SEMANTICS - THE MAPPING OF PROGRAMMING
LANGUAGES INTO SUBSETS OF THEMSELVES

Professor A. J. Perlis

Department of Computer Science,
Schenley Park,
Carnegie Mellon University,
Pittsburgh, Pa. 15213,
U.S.A.

Abstract:

Questions of semantics are categorised into those apper-
taining to a programming language and those relating to
programs written in the language. Criteria for a semantic
description and some methods in current use are discussed.
Finally, one such method, the language reduction method, is
described in more detail and is shown to be extremely useful
in teaching.

Rapporteurs:

Dr. J. Eve
Mr. A. Alderson

75

“ad 2 T “ry i L Sl T T T
WIAMMAATS O SN S e A ' - A AN

.ll"‘h—ér"i_ i S | L F.!":'i--. Sk A1t ;::-‘Al..r:_}@",n.,,‘

silas® LN LA TamasTosy

Jastaie? Tsdugmel o inaerpaged
A0 yolnsdaa
p it tatovioll nollzM olgoayal
LCISET a1 [Agruded]
AR

~aaqqa geodt osnl beszinegalen sus woiinawmse to wmoiteen(
of wnkFaler seold bos syeognasl paimaaziovg & of paiaiad
vldnames & 491 stoolzidd -spougnal edd ak mels Ty pmergong
sbazapes | h aan sug Spovand mi sboddam smbx brig poddolrseah
gi JhEndear pold uber spangeal afdd A Yaw drag spe wf Paned
ffuey wingeedca od o gepds s Eng ficdel gaom ol bl feapnk
Seidsant nd

tdomsdadh

Lo NG aF

'|\".l E L1

(73]

— e g
.

14 Introduction

Professor Perlis began with the comment that in Universities
we are learning about programming languages at the same time as we teach
them, with the result that courses at both graduate and undergraudate
level are properly undergoing rapid transition. New ideas and notations
are being introduced, underlying strategies are changing; the overall
goal of teaching people to program and use computers, however, remains

unchanged.

Commencing with Algol 60, syntax was emphasised (perhaps unduly
so) in the teaching of programming languages. Professor Perlis expressed
the view that syntax analysis has now receded into the background — a
background which should be part of the framework of understanding of every
computer scientist, but not something with which he needs to concern him-
self actively. Few people in Universities today are primarily involved
with syntax analysis as such, although it is true that there has been
little in the way of experimentation into, or tabulation of, the relation-
ship between parsing method and our choice of grammars for languages.
There is a tendency to forget that in language design there are three
'variables' available other than the meaning to be attached to the con-
structs in the language. These are:

1. the base alphabet;

2. the grammar;

3. the parsing method.

In teaching programming, Professor Perlis stressed that a student
should understand the importance of these four factors in language design
and that all four must be examined, in one way or another, in making deci-
sions relating to the design or use of a language. The difficulty of
using APL from Teletype terminals was cited as a simple example of the
importance of the base alphabet. In this case, the restricted character
set of the terminals is inadequate to cope with the rather rich base

alphabet of APL.

Dealing very briefly with the first three 'variables', Professor
Perlis commented that very little work has been done on the size of a
minimum base alphabet which would be useful and convenient to programmers.
On parsers and grammars, he emphasised that the grammar should not only
meet the needs of the user as the carrier of semantic information but also

the needs of the parser, permitting efficient parsing.

7

2. Aspects of semantics outside the realm of programming

The growth of interest in semantics was, in the speaker's view,
not entirely unrelated to the solution of the more interesting syntactic
problems. In consequence, atbtention was turned to semantics and it has
been natural to think of semantics as naturally, logically and mathemati-
cally following syntax. The pioneer paper in this respect, that of
McCarthy (1965), posed semantic problems dealing with the correctness and
termination of programs. Although conveyance of a proof must depend
upon the language in which the program is described, these questions are
independent of the language in the sense that they remain whatever lan-

guage the program is written in,

In Professor Perlig! view, questions of correctness and termina-
tion can only be of importance in programming at the intuitive level. The
question of correctness of a program (other than a program embodying a very
elementary algorithm) soon proceeds outside of the bounds of programming
per se, and becomes a semantic question which is meant to be answered by
the program; the angwers to such a question must reside in those other
digciplines, mathematics, sociology, artificial intelligence, etc., from

which the program originates.

