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The considera t ion of "distributed systems" certa inly adds 
a new dimension to the types of complications we must be able to 
cope with, and I intend to show two examples of arguments that have 
proved effective in reasoning about distributed systems . The first 
argument is relatively simple; it is derived from a problem 
statement which might strike you as very artificial. It is 
however, thanks to its generality, a fairly powerful model of all 
sorts of exclusion constraints. The argument as presented here is 
the result of at least five iterations, and by now it is a pleasure 
to present because it is very beautiful. 

I made this remark because I wanted to stress the need for 
our arguments to be both understood and understandable; this I 
consider not a dispensible luxury, but a necessity if we are to 
avoid making a mess out of computer science. 

The Problem of the Dining Philosophers Revisited 

The example I am going to present is a generalisation of 
the by now traditional problem of the five dining philosophers. We 
imagine a round table with fiv e plates, five forks between the 
plates, and five philosophers in front of the plates: 

The life of a philosopher consists of an alternation of 
thinking and eating, these being two mutually exclusive states . 
The dish served is a difficul t kind of spaghetti for which two forks 
are needed; now there are two forks next to each plate, so there is 
no problem. Howev er , if one envisages an an asymmmetrical solution 
in which each philosopher grabs his left hand fork first whenever he 
wishes to eat , and then turns his attention to his right hand fork, 
grab sit, starts eating and puts down hi s two forks, then of cour se 
a deadlock is possible if all five get hungry simultaneously. So 
then one devises another solution in which a philosopher can grab 
both his forks simultaneously, pr ov ided he is hungry and both forks 
are free. This solution maximises resource utili sat ion: forks are 
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only grabbed when real ly used for eating. However, this is not too 
attractive a so lution, either, because a philosopher could be 
starved to death by a conspiracy of his neighbours. We may 
conclude - and this is a good thing to know - that the two goals of 
high re sourc e utilisation and quick response may be quite 
incompatibl e. 

The problem is quite simply generalised. With the above 
formulation, we may represent each mutual constraint, that is, the 
forks, as an edge of a graph the nodes of which correspond to the 
philosophers . , Obviously, we then get a pentagon: 

Philosophers sitting 
edge may be called each other's 
neighbours eat simultaneously. 

at nodes which are connected by an 
neighbours, and the rule is: no two 

By just adding or deleting edges, we are able to model all 
sorts of mutual exclusion constraints. For example, if we augment 
the pentagon to the complete graph of five nodes, we have the 
situation where each philosopher excludes each other philosopher, 
that is, at most one of five philosophers eats at a time. 

In general, we may now consider an arbitrary but finite 
graph, with a philosopher of the same kind as before sitting at each 
node. Directly connected philosophers are called each other's 
neighbours , and neighbours are not allowed to eat simultaneously. 
We are requested to solve this synchron i sation problem in such a way 
that neither deadlock nor starvation in the above mentioned sense 
will arise. 

One property of the solution is evident from the outset: 
since the problem formulation is independent of the shape of the 
graph, so should be the argument leading up to the solution. 
Consequently, it should be possible to study an arbitrary 
philosopher's behaviour relating to his neighbours to such an extent 
that we gain the basis for an induction argument over the graph-
whatever its shape may be. 

Furthermore, in order to come to grips with the 
requirem ent that no two neighbours eat simultaneously, I am going to 
fir st express "simultaneity between neighbours"; I will do this by 
giving each philosopher two states, "thinking" and "tabled " . For 
the time being there will be no synchronisation constraints; there 
will be a marking of the edges, indicating whether or not the two 
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In short, I wish to maintain 

"A and B both tabled" ;: " edge A-B marked" (p1) 

Initially, all philosophers are thinking, and (P1) can be 
made true by starting off with unmarked edges. 

Now it remains to be ensured that whenever the state of a 
philosopher changes, the appropriate markers of edges are introduced 
or removed, respectively. We have to consider two transitions, T1 
and T2; T1 changes a philosopher's state from "thinking" to "tabled" 
while T2 changes his state from "tabled" to "thinking". 

