
Abstract : 

SEMANTICS - THE MAPPING OF PROGRAMMING 
LANGUAGES INTO SUBSETS OF THEMSELVES 

Professor A. J. Perlis 

Department of Computer Science, 
Schenley Park, 

Carnegie Mellon University, 
Pittsburgh, Pa. 15213, 

U.S.A. 

Questions of semantics a re categorised into t hose apper
taining to a programming language and those relating to 
programs written in the language. Criteria for a semantic 
description and some methods in current use are discus sed . 
Finally, one such method, the language reduction method, is 
described in more detail and is shown to be extremely useful 
in teaching. 

Rapporteurs: 

Dr. J. Eve 
Mr. A. Alderson 

75 



I 
I 
I 



1. Introduction 

Professor Perlis began wi.th t,he commAut, t,ha.t i n Universities 

we are learning about programming languages at the same time as we teach 

them, with the result that courses at both graduate and undergraudate 

level are properly undergoing rapid transition. New ideas and notations 

are being introduced, underlying strategi es are changing; the overall 

goal of teaching people to program and use computers, however, remains 

unchanged. 

Commencing with Algol 60, syntax was emphasised (perhaps unduly 

so ) in the teaching of programming languages. Professor Perlis expressed 

the view that syntax analysis has now receded into the background -- a 

background which should be part of the framework of understanding of every 

computer scientist, but not something with which he needs to concern him

self actively. Few people in Universities today are pr,imarily involved 

with syntax analysis as such, although it is true that there has been 

little in the way of experimentation into, or tabulation of, the relation

ship between parsing method and our choice of grammars for languages. 

There is a tendency to forget that in language design there are three 

'variables' available other than the meaning to be attached to the con

structs in the language. These are: 

1. the base alphabet; 

2. the grammar; 

3. the parsing method. 

In teaching programming, Professor Perlis stressed that a student 

should understand the importance of these four factors in language design 

and that all four must be examined, in one way or another, in making deci-

sions relating to the design or use of a language. The difficulty of 

using APL from Teletype terminals was cited as a simple example of the 

importance of the base alphabet. In this case, the restricted character 

set of the terminals is inadequate to cope with the rather rich base 

alphabet of APL. 

Dealing very briefly with the first three 'variables', Professor 

Perlis commented that very little work has been done on the size of a 

minimum base alphabet which would be useful and convenient to programmers. 

On parsers and grammars, he emphasised that the grammar should not only 

meet the needs of the user as the carrier of semantic information but also 

the needs of the parser, permitting efficient parsing. 

77 



2. Aspects of semantics outside the realm of programming 

The growth of interest in semantics was, in the speaker's view, 

not entirely unrelated to the solution of the more interesting syntactic 

problems. In consequence, attention was turned to semantics and it has 

been natural to think of semantics as naturally, logically and mathemati

cally following syntax. The pioneer paper in this respect, that of 

McCarthy (1965), posed semantic problems dealing with the correctness and 

terminati~n of programs. Although conveyance of a proof must depend 

upon the language in which the program is described, these questions are 

independent of the language in the sense that they remain whatever lan

guage the program is written in. 

In Professor Perlis' view, questions of correctness and termina

tion can only be of importance in programming at the intuitive level. The 

question of correctness of a program (other than a program embodying a very 

elementary algorithm) soon proceeds outside of the bounds of programming 

per se, and becomes a semantic question which is meant to be answered by 

the program; the answers to such a question must reside in those other 

disciplines, mathematics, sociology, artificial intell~gence, etc., from 

which the program originates. 

Any theory of semantics of programs would have to answer the 

question of whether two programs computing a mathematical function, by 

different means, are computing the same function. To derive the proposi-

tions which convey the equivalence of two such programs in a functional 

sense involves a rapid descent into mathematical analysis, i.e. the algorith

mic context in which the problem originated soon becomes irrelevant and only 

after much work in analysis, which is relatively unrelated to programming, 

can a return be made to the displays of two pieces of text with propositions 

establishing equivalence. 

As a second example Professor Perlis mentioned a comment of 

Professor Bauer's, that round-off error will sooner or later cause the 

Newton method for finding the zero of a function to generate an iterate 

which is sufficiently near a root for the iterative process to converge. 

It seemed unlikely that any theory would produce an algorithm for establish

ing program correctness which would 'uncover this truth. 