Any theory of semantics of programs would have to answer the
question of whether two programs computing a mathematical function, by
different means, are computing the same function. To derive the proposi-
tions which convey the equivalence of two such programs in a functional
sense involves a rapid descent into mathematical analysis, i.e. the algorith-
mic context in which the problem originated soon becomes irrelevant and only
after much work in analysis, which is relatively unrelated to programming,
can a return be made to the displays of two pieces of text with propositions

establishing equivalence,

As a second example Professor Perlis mentioned a comment of
Professor Bauer's, that round-off error will sooner or later cause the
Newton method for finding the zero of a function to generate an iterate
which is sufficiently near a root for the iterative process to converge.
It seemed unlikely that any theory would produce an algorithm for establish-

ing program correctness which would uncover this truth.

These examples illustrate that problems of equivalence, correct-—

ness and termination depend on issues lying far outside the displayed text

78

of a program. They are, in a way, outside the framework of programming
except in the intuitive sense, that people learn to write correct programs;
in this context the ideas that Professor Dijkstra discussed are extremely

important.

Professor Perlis proceeded to argue that semantic questions
relating to equivalence and correctness are really questions in mathematics
and to supply answers to them would require a mathematical education of a
rather formidable kind. They would not, therefore, fall within a course
in programming within a University. On the other hand he pointed out
that if it was assumed that we should teach people how to write and prove
that programs work, suggestions that mathematics is irrelevant to computing
science are nonsense. As a middle way, it was suggested that it may be
possible to isolate, and teach, a number of equivalence relations within
languages which a student could learn and use; safe in the knowledge that
writing in one way is equivalent to writing in another way and that embed-
ding such statements in other statements does not destroy the equivalenc.
While Professor Perlis doubted that such a set of relations could ever be
complete in that correctness would follow from their use alone, he felt

that the teaching of programming was largely concerned with such equivalences.

B Aspects of semantics within the realm of programming

A different class of questions which are independent of the pro-
grams written in the language but which deal only with the language were
exemplified by the following. Does the language permit dynamically varying
data structures? Does it permit decomposition into simpler subsets? What
kind of symbol table structure is useful (or required) to build a compiler?
Is a stack model adequate for run time storage allocation? What are the
binding times of the various semantic components of a language? (That is,
when does an expression achieve its final form, beyond which it behaves as

a constant?) When can one introduce definitions into a running program?

Unlike the first set of questions which concern an individual
program and which, therefore, require analytical tools heavily dependent on
the particular program and relatively independent of the language the latter
questions are semantic questions concerned solely with the language itself.
It is these questions, the speaker suggested which are properly the concern

of the computer scientist. Further, he felt that the semantic description

19

of a language should be independent of particular programs and apply over

the class of all programs in that language.

The idea that it is necessary to give an interpreter for a lan-
guage in order to explain the meaning of it, was not one that Professor
Perlis found satisfying. This method, used by the Vienna school, involves

building an interpreter in a 'universal notation' which is an expanded form

of LISP. Several such descriptions have now been produced including one
at Carnegie Mellon University for APL — 'a rather horrendous description,
to say the least, although APL is a very simple language'. A method less

dependent on the notion of program execution, if possible, would be attrac-

tive.

4. Criteria for a semantic description

Professor Perlis referred to and commented upon the criteria of
de Bakker (1969) for a method of semantic description.

14 It should be applicable to all programming languages. The

difficulty here is to achieve generality and precision without

descending into 'the Turing Machine tar-pit'.

2 The vague notions of readability, transparency, preciseness

and elegance of description are involved.

3. Is it possible to leave the definition of parts of the lan-

guage completely or partially open? For example, does the defi-

nition provide information about the division of the actions to

be performed at compile time, run time, etec.?