Let me consider T1 first; 
"tabled", a philosopher may introduce 
Hence T1 must effect the marking 
tabled neighbours, in order that 
maintained. In summary, T1 becomes: 

in changing from "thinking" to 
pairs of tabled neighbours. 
of all edges which lead to his 
the invariance of (P1) is 

<mark edges connecting you to your tabled neighbours, and 
switch from "thinking" to "tabled">. 

The angle brackets around this action mean that we are to regard T1 
as an "atomic action" (for which see the manuscript of the next 
problem) . 

Now let me consider T2; quite simply, all markers on edges 
leading to tabled neighbours have to be removed to ensure (p1). 
Therefore, T2 is 

<remove all markers from edges connecting you to tabled 
neighbours, and switch from "tabled" to "thinking">. 

As a consequence of these definitions, (P1) is invariantly true. 

Next, we observe that a marked edge has always been marked 
by one of the two neighbours, namely by the one who was the last of 
the two to carry out T1. As it stand s, our symbol ism does not 
express this; my next step will remedy the situation by introducing 
two forms of marking of an edge: an arrow in one or the other 
direction. This can be used for coding which of the two neighbours 
places the marker. We decide that a marker should be placed as an 
outgoing arrow; hence T1 now becomes: 

<direct arrows towards all your tabled neighbours, and 
switch from "thinking" to "tabled">. 

On the other hand, T2 becomes 

<remove all arrows along edges connecting you to tabled 
neighbours, and switch from "tabled" to "thinking">. 

I will now split the state "tabled" into two successive states: 
first "hungry" then "eating". Between the two, there will be a 
transition T1.5, saying 

/ 
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<when without outgoing arrows, s wi t c h f rom "hungry" to 
II eating"). 

Observe that each philoso phe r is the sole creator of his 
outgoing arrows; all his neighbour s can inflict o n him are arrows 
pointing towards him . Now since outg oing arrows are introduced 
solely by T1, and since T1.5 onl y takes place when there are no 
outgoing arrows, it fo llows that a philosopher is without outgoing 
arrows while " eating " or " thinki ng". That is, we have just proved 
that 

y philosophers A: 
( P2) 

A is hungry or A is wi thout outgoing arrows 

is invariantly true (provided i t is true to start with, which it is 
since there are no arrows at a l l) . 

Now consider (P1) and ( P2) in c onjunction . We consider a 
pair A,B of tabled neighbour s . From ( p1) it follows that there is 
a marker, that is , an arrow, be tween A and B; from (P2) it follows 
that either A or B (or both) are hungry. In other words, the 
requirement that no two neighbours are eating simul taneously is 
satisfied. 

There remains to be proved the absence of deadlock and 
individual starvation . I am requi r ed to prove that each hungry 
philosopher will eventually start ea ting, that i s , execute action 
T1.5. I do so by first showing t hat the fol lowing is invariantly 
true: 

The arrows never form a direc t ed c ycle (P3) 

Initially, (P3) i s true si nce there are no arrows. 
Arrows may be introduced by T1; but according t o (p1), a "thinking" 
philosopher has only unmarked edges. Therefore, T1 can never close 
a directed cycle. Since T1 i s t he onl y means of arrow creati on, it 
follows that (P3) remains true . 

I will use (P3) to show t hat indeed each hungry 
philosopher will eventually have his t urn in performing T1.5. What 
is more, an upper bound for his per i od of delay in the state 
"hun gry" can be given. I wi l l ma ke use of three assumptions. 
Firstly, we recall our as sumption tha t the graph is finite ; 
secondly, we assume that once a phil oso pher i s wi thout outgoing 
arrows, he will perform T1.5 i mmedia t el y; thirdly, we assume that 
each eating session of a phil osopher will be finite . 

Cons i der a hungry philosopher. Pa int his outgoing arrows 
red; collec t the nodes reac hed by t he r ed a rrows and paint their 
outgoing arrows red; repe at unti l no longer applicable. 
Termination is guaranteed bec ause o f (P3 ) and the finiteness of the 
graph. The outcome will be a di rec ted subtree of the graph, 
painted red, whose root consi s t s of the original hungry philosopher. 

