
Abstract: 

QUALITY - IN WHAT IMPORTANT WAYS DO 
PROGRAMMING LANGUAGES DIFFER? 

Professor A. J. Perlis 

Two courses in computing science, the second and third 
of a series, are described. 

In one , attention is drawn to the varying qualitie s of 
programming languages by examining data structures and 
t he features which are provided to hand l e t hem . Criteri a 
by whi ch languages may be compared are t hen discussed. 

The other course examines t he relevant 
grams built to handle other programs . 
during this course is described. 

propert i es of pro­
An exercise set 

Rapporteurs : 

Dr. J. Eve 
Mr . A. Alderson 

89 



f') 



1. Introduction 

In his first l ecture, Professor Perlis described a first course 

in computing science. In that course the object was to produc e a syn­

thesis of programming issues through the u se of only one language , arguing 

that if little is known about programming the choice of language is of no 

concern to the student. Having decided in that course not to raise the 

question of choice of language one is confronted with deciding whether the 

question should be raised at all. 

Professor Perlis expressed the view that while using one language 

gives a common base for discussion, attempting to widen the scope of the 

problems beyond a set hand-tailored for solution in, for example, Algol 60 

raises questions which are of no relevance to Algol 60. Thus , if one 

considers the rate of growth of scope and of problem generation, one cannot 

tell students that one l anguage is all they need ever know. Indeed, it is 

instructive that there exi sts no language which is of equal facility in all 

fields of problem solvirig. 

2. A second course in computing science 

One obj ect of the second course, which Professor Perli s described, 

is to convey to the student the dual purpo se of a programming language : as 

a notation for human communication and as a carrier of algorithms which are 

to be executed. Another object of the second course is to show why certain 

probl ems should be programmed in a particular language. Part of students ' 

education is to examine probl ems from different areas of the whol e problem 

space and to make reasoned judgements as to which l anguages a r e most approp-

riate for attacking t he se probl ems. 

exploration. 

A number of points arise from this 

1. How many languages should be taught? 

2. Why are languages so disparate in t heir capabilities even 

though they may succeed one another in time? Why do new lan­

guages discard good as well as bad features of previous l anguages? 

3. Since a choice between languages exist can their important 

features be characterised? 

4. It must be reali zed that the environment in which a program 

i s executed may be a factor as important as the characteristics 

of the problem when making the choice of programming l anguage . 

91 



It is just beginning to be realised, Professor Perlis commented, 

that to design a language and hope that it will remain independent 

of the system is silly. 

3. Data structures in programming languages 

In discussing these matters one is led naturally to examine the 

qualities of programming languages. Data representations are one of the 

first features to which Professor Perlis draws attention. He introduces at 
, 

an early stage problems which demand special forms of data representation. 

Data structures are examined from the point of view of the ease with which 

complexity may develop and to display the features which differentiate one 

class of data structures from another. Differentiation is made as follows. 

A string is a collection of data which is linearly ordered and 

which has the property that any arbitrary subsegment can be replaced by any 

other arbitrary subsegment of any length and after the replacement the 

boundaries of the replacement are no longer determinable by examination of 

the string itself. That is, the ordinal position of the data is of no 

interest. Having discarded the use of ordinal position to locate data we 

must use some other method and the concept of patterns is utilized. Thus, 

if a programming language do es not have this capability on a natural level 

then it is not a string processing language. 

string processing is Snobol. 

The natural language for 

A list is a data structure in which the law of substitution is 

such that any primitive element in the structure may be replac ed by an 

arbitrary structure. When the substitution has been made the process of 

finding that data is a s imple reversal of the method of substitution. The 

natural way to handle li sts is by recursion and since at any node in the 

list one wishes to obey conditional statements, these capabilities must be 

very near to the surface in a list processing language. 

natural choice. 

Thus Lisp is the 

Faced with the unfortunate problem which involves both lists and 

strings, in Snobol one would suffer due to the former and Lisp for the 

latter. Professor Perlis commented that the most natural way to attack 

such a problem would be to program the list part in Lisp and the string 

part in Snobol and join them by transfer functions. Unfortunately, systems 

with this capability do not exist yet. Only in these sad cases, in 

92 



Professor Perlis' opinion, should one use a language such as PL/ 1 which 

attempts to provide both. 

Professor Perlis felt that APL has in a sen se provided a standa rd 

for the handling of arrays, and he t hought it inconceivable that any future 

language allowing arrays as units of operation should be significantly 

inferior in this respec t than APL. It is unforgivabl e , he said, that any 

new global language should ignore t he good points of earlier languages, and 

the design of a new language should be a synt he s is of the best parts of t he 

four standards which we have today , namely, of Algol 60, Snobol, Lisp and 

APL. 