4. How much insight is gained into the properties of the lan-

guage? The description should certainly indicate the defects

which a language inevitably has.

5. Is it possible to reflect independent concepts in the lan-

guage in independent parts of the description? Would language

changes which are small in some sense be expressible by small

changes in the description or could they increase the complexity

of all parts of the description arbitrarily?

6. Can one obtain proofs of properties of the language from

the semantic description?

i Methods of semantic description

Several methods based upon the execution of programs are now
taught in courses in programming. Perhaps the earliest, due to Van

Wijngaarden (1962) and later developed in De Bakker's Ph.D. thesis (1967),

80

uses a 'Markov Algorithm machine' which would execute Algol 60 text directly.
Landin and Strachey map programs into a representation depending intimately
on the lambda notation, with a 'machine' which executes such descriptions.
The Vienna method has been used to provide descriptions of PL/1 and Algol 60
and has achieved important successes infinding errors in the PL/1 compiler

although it is not of course known how many errors it has not detected.

Professor Perlis felt that Van Wijngaarden's early paper had been
rather overlooked although it offered an approach with a great deal of value,
both pedagogic and to compiler writers, This approach used a process of
reduction, of mapping Algol programs using the full syntax of Algol 60 into
programs using only a subset of that syntax. In that the major role of
syntax is as a carrier for a large part of our semantic information, this
reduction process applies to semantics. Using this approach goto state-
ments can be replaced by procedures, switch and for statements can be
eliminated, etc. In the process some of the major trouble spots of Algol

were eliminated, i.e. defined, by the process of reduction.

6. The use of language reduction in teaching

Professor Perlis outlined a first course in programming which he
has taught using the reduction technique; +the three purposes of the course
were:

1. To teach students to program; a high level language, Algol,

was selected as the carrier language.

2 To teach students how programs are executed and because they

know little about computers.

3. To teach them about the devices which execute programs.

The problem is how to make the transition from a language like
Algol to the computer. Algol, while very complicated, contains a number
of conceptual simplicities in it for writing programs, while the computer
contains a very different set. The object is to make the transition in
such a way that a student sees the whole process as a natural transformation
of his algorithms from his thoughts to Algol, to binary programs which are
executed on the machine. As the results are invariably incorrect, the

cycle is repeated iteratively.

81

The diagram representing us
this process, Professor Perlis pointed ef’//

algorithm machine
out, has the nice property that at any

node there is a whole series of identi- lengnage
cal lozenges behind it. Always, this 'The cybernetic dialogue!

quartet must be considered, all members of which are equally important.

Starting at the programming phase one teaches top-down; complex
tasks are reduced to simpler tasks so that one always works with concep-
tually simple structures. At this level it can be said that one programmer
can tell another what he is doing. Unfortunately, this cannot persist —
algorithms which are simple at one level become enormously complex at another.
One of the things to be taught is the replacement of a program by a program
which is better in one of the two senses, more general or more special and
more efficient. In neither case is there any guarantee that they be able
to create an algorithm which is simple and can be explained to someone else.
It is important that they should thereafter be able to create a better one
and as a student proceeds along this chain he will pass the point where no
one on earth can understand it except himself and after a while he will not
either. In this process he learns to reject constructs which are more

inefficient than are necessary for this problem, e.g. removing procedures.

In the other direction they may introduce procedures to aid gene-
rality. From the beginning they are thus encouraged to consider the map-
ping of Algol programs into other Algol programs which are better in some
way. One of the ways in which it must be better is that it runs better on
a computer. In view of its importance, students should be expected to

undertake such transformations many times.