Obv iousl y, 
do not have o utgoing 
can they introduce 

the phil osophe r s at the l eaves of the red 
arrows and t herefo r e are alread y eating. 
any outgoing arrows while they are eating. 

tree 
Nor 

On 

--
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account of this, the red tree does not grow. Instead, it will 
shrink to a smaller tree when, after some finite time, the leaf 
philosophers stop eating and remove their incoming arrows, including 
the red ones. By induction, after a finite time all outgoing 
arrows of the original philosopher will be erased, which means that 
he will then start eating. 

This completes the proof that deadlock and individual 
starvation are absent in the solution. From the proof we can 
derive an upper time limit for a philosopher to be delayed in state 
IIhungry" : 

K* "maximum eating time of hi s colleagues" , 

where K is the maximum reachability path in the graph. 

This ends the argument . Why is it so effective? I 
think the argument is beautiful for a number of reasons : 

Firstly, we did not need to take into account certain 
intractable aspects of the problem statement such as the shape of 
the graph. 

Furthermore - and this point will be stressed even more in 
my next example - I found it very convenient to formulate invariants 
as symmetrical expressions of their arguments. For example, (P2) 
is an or - clause, not an implication. On the one hand, one can 
easily derive from it the implications both ways 
(AvB", -, A=> B",-,B => A); on the other hand, the invariance proof 
of (P2) becomes much more uniform once (P2) is stated in its 
symmetrical form. 

Thirdly, we could use "stepwise refinement". At the 
beginning the collective state "tabled" and the unrefined symbol 
"marked" already sufficed to prove (P1), and we were able to 
postpone the introduction of complications to the moment when they 
really had to be considered . 

Di scussion 

Dr. Whitby-Strevens You started off by saying that 
distributedIComputing is introducing an order of magnitude of 
difficulty. Are you not defining yourself away from some of this 
in your assumption that you deal with "atomic actions"? 

Professor Dijkstra : You are right in the sense that when 
you consider that the actual constraints for ensuring the atomicity 
of the actions given do take time, then you will face exactly the 
mutual exclusion problem we started off to solve: no two neighbours 
are allowed to perform T1 simultaneously . So in a sense I have 
reduced the problem to exactly the same problem . 

However, there is good reason for doing so . You see, 
there is another solution to the original problem, which I would 
describe as cheap and ugly : just number all edges from 1 to N, say, 
and introduce the single rule that each philosopher has to claim his 
edges in the order of increasing numbers. Then, again, the system 
is deadlock-free and starvation-free as before; however, the overall 
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behaviour strongly depends o n t he arb itrary numbering of edges. 
Thus I propose not to c ar e about the i mplementation of the atomic 
action concept; we might imagine that t his is done with a c heap but 
ugly technique. On the next level, however, where the mutual 
exclusion constraints are our main concern, we abstract away from 
the arbitrariness of suc h i mplementations and can therefore 
contemplate the more elegan t and uniform so lution j ust g iven which 
makes the overall sys tem pe rformance more overseeable and 
predictable. 

Finding the correctness proof of ~ concurrent program 

Introducing his s ec ond example, Professor Dijkstra 
cautioned his audience that it might s tr a in their abilities in the 
first order predicate calculus , but c l a imed that it was essential 
that they be able t o t eac h t hi s method to st udents . His 
pre sentation fol l owed closely the paper whic h is reprinted in the 
sequel. 

Introductio n 

In t hi s paper we wan t t o do more than just g lvlng 
another - be it unusual - ex ampl e of t he utility of the first-order 
predicate calculus in proving the correctness of programs. In 
addi tion we want to show how thanks to a systematic use of the 
first-order predicate calculus fairly general - almost " syntacti c" -
considerations about the formal mani pulations i nv olved can provide 

valuovle guidance for the smooth d i sc overy of an otherwise 
s ur prising argument . 

For proofs of pr ogram cor rec tness two fai r ly different 
styles have been developed, "oper ati onal" proofs and " assertional " 
proofs. Operational corr ectness proo f s are ba sed on a model of 
computation, and the correspo nding computat io nal hi stories are the 
subject matter of the considerati o ns . In assertional correctness 
proofs the poss i bility o f interpreting the pr ogram text as 
executable code is ignor ed and t he pr og ram text itself is the 
sub j ect matter of the form al consid e ratio ns. 