These examples illustrate that problems of equivalence, correct

ness and termination depend on issues lying far outside the displayed text 

78 

I 
'. 



of a program. They are, in a way, outside the framework of programming 

except in the intuitive sense, that people learn to write correct programs; 

in this context the ideas that Professor Dijkstra discussed a re extremely 

important. 

Professor Perlis proceeded to argue that semantic questions 

r elating to equivalence and correctness are really quest ions in mathematics 

and to supply answers to them would require a mathematical education of a 

rather formidable kind. They would not, therefore, fall within a course 

in programming within a University. On the other hand h e pointed out 

that if it was assumed that we should teach peopl e how to write and prove 

that programs work, suggestions that mathematic s is irrelevant to computing 

science are nonsens e. As a middle way , it was suggested that it may be 

po ssible to isolate, and teach, a number of equivalence relations within 

languages which a student could l earn and use; safe in the knowledge that 

writing in one way i s equivalent to writing in another way and that embed

ding such statement s in other statement s does not destroy the equivalenc. 

Whil e Professor Perli s doubted that such a set of relations could ever be 

complete in that correctness would follow from theii use alone, he felt 

that the teaching of programming was largely concerned with such equivalences. 

3. Aspects of semantics within the realm of programming 

A different class of questions which are independ ent of the pro

grams written in the language but which deal only with t he language were 

exemplified by the following. Does the language permit dynamically varying 

data structures? Does it permit decomposition into simpl er subsets? What 

kind of symbol table structure is useful (or required) to build a compiler? 

Is a stack model adequate for run time storage allocation? What are the 

binding times of the various semantic components of a l anguage? (That is, 

when does an expre ssion achieve its final form, beyond which it behaves as 

a constant?) Wh en can one introduce definitions into a running program? 

Unlike the first set of questions which concern an individual 

program and which, t herefore, require analytical tools heavily dependent on 

the particular program and relatively independent of the language the latter 

questions are semantic question s concerned solely with the l anguage itself. 

It is these questions, the speaker sugge sted which are properly the concern 

of the computer scienti st. Further, he felt that the semantic description 

79 



of a l anguage should be independent of particular programs and apply over 

the class of all programs in that language. 

The idea that it is necessary to give an interpreter for a lan

guage in order to explain the meaning of it, was not one that Professor 

Perlis found satisfying. This method, used by the Vienna school, involves 

building an interpreter in a 'universal notation' which is an expanded form 

of LISP. Several such descriptions have now been produced including one 

at Carnegie Mellon University for APL -- 'a rather horrendous description, 

to say the least, although APL is a very simple language'. A method less 

dependent on the notion of program execution, if possible, would be attrac

tive. 

4. Criteria for a semantic description 

Professor Perlis referred to and commented upon the criteria of 

de Bakker (1969) for a method of semantic description. 

1. It should be applicable to all programming languages. The 

difficulty here is to achieve generality and precision without 

descending into 'the Turing Machine tar-pit'. 

2. The vague notions of readability, transparency, preciseness 

and elegance of description are involved. 

3. Is it possible to leave the definition of parts of the l an-

guage completely or partially open? For example, does the defi-

nition provide information about the division of the actions to 

be performed at compile time, run time, etc.? 

4. How much insight is gained into the properties of the lan-

guage? The description should certainly indicate the defects 

which a language inevitably has. 

S. Is it possible to reflect independent concepts in the lan-

guage in independent parts of the description? Would language 

changes which are small in some sense be express ibl e by small 

changes in the description or could they increase the complexity 

of all parts of the description arbitrarily? 

6. Can one obtain proofs of properties of the language from 

the semantic description? 

S. Methods of semantic description 

Several methods based upon the execution of programs are now 

taught in courses in programming. Perhaps the earliest, due to Van 

Wijngaarden (1962) and later developed in De Bakker ' s Ph.D. thesis (1967), 

80 

I 

I: 



uses a 'Markov Algorithm machine' which would execute Algol 60 t ext directly. 

Landin and Strachey map program s into a representation depending intimately 

on the lambda notation, with a 'machine ' which executes such descriptions . 

The Vi enna method has been u sed to provide descriptions of PL/1 and Algol 60 

and has achieved important s ucce sses infinding errors in the PL/1 compiler 

although it is not of course known how many errors it has not detec ted. 