In providing an explanation of the meaning of a program, Professor
Perlis' aim was to provide a meaning in programming rather than mathematical
terms, i.e. the meaning of the text in terms of what happens. To have used
an Algol interpreter in the Vienna notation would have involved '18 out of
the 16 weeks available explaining how the notation works'. Instead the
process of reducing Algol programs was adopted. By a succession of steps,
an Algol program is reduced to a transparent structure which, while not
strictly Algol, is easily understood and is very similar to the structure

of the machine on which the program is executed. In the final step the

82

description is at a very primitive level. There is only one array called
MEMORY; there are no scalars only array elements; every expression has

at most one operator; all procedures have two parameters; +there is no
block structure, no For loops, no switches. In fact, it is machine code
in another notation, When better machines are built, the reduction process
can stop at a higher level. A further step would be the reduction of this
description to the PMS (Processor, Memory Storage) notation developed by
Gordon Bell and Allen Newell. While not descending to the circuit level,
this notation contains all the logical design information so that the

resulting machine could in principle be built.

This was the content of a course presented in 32 one-hour lectures.
Of a class of 150 students about 20 liked it, felt it appropriate and worth-

while.,

Ta Comments on the language reduction process

Professor Perlis summarised some additional reduction processes to
those introduced by van Wijngaarden.
j [The first step is to ensure that all identifiers are distinct.
(The mapping of identifiers onto stacks is a quite separate seman-
tic process which is not specified in the definition of Algol.
It is the interpretation of block structures which indicates that
two variables may occupy the same location and this must be deduced.)
In the lexical process comments are stripped out.
24 Maps of statements, e.g. closing procedures to blocks; closing
programs to blocks by adding a standard prologue of support routines.
e Producing mappings of expressions, e.g. in array bounds all
expressions which could be real in value are rounded properly; all
conversions of types are inserted explicitly. All actual para-
meters are replaced by procedures and a stack of integers is intro-

duced to receive control information, etc.

Professor Perlis indicated that the process had been worked out in
detail for Algol and it was his intention to apply it to other languages. As
an example for further illustration he took APL which, although superficially
complex, is simple in both its logical and operator structure. The seman-
tics of APL language can be reduced to two subsets. For example, the opera-

tors

© € 1t L ¢/ \ 1o

83

are all merely ways of extracting arrays from arrays. These operations
can all be described in terms of subscripting and sequencing through arrays
which require only the concepts of subscript, scalar operation and goto.
The outer product, inner product and reduction operators are more complex,
they require some sequencing control; outer product is the only way of
generating for loops in APL, i.e. for generating iterative computation
inside a statement. However, the sequencing control required is very
simple, nothing more than two nested for loops. Thus, the richness and
apparent complexity map very quickly to very simple things — three array
accessing routines.
1. A row by column routine, which peels off elements in
standard order.
2. A three level routine which is used in reduction, inner
product, rotation and transposition, where one indexes most
rapidly on the kth subscript and the rest of the subscripts are
indexed in standard order.
3. An n-level routine (assuming the array has rank n). In
the case where array elements are subscripted a more general
routine can now be written which handles them. An interesting
feature of this routine is that, with the aid of a stack, the

routine may be written independently of the rank of the array.

B APL compilation

As APL can be reduced to such a simple base, Professor Perlis
raised the question of a compiler for APL (assuming that the interactive
features of the APL system are ignored and that only the language is con-
sidered) . Other than the nature of the system, which allows a user to
change a program interactively, there are two reasons for executing the
language interpretively.

{=s The rank and shape of arrays may change dynamically during

execution.

2 So much time is spent in the efficiently coded array pro-

cessing routines and so little in parsing that probably there

is little to gain.

There exist APL programs which remain static and compilation, if possible,
would be appropriate in those cases, so the problems of constructing a
compiler were considered. Studying the semantic structure of APL indicated

that:

84

4|7 Its variable structure is very simple; block structure is
absent; parameters are passed, in effect, by address, so no
stack mechanism is needed to resolve the scope of identifiers.
2. Assuming an APL function can be isolated, its logical
structure is much simpler than that of an Algol function,

3. The statement structure is very simple, assignment and a

primitive conditional are all that exist.

A model was constructed which could be realised as either com-
piler or interpreter of which the following are the salient features. In
processing a statement, no more of an array than is needed is produced.