Operational proofs - al t hough older and, depending on 
one' s education , perhaps more "natur al " t han assertional proofs -

have proved to be tricky t o design. Fo r more complicated progr ams 
the required cla ssi fi ca t ion o f the possibl e computa tional histories 
tends to lead to an exploding case analys i s in which it becomes very 
c l umsy to verify that no possible sequence o f events has been 
over l ooked, and it was in r esponse t o t he disappointing experiences 
with operational proofs tha t the assertional s tyle has been 
dev e l oped. 

The design of an assertional pr oof - as we shall see 
below - may pr esent problems, but , on the whole, expe rience seems to 
indicate that assertional proofs are muc h more effective than 
oper ational ones in reducing the gna~ling un c ertainty whether nothing 
has been overlooked. This expe rience, a l ready gained while dealing 
with sequential programs, wa s s t rongly confirmed while dealing with 
concurrent programs: the ci r cumstance tha t the ratios of the speeds 
with which the sequential components pr oc eed is left undefined 
greatly increases the cl ass of computa tional histories that an 

'. 
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operational argument would have to cover! 

In the following we shall present the development of an 
assertional correctness proof of a program of N-fold concurrency. 
The program has been taken from the middle of a whole sequence of 
concurrent programs of increasing complexity - the greater 
complexity at the one end being the consequence of finer grains of 
interleaving-. For brevity ' s sake we have selected here from this 
sequence the simplest item for which the assertional correctness 
proof displays the characteristic we wanted to show. (It is not 
the purpose of this paper to provide supporting material in favour 
of the assertional style: in fact, our example is so simple that an 
operational proof for it is still perfectly feasible.) 

In the following y denotes a vector of N components y[ iJ 
for O.$i<N. With the identifier f we shall denote a vector-valued 
function of a vector-valued argument, and the algorithm concerned 
solves the equation 

(1) y=f(y) 

or, introducing fO, fl, f2, . • . for the components of f 

(2) y[ iJ =fi( y) for O.$i<N. 

It is assumed that the initial value of y and the function fare 
such that repeated assignments of the form 

(3) <y[il:=fi(y» 

will lead in a finite number of steps to y being a solution of (1). 
In (3) we have used Lamport's notation of the angle brackets: they 
enclose "atomic actions" which can be implemented by ensuring 
between their executions mutual exclusion in time. For the sake of 
termination we assume that the sequence of i-values for which the 
assignments (3) are carried out is (the proper begin of) a sequence 
in which each i-value occurs infinitely often. (We deem this 
property guaranteed by the usual assumption of "finite speed 
ratios"; he who refuses to make that assumption can read the 
following as a proof of partial correctness . ) 

For the purpose of this paper it suffices to know that 
functions f exist such that with a proper initial value of y 
equation (1) will be solved by a finite number of assignments (3). 
How for a given function f and initial value y this property can be 
established is not the subject of this paper. (He who refuses to 
assume that the function f and the initial value of y have this 
property is free to do so: he can, again, read the following as a 
proof of partial correctness that states that when our concurrent 
program has terminated, (1) is satisfied.) 

Besides the vector y there is - for the purpose of 
controlling termination - a vector h, with boolean elements h[iJ for 
O.$i<N, all of which are true to start with. We now consider the 
following program of N-fold concurrency, in which each atomic action 
assigns a value to at most one of the array elements mentioned. We 
give the program first and shall explain the notation afterwards. 
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The. concurrent program we ,are considering consists of the 
following N. components cpnti (O~i<N): 

cpn ti: 
LO: do 
L 1 : 

L2j: 

od 

< (Ej :h[ j] »-+ 
<if y[i]=fi(y)-+ h[i]:=false> 

[] y[i] / fi(y)-+ y[i]:=fi(y»; 
(Aj: <h[ j] : =true» 

fi 

In line LO, "(Ej:h[j])" is an abbreviation for 

(Ej :O~j<N:h[ j]) 

for the sake of brevity we shall use this abbreviation throughout 
this paper. By writing «Ej:h[j]» in the guard we have indicated 
that the inspection whether a true h[j] can be found is an atomic 
action. 

