #&

JBhatatls wligss od hlvods smatgord .0 -

wldeliove od bloods soliElfont gatsod inom bas walostT L OF ¥

ai benimsxe ors smateys Jasswgscam esiiong Toiem ald o dosd
dedt ni rafimiz vev sta medd %o (In ¥edd bl ei +i boe ,vemnsm eidd '
cenyiaa’t hrabmade alodven ovald [La wedd

18
&

.anivellel sdd e} sanwes add paizub due seborers lasiqyd &

R AT e b

wirt Yol mad=ra Edlimoage dotes! s saboy antdosnm & oo efdalrare gr lodoal

ELFI1

Fagvadng vam tanmerynrg sdd Padt os cotave avidsesednt [odend & bIkud fuis
eld gewdl vam od #sd¢ ce bop evaw Yo Tsdmum 8 ol oegeng paoisayy edd dikw
séinebuwdd ,aneilstosserger Jowisiiih Yo xsdmrn s ak levodn merporg

o) &b msldorq sdr doedde ob dorde ni vew avorvdoe edt radd esilasy yldsiup |
2idt eligmos' Jasmedste ods aidollevs eed sno saniz ,lodon® ol meTgotg |
Y¥iiiaaY o sAl] Bluov Yedd JRAc bhalY sinsbede otd vfiasudoovd | 'guaiada

wit ol Taaisrrad odd movt aeivtine swolls dokde M& ai Daup ed? of waltmbn =
ity sregiociins Foa bidh [adan®d | glelacusdnalad funom fade 8 to elkbim

{in tadr semunes totussss lodon® odl somfe Jedd dapeupaznao uid dtiw
betesqgea it sad veszog add asonaminn qelluowze etulsd apoh eod (1w yniexsy
Yo afbbin wld pi bovosns sd Jompnss Ixed mesyelq T6 eondg s bne weiv moul

.snsmadade a ks

yERidorg weatln afde g Balma®e e yam 2a dope | vorpETogane Ari¥
antapfaredte Al Tult guiogilasT m1s afnabwie ads setuon sp! Toe booe afl v
moft o onlfispgugach oa Lo ylITENR0g EAYUR TOVEA W T UaRerq 18 ameiays

wild To weadr [ealt 9l A edlaad velr o 4940 s g=Asnnan 1 | Fw

uid my P AECD

Jrpayd LTR B N T o L A1 Vs gkl