For example, in the operation of reduction it is not necessary to produce
the whole of an array which is the consequence of some expression before
carrying out the reduction. This operation can be expressed as a generator
using the three basic array routines. This generator need have no previous
knowledge of dimensions. The expression to be reduced, which puts its
values on a stack one at a time, is also in the form of a generator which
keeps the following information: +type, name, where in the generator the
cycles begin, where the result (always scalar) is produced and where it
finishes. The expression generator runs producing values one at a time,
which are overlayed in the same stack location. The expression generator
and the reduction operator generator are linked as co-routines, the latter
obtaining its result from the stack just after the former has placed it

there.

The outcome of this study is a compiler which is structurally
quite simple, but also quite inefficient. The conclusions reached are
that a compiler can be built and that it should not be, because of ineffi-
ciency. The estimate, that compiled APL would run 1.8 times as fast as
the interactive APL gystem, does not represent a major gain. In Professor
Perlis view, continued popularity of APL is more likely to result in a
machine which will process it directly. As the system is a proprietry
secret, without undertaking the semantic reduction of the language, suffi-
cient understanding, to construct a compiler, would not have been possible.

Nor would it have been clear that a compiler should not be built.

9. Conclusions
Professor Perlis said that he felt that language reduction

offered an appealing way to cross the bridge between the writing of programs

85

in a language and getting them executed by a machine. Having spoken
principally of an approach that educators may take of reduction his final
comment was to language designers. The lack of enthusiasm for Algol 68
did not imply stabilisation on existing languages, as BLISS and L* recently
designed at Carnegie-Mellon testify. The process of semantic reduction
offers a way of seeing what constructs in a language mean and, since lan-—
guage designers must always be concerned with implementation, how the con-
structs can be implemented. Further it shows what additional constructs

are necessary to make the process easy.

10. Discussion

In response to Professor Higman's query concerning additions to

Algol 60 concepts which emerged during its reduction, Professor Perlis said
these were in effect the lambda notation and actual parameters and, secondly,
a means of finding addresses. Replying to a series of questions by

Professors Pilloty and Randell relating to the apparent unpopularity of the

course with the great majority of its students, Professor Perlis made a

number of points. These students felt it to be a great deal of fuss over
nothing — they really wanted to learn Fortran to write programs to solve
problems in their own fields, whereas the purpose of the course is really

to teach the concept of a programming language and the concept of a machine.
At the same time they are provided with a language, Algol, which is a useful
tool that they might use. The problem with the first course is that there
are so many things to be conveyed, it being the only course that many students

attend. Professor Perlis agreed that the course did act as a filter in

selecting out the potential computer scientists. He felt that as a teacher,
it was necessary that he take a long term view and that even though the
majority of students did not like the course they still learnt to program;
they would certainly learn Fortran subsequently anyway and with little dif-
ficulty since programming languages are all similar, One of the positive
things they learnt is that only a few of them are interested in computer
science and these few have a picture of some of the major things with which
they will be concerned. In addition to this first course in programming
there are short courses available in a variety of languages which are taught

by graduate students.

Dr. Scoins asked if there was a particular reason for teaching
algorithms, languages, machines in this sequence as shown in the lozenge

diagram. Professor Perlis said that this was the natural sequence in which

86

we work and that he could not see how to teach machines except by algorithms
nor how to get algorithms to machines except by languages. The important
thing here was that there was recycling around the four components but he

agreed with Professor Higman that there could be inner loops within the

diagram, for example, around the machine if a compiler makes supposed correc—

tions.

Professor Bauer suggested that from some languages it is easy to

learn others but not necessarily vice versa. Professor Perlis concurred

stating that this is a positive reason for teaching Algol 60 as it contains
so many more of the important ideas than Fortran. He added that an impor-
tant issue in education for the future would be the effect of terminals.
Teaching by terminal, he felt, only awaited development of a cheap enough
terminal. Another important topic would be the design of languages which

work well with terminals. Algol 68 failed grievously on this issue.