The opening angle bracket "<,, in L 1 has two corresponding 
closing brackets, corresponding to the two" atomic al ternatives"; it 
means that in the same atomic action the guards are evaluated and 
either "h[i]:=false" or "y[i]:=fHy)" is executed. In the latter 
case, N separate atomic actions follow, each setting an h[j] to 
true: in line L2j we have used the abbreviation "(Aj:<h[j]:=true»" 
for the program that performs the N atomic actions <h[O]:=true> 
through <h[N-1]:=true> in some order which we don't specify any 
further. 

In our target state y is a solution of (1), or, more 
explici tly 

(4) (Aj :y[ j]=fj(y)) 

holds. We first observe that (4) is an invariant of the repeatable 
statements, i.e. once true it remains true. In the alternative 
constructs always the first atomic alternative will then be 
selected, and this leaves y, and hence (4) unaffected. We can even 
conclude a stronger invariant 

(5) non (Ej:h[j]) and (Aj : y[j]=fj(y)) 

or equivalently 

(5') (Aj:non h[j]) and (Aj:y[j]=fj(y)) 

for, when (5) holds, no assignment h[ i] :=false can destroy the truth 
of (Aj:non h[j]). When (4) holds, the assumption of finite speed 
ratios implies that within a finite number of steps (5) will hold . 
But then the guards of the repetitive constructs are false, and all 
components will terminate nicely with (4) holding. The critical 
point is: can we guarantee that none' of the components terminates 
too soon? 

•• We shall give an assertional proof, following the 
technique which has been pioneered by Gries and Owicki [1]. We 
call an assertion "universally true" if and only if it holds between 
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any two atomic actions - i.e. "always" with respect to the 
computation, " everywhere" wi th respect to the text . More 
precisely: proving the universal truth of an assertion amounts to 
showing 

1) that it holds at initialisation 
2) that i ts truth is an invariant of each atomic action . 

In order to prove that none of the components terminates 
too soon, i.e. that termination implies that (4) holds, we have to 
prove the universal truth of 

(6) (Ej:h[j]) or (Aj:y[j]=fj(y». 

Relation (6) certa inl y holds when 
because initially all h[j] are 
obligation to prove the invariance 
this paper is devoted t o tha t 
d i scovered. 

the N 
true. 
of (6); 

proof, 

components are started 
We are only left with the 
the remaining part of 
and t o how it can be 

We get a hint of the difficulties we may expect when 
trying to prove the invariance of (6) with respect to the first 
atomic alternative of L1: 

<y[i}=fi(y)~ h[i]:=false> 

as soon as we realise that the first term of (6) is a compact 
notation for 

heal or h[ 1] or . . . or h[N-1] 

which only changes from true to false 
"h[i]:=false" the last true h[j] disappears. 

when, as a resul t of 
That is ugly! 

We often prove mathematical theorems by proving a 
stronger - but, somehow, more manageable - theorem instead. In 
direct analogy: instead of trying to prove the invariant truth of 
(6) directly, we shall try to prove the invariant truth of a 
stronger assertion that we get by replacing the condi tions 
y[j]=fj(y) by stronger ones . Because non R is stronger than Q 
provided (Q or R) holds, we can strengthen (6) into 

(7) (Ej: h[j]) or (Aj:non Rj) 

provided 

(8) (Aj :y[ j]=fj(y) or Rj) 

holds. (Someone who sees these heuristics presented in this manner 
for the first time may experience this as juggling, but I am afraid 
that it is quite standard and that we had better get used to it.) 

What have we gained by the introduction of the N 
predicates Rj? Well, the freedom to choose them ! More precisely: 
the freedom to define them in suc h a way that we can prove the 
universal truth of (8) - which is structurally quite pleasant - in 
the usual fashion, while the universal truth of (7) which is 
structurally as equally " ugly" as (6) - follows more or less 
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directly from the definition of the Rj' s: that is the way in which 
we may hope that (7) is more "manageable" than the original (6). 

In order to find a proper definition of the Rj' s, we 
analyse our obligation to prove the invariance of (8). 

If we only looked at the invariance of (8), we might think 
that a definition of the Rj's in terms of y: 

Rj =(y[j)/fj(y» 

would be a sensible choice . A moment's reflection tells us that 
that definition does not help: it would make (8) universally true by 
de fini tion, and the right-hand terms of (6) and (7) would be 
identical, whereas under the truth of (8), (7) was intended to be 
stronger than (6). 