Profes s or Perl is f elt that Van Wijngaarden' s early paper had been 

rather ove rlooked although it offered an approach with a great deal of value, 

both pedagogic and to compiler writers. This approach used a process of 

reduction, of mapping Algol programs using the full syntax of Algol 60 into 

programs using only a subset of that syntax . In that the major rol e of 

syntax is as a carrier for a large part of our semantic information, this 

reduction process applie s to semanti cs . Using thi s approach goto stat e

ment s can be replaced by procedures, switch and for statements can be 

e liminated, etc . In the process some of the major trouble spots of Algol 

were e liminated, i. e . defined, by the pro cess of reduction. 

6. The u se of language r eduction in t eaching 

Professor Perlis outlined a first course in programming which he 

has taught u sing the r eduction technique; t he three purposes of the course 

were : 

1. To teach students to program; a high l evel language, Al go l, 

was select ed as the carrier language. 

2. To teach students how programs are executed and becau se t hey 

know little about compute r s. 

3 . To teach them about the devices which execut e programs. 

The probl em i s how to make the transition from a l anguage like 

Algol to the computer. Algol, while very complicated, conta ins a number 

of conceptual simplicities in i t for writing program s , while the compute r 

contains a very di fferent set. The objec:t i s to make the transition in 

such n way that a student sees the whol e process as a nat ura l transformation 

of hi s algorithm s from hi s thoughts to Al gol, to binary pr ograms whi ch are 

executed on the machine. As t he results are invariab l y incorrect, t he 

cyc l e is r epeated iteratively. 

81 



The diagram representing 

this process, Professor Perlis pointed 

out, has the nice property that at any 

node there is a whole series of identi-

us 

algOrithm~ ~hine 
~gU~ 

cal loz enges behind it. Always, this ' The cybernetic dialogue' 

quartet must be considered, all members of which are equally important. 

Starting at the programming phase one teaches top-down; complex 

tasks are reduced to simpler tasks so that one always works with concep-

tually simple structures. At this level it can be said that one programmer 

can tell another what he is doing. Unfortunately, this cannot persist --

algorithms which are simple at one level become enormously compl ex at another. 

One of the things to be taught is the replacement of a program by a program 

which is better in one of the two senses, more general or more special and 

more efficient. In neither case i s there any guarantee that they be able 

to create an algorithm which i s simple and can be explained to someone e l se . 

It is important that they should thereafter be able to create a better one 

and as a student proceeds along this chain he will pass the point where no 

one on earth can understand it except himself and after a while he will not 

either. In this process he learns to reject constructs which are more 

inefficient than are necessary for this problem, e.g . removing procedures. 

rality. 

In the other direction they may introduce procedures to aid gene

From the beginning they are thus encouraged to consider the map-

ping of Algol programs into other Algol programs which are better in some 

way. One of the ways in which it must be better i s that it runs better on 

a computer. In v iew of its importance, students should be expected to 

undertake such transformations many times. 

In providing an explanation of the meaning of a program, Professor 

Perlis ' aim was to provide a meaning in programming rather than mathematical 

terms, i.e. the meaning of the text in terms of what happens. To have u sed 

an Al gol interpreter in the Vienna notat ion would have involved '1 8 out of 

the 16 weeks avai l ab l e explaining how the notation works'. Instead the 

process of reducing Algol programs was adopted. By a succession of steps, 

an Algol program is reduced to a transparent structure which, while not 

strictly Algol, is easily understood and is very similar to the structure 

of the machine on which the program is executed. In the final step the 

82 

= 



description is at a very primitive level. There is only one array called 

MEMORY; there are no scalars only array elements; every expression has 

at most one operator; all procedures have two paramete rs; there is no 

block structure, no For loops, no switches . In fact, it is machine code 

in another notation. When bette r machines are built, the reduction proc ess 

can 'stop at a higher level. A further step would be the reduction of this 

description to the PMS (Processor, Memory Sto rage) notation developed by 

Gordon Bell and AlIen Newell. While not descending to the circuit level, 

this notation contains all the logical design information so that the 

resulting machine could in principl e be built . 

Thi s was the content of a course presented in 32 one-hour lectures. 

Of a class of 150 students about 20 liked it, felt it appropriate and worth

whil e . 

7 . Comment s on the language reduction pro cess 

Professor Perlis summari sed s ome additional r eduction pro cesses to 

those introduc ed by van Wijngaarden. 

1 . The first step is to ensure that all identifiers are distinct . 