Professor Pengelly asked the reason for using a formal descrip-

tion of the machine such as PMS. Professor Perlis replied that it
acquainted the student with the fact that at the hardware level things
became totally specified and rigid and hence they should go through this
process of specifying something to the smallest detail and so the PMS nota-

tion is used.

11. References

de Bakker, J. W. (1967): 'Formal Definition of Programming Languages:
with an application to ALGOL 60'. Mathematics Centre Tracts 16,
(Mathematisch Centrum, Amsterdam).

de Bakker, J. W. (1969): ‘'Semantics of Programming Languages'. Advances
in Information Systems Sciences, Vol.II, Plenum Press (New York and
London) p.173.

McCarthy, J. (1965): 'Problems in the Theory of Computation', Proceedings
of the IFIP Congress 65, Spartan Book (New York), Macmillan & Co. Ltd.
(London) p.219.

van Wijngaarden, A. (1962): 'Generalised Algol', Proceedings of the ICC
Symposium on Symbolic Languages in Data Processing, Gordon & Breach

(New York and London) p.409.

87

)r.u",i“'! .'_:[" J'_llI IR R S R BT hoau® it T Tl Y L vk Sail) Vida Beash ew

Jaarrggs ¥ o pargnsl il dgnore epnlfoss o emaltruch e doy 0 Wud oo
il S Tl o e b 1 .'l_“_‘ CANETE B LMY 4 k= rparL} o e g 9 vy ety
ks Ee oo’ wrnd al BIima svsnd Jad? amegy Bl sl an T P Ia e

=3I Lavagquee aodam peudgees o Taoaridoss A bouera omigenat 0l crolgs

i d

of vaee al 3i vegatgual emos motT Yaudd bedespue: anoefl gsexalord

Bowruangn piiaed quésotord LaTey aokv yltyasasonn Jog Jud ererdlo prvoad

wniadans ik 26 93 f[ogld gaidosn! 0% nompey svilisog e at ardd tadd gotledw
~rommi ns fedt bsbbs o .ne1dvol madf sssbi Jusdroget edd Yo ouea ase o
Elantmat Lo FoeMe wdb ad blvew erudut sad <ol soldenishy ai susel Srnd
dgusns guads @ 1o Jaomgolicveb batloawa ¢lao dieY od ,lsnimead vdf paldosoct
dukiw wegsmgas] "o agtaes wtd 94 HTuew oigoed fnetrogqmi esdiond L lepiasd

aded ehdid oo yleuaseley bollin% 82 fagid of Danlaral a¥iw Livw ddow

~qlnunsb Tawral & yolel 4ol oo get efdd badsp x_ll_q,ggg_'L}yrg__i'@_:i
Fb dpda bnrlaee wiiwl rodnetet L8N wE dops dogdasw o4 Yo okl
apnidd lowal wizwlmad odd ra ladd Fosd old dolw racialde ad) Setazsupos
efdd durondd oy Lluods vedd enasd Loe higit hoe Baitisaqe ¢lintod smasad
~iton AM1 od? or bos [lodeb Jeollsm odd ot saitddosea gniyvitssge o enssong

o

yBieg nl nokf

epciogeyaft .M

sar a gt) i bnms g o Yo coltbiilall | marpad - .hr}Q_r] ¥ L L reddell oL
o mdeedl aadgallt ey idanadian TR IR o0 o Do [Oqa a8 i b

JAnmbrwdemt ey Bga 0 flom g3 gres i

asnarybd L Voopsegasl aadeen e Ve ssl tpameE (I0M1) ¥ UL L roddal ep
Boes o woelt) saer mmoe S 00, oV patantal sawd el pod loeralal gl
Uy foobped

Ngs il 00T el detagme™ do prosd¥ adr g eselder®' o (EART) L, gliFzend

-
iirdud ced A ned b iaselt (1ol w0 doedl parsagl §9 swsraned TINT «dd Ty
H | s Ty 4 -_nl '!j'
+ 104] A "l“p. 1 Fy d '\J',’ iy ¥ LTy
vt i TR . " 1 L ¥ i ’ : 4
¥ L J B