4. The comparison of programming languages 

Onc e the student is aware of t h ese reference points for data 

struct ures , h e is encouraged to examine other languages to see with what 

facility they are capabl e of handling these structures . He i s also asked 

to c l ass ify a number of languages in te rms of the following qualities. 

1. Generality. Even t hough the student may not have written 

many programs he acquires a feeling for the generality of a 

l anguage. 

2. Conciseness. Although it is commendabl e t hat comments 

should be made in programs, Professor Perl i s expressed t he view 

t hat aids to writing should take precedence over t ho se of read-

ing programs. Indeed, languages which are convenient ly concise 

provide the necessary comment. 

3. Consistency. Van Wijngaarden has introduced t he concept 

of orthogonality, in that a concept of a l a nguage should be 

eas ily and natural ly u sed everywher e that it ought to be us ed. 

4. Simplicity. All of the apparent compl exity of the language 

should be on the surface . 

5. Familiari ty. I f there exist notations which are adequate 

does the language use them in a familiar manner? 

6 . Intuitiveness . The language should reflect human t hought 

processes permitting i deas to be written in an order and form 

which is natural when t h inking about them. 

7. Legibili ty. The language should be a good vehi cle for the 

communication of al gorithm s. 

93 

• 

r 
I 
I 
I 



8. Implementability. What in the language, would make compi-

lation or interpretation difficult? Some of the better students 

are asked to consider what would have to be removed or inserted 

to transfer the language from one form of implementation to the 

other. 

9. Efficiency. The language should be constructed and imple-

mented to take advantage of efficient constructions in the target 

machine. 

10. Machine-independence. 

11. Best treatment for common cases. Do those things most 

commonly needed come easily in the language? 

12. Acceptability. 

will attract users? 

13. Adaptability. 

Does the language have properties which 

Can the language be extended? 

14. Richness. Does the language have within it a wide variety 

of programming techniques? 

Professor Perlis summarized the aim of this second course in 

Computing Science as trying to have the student realize that there are 

certain features which one should look for in programming languages and 

that these features divide into data structures, operations and control. 

5. A third course in computing science 

Having acquainted the student with a point of view which it is 

hoped will make him confident in the use of several programming languages 

in general problem solving situations, the third course concentrates upon 

a specific problem area, namely, structures which are built to manage other 

programs, i.e. assemblers, compilers, interpreters, etc. The only con­

venient language for communicating the algorithms and structures encountered 

in this course was, in Professor Perlis' view, APL. It alone is suffi­

ciently concise for this purpose. In this course the major programming 

entities are examined to uncover their relevant properties. 

the properties which assemblers should have are as follows: 

For example, 

1. It should be possible to write in the machine code into 

which the programs are assembled, within the assembler language. 

2. There should be psuedo-operations. 

3. Macros should be available. 

4. It should be possible to have macro definitions and macro 

calls within other macros. 

94 



5. It should be possible to instruct the assembl er to map 

output into various kinds of storage maps. 

6. Partial assembly should be available. 

7. Linking of the assembler code with other programming 

languages should be possible. 

8. One should be ab l e to write an assembly program and put 

it into a library. 

9. Programs should be easily altered. 

10. Tracing and monitoring facilities should be available. 

Each of the major program management systems are examined in 

this manner, and it is found that all of them are very similar in that 

they a ll have certain standard features. 

A typical exercise set during the course is the fol lowing. 

Snobol is available on a machine under a batch operating system. Define 

and build a Snobol interactive system so t hat the programmer may interact 

with the running program in a number of ways, and so that he may keep his 

program stored in a number of different representations. Students 

quickly realize that the obvious way in which to attack the problem is to 

program in Snobol, since one has available t he statement 'compile this 

string ' . Eventually the students find that t hey would like a faci lity 

similar to the quad in APL which allows entries from the terminal in the 

middl e of a statement. Unfortunately, Snobol did not anticipate this 

with the consequence that, since the Snobol executor assumes that all 

parsing will be done before execution commences, the parser has disappeared 

from view and a pi ece of program text cannot be entered in t he middle of 

a statement. 

With experience, such as may be afforded by the above problem, 

by the end of the course the students are realizing that in structuring 

systems at present we never guess correctly and so decomposition of them 

will be necessary because of new contingencies. The final theme of the 

course is that processors should be d es igned in small pieces which are 

'screwed' rather than 'welded' together. 

95 



"-

, " 