(The mapping of identifie r s onto sta ck s is a quite separate seman

tic process which is not spec ified in the definition of Algol. 

It is the interpretation of blo ck structures which indi cates that 

two variables may occupy t h e same location and this must be deduced.) 

In the lexic a l process comm ents are stripped out. 

2. Maps of statements, e . g . closing procedures to blocks; c losing 

programs to blo cks by adding a standard prologue of support routines. 

3. Producing mappings of expressions, e.g . in array bounds a ll 

expressions which could be real in value are rounded properl y; all 

conversions of types are inserted expl i cit l y . All actual para

meters are replaced by procedures and a stack of integers is intro

duc~d to receive control information, etc. 

Professor Perlis indicated t hat the process had been worked out in 

detail for Algol and it was his intention to appl y it to other languages. As 

an example for f urther illustration he took APL whi ch , although supe rfi cially 

complex , i s s i mpl e in both i ts logical and operator structure . The seman

tics of APL language can be reduced to two subsets . For exampl e, the opera

tors 

cp E 

8 3 

I. 



are all merely ways of extracting arrays from arrays. These operations 

can all be described in terms of subscripting and sequencing through arrays 

which require only the concepts of subscript, scalar operation and goto. 

The outer product, inner product and reduction operators are more complex, 

they require some sequencing control; outer product is the only way of 

generating for loops in APL, i.e. for generating iterative computation 

inside a statement. However, the sequencing control required is very 

simple, nothing more than two nested for loops. Thus, the richness and 

apparent complexity map very quickly to very simple things -- three array 

accessing routines. 

1. A row by column routine, which peels off elements in 

standard order. 

2. A three level routine which is used in reduction, inner 

product, rotation and transposition, where one indexes most 

rapidly on the kth subscript and the rest of the subscripts are 

indexed in standard order. 

3. An n-Ievel routine (assuming the array has rank n). In 

the case where array elements are sub scripted a more general 

routine can now be written which handles them. An interesting 

feature of this routine is that, with the aid of a stacl<, the 

routine may be written independently of the rank of the array. 

8. APL compilation 

As APL can be reduced to such a simple base, Professor Perlis 

raised the question of a compiler for APL (assuming that the interactive 

features of the APL system are ignored and that only the language is con-

sidered). Other than the nature of the system, which allows a user to 

change a program interactively, there are two reasons for executing the 

language interpretively. 

1. The rank and shape of arrays may change dynamically during 

execution. 

2. So much time is spent in the efficiently coded array pro

cessing routines and so little in parsing that probably there 

is little to gain. 

There exist APL programs which remain static and compilation, if possible, 

would be appropriate in those cases, so the problems of constructing a 

compiler were considered. 

that: 

Studying the semantic structure of APL indicated 

84 



1. Its variable structure is very s impl e; block structure i s 

absent; parameters are passed , in effect, by addres s , so no 

s tack mechani sm i s needed to r esol ve the scope of identifiers. 

2. Assuming an APL f unc t ion can be i solated, its logical 

structure is much simpler t han that of an Algol function. 

3. The statement structure is very simple, assignment and a 

primitive conditional are al l that exist. 

A model was constructed whi ch could be realised as either com

piler or interpreter of which the following are the salient features. In 

processing a statement, no more of an array than is needed is produc ed. 

For example , in the operation of reduction it i s not necessary to produce 

the whole of an array which is t he consequence of s ome expression before 

carrying out the reduction. Thi s operation can be expressed as a generator 

u sing the three basic array routines. Thi s generator need have no previous 

knowl edge of dimensions. The expression to be reduc ed, which puts its 

values on a stack one at a time, i s also in the form of a generator which 

keeps the following information: type, name, where in the generator the 

cycles begin, where the result (always scalar) is produced and where it 

finishes. The expression generator runs producing va lues one at a time, 

which are overlayed in the same stack location. The expression generator 

and the reduction operator generator are linked as co-routines, t he latter 

obtaining its result from the stack just after the former has placed it 

there. 

The outcome of this study is a compiler which is structural l y 

quite simple, but also quite inefficient. The conclu sions r each ed are 

that a compiler can be built and that it should not be , because of ineffi-

ciency. The estimate, that compiled APL would run 1. 8 times as fast as 

the interactive APL system, does not represent a major gain. In Professor 

Perlis view, continued popularity of APL is more likely to result in a 

machine which will process it directly. As the system is a proprietry 

secret , without undertaking t he semantic reduction of the language, suffi

cient understanding, to construct a compi l er , would not have been possible. 

Nor would it have been clear that a compil er should not be built. 

9. Conclusions 

Profes s or Perlis said that he felt that language reduction 

offered an appealing way to cross the bridge between the writing of programs 

85 

\ 



in a language and getting them executed by a machine. Having spoken 

principally of an approach that educators may take of reduction his final 

comment was to language designers. The lack of enthusiasm for Algol 68 

did not imply stabilisation on existing languages, as BLISS and L* recently 

designed at Carnegie-Mellon testify. The process of semantic reduction 

offers a way of seeing what constructs in a language mean and, s ince lan

guage designers must always be concerned with implementation, how the con-

structs can be implemented. Further it shows what additional constructs 

are necessary to make the process easy. 

10 . Discussion 

In response to Professor Higman's query concerning additions to 

Algol 60 concepts which emerged during its reduction, Professor Perlis said 

these were in effect the lambda notation and actual parameters and, secondly, 

a means of finding addresses. Replying to a series of questions by 

Professors Pilloty and Randell relating to the apparent unpopularity of the 

course with the great majority of its students, Professor Perlis made a 

number of points. These students felt it to be a great deal of fuss over 

nothing -- they really wanted to learn Fortran to write programs to solve 

problems in their own fields, whereas the purpose of the course is really 

to teach the concept of a programming language and the concept of a machine. 

At the same time they are provided with a language, Algol, which is a useful 

tool that they might use. The problem with the first cours e is that there 

are so many things to be conveyed, it being the only course that many s tudents 

attend. Professor Perlis agreed that the course did act as a filter in 

selecting out the potential computer scientists. He felt that as a teacher, 

it was necessary that he take a long term view and that even though the 

majority of students did not like the course they still l earnt to program; 

they would certainly learn Fortran subsequently anyway and with little dif-

ficulty since programming languages are all similar. One of the pos itive 

things they learnt is that only a few of them are int ere sted in computer 

science and these few have a picture of some of the major things with which 

they will be concerned. In addition to this first cours e in programming 

there are 'short courses available in a vari ety of language s which are taught 

by graduate students. 

Dr. Scoins asked if there was a particular reason for teaching 

algorithms, languages, machines in this sequence as shown in the lozenge 

diagram. Professor Perlis said that thi s was the natural sequence in which 

86 



we work and that he could not see how to teach machines except by algorithms 

nor how to get algorithms to machines except by languages. The important 

thing here was that there was recycling around the four components but he 

agreed with Professor Higman that there could be inner loops within the 

diagram, for example, around the machine if a compiler makes supposed correc

tions. 

Professor Baue r suggested that from some languages it is easy to 

learn others but not n ecessarily vice versa. Professor Perlis concurred 

stating that this is a positive reason for teaching Algol 60 as it contains 

so many more of the important ideas than Fortran. He added that an impor-

tant issue in education for the future would be the effect of terminals. 

Teaching by terminal, he felt, only awaited development of a cheap enough 

terminal. Another important topic would be the design of languages which 

work well with terminals. Algol 68 failed grievous ly on this i ssue. 

Professor Pengelly asked the reason for using a formal descrip

tion of the machine such as PMS. Professor Perlis replied that it 

acquainted the student with the fact that at the hardware level things 

became totally specified and rigid and henc e they should go through this 

process of specifying something to the smallest detail and so the PMS nota

tion is used. 

11. References 

de Bakker, J. W. (1967): 'Formal Definition of Programming Languages: 

with an application to ALGOL 60'. Mathematics Centre Tracts 16, 

(Mathematisch Centrum, Amsterdam). 

de Bakker, J. W. (1969): 'S emanti cs of Programming Languages'. Advances 

in Information Systems Sciences, Vol.II, Plenum Press (New York and 

London) p.173. 

McCarthy, J. (1965): 'Probl ems in the Theory of Computation', Proc eedings 

of the IFIP Congress 65, Spartan Book (New York), Macmillan & Co. Ltd. 

(London) p. 219. 

van Wijngaarden , A. (1962): 'Generalised Algol', Proceedings of t he ICe 

Symposium on Symbolic Languages in Data Proce ss ing, Gordon & Breach 

(New York and London) p.409. 

87 