For two reasons we are looking for a definition of the 
Rj's in which the y does not occur: firstly, it is then that we can 
expect the proof of the universal truth of (8) to amount to 
something - and, thereby, to contribute to the argument, secondly, 
we would like to conclude the universal truth of (7) - which does 
not ment i on y at all!- from the definition of the Rj' s. In other 
words, we propose a definition of the Rj ' s which does not refer to y 
at all: only with such a definition does the replacement of (6) by 
(7) and (8) localise our dealing with y completely to the proof of 
the universal truth of (8). 

Because we want t o de fine the Rj' s independently of y , 
because initially we cannot assume that for some j-val ue y[ j) = fj( y) 
holds, and because (8) must hold initially, we must guarantee that 
initially 

(9) ( Aj : Rj) 

holds. Because, initially, all the h[j) are true, the initial 
truth of (9) is guaranteed if the Rj' s are defined in such a way 
that we have 

( 10) (Ej : non h[ j) or (Aj: Rj) . 

We observe, that (10) is again of the recognised ugly form we are 
trying to get rid of. We have some slack - that is what the Rj' s 
are be i ng introduced for - and this is the moment to decide to try 
to come away lvi th a stronger - but what we have called" structurally 
more pl easant"- relation for the definition of the Rj's, from which 
( 10) immediately follows . The o nly candidate I can think of is 

(11) (Aj:non h[j) or Rj) 

and we can already divulge that, indeed, (11) will be one of the 
defining equations for the Rj' s. 

From (11) it follows that the algorithm will now start 
with all the Rj's true. From (8) it follows that the truth of 
Rj can be appreciated as "the equation y[ j)=fj( y) need not be 
satisfied", and from (7) it follows that in our final state we must 
have all the Rj' s equal to false . 

'. 
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Let us now look at the alternative construct 

Ll: <if y[i]=fi(y) .... i1[i]:=false> 
[] y[i] fiCy) .... y[i]:=fiCy»; 

L2j : ( Aj : < h[ j] : = true> ) 
fi 

We observe that the first al ternative sets h[ i] false, and that the 
second one, as a whole, sets all h[j] true. As far as the 
universal truth of (11) is concerned, we therefore conclude that in 
the first alternative Ri is allowed to, and hence may become false, 
but that in the second alternative as a whole, all Rj's must become 
true. 

Let us now confront the two atomic alternatives with (8). 
Because, when the first atomic alternativ e is selected, only 
y[i]=fi(y) has been observed, the universal tr uth of (8) is 
guaranteed to be an invariant of the first atomic al ternative, 
provided it enjoys the following property (12): 

In the executi on of the first atomic al ternative 

<y[i]=fiCy) .... h[i]:=false> 

(12) no Rj for j!i changes from true to false . 

Confronting the second atomic alternative 

<y[i] fiCy) .... y[i] : =fiCy» 

wi th (8), and observing that upon its completion none of the 
relations y[j]=fj(y) needs to hold, we conclude that the second 
atomic alternative itself must already cause a final state in which 
all the Rj' s are true, in spite of the fact that the subseque nt 
assignments h[ j]: =true - which would each force an Rj to true on 
account of (11) - have not been executed yet. In short: in our 
definition for the Rj's we must include besides (11) another reason 
why an Rj should be d efined to be true . 

As it stands, the sec ond atomic alternative only modifies 
y, but we had decided that the definition of the Rj' s would not be 
expressed in terms of y! The only way in which we can fo rmulate 
the additional reason for an R to be true is in terms of an 
auxiliary variable (to be introduced in a moment), whose value is 
changed in conjunction with the assignment to y[ i] . The value of 
that auxiliary variable has to fo r ce each Rj to true until the 
subsequent assignment <h[j]:=true> does so via (11). Because the 
second atomic alternative is followed by N subsequent, separate 
atomic actions <he j]: =true> - one for each value of j- , it stands to 
reason that we introduce for the i-th component cpnti an auxiliary 
local boolean array si with el ements si[j] for O~j<N. Their 
initial (and "n eutral") vql ue i s true. The second atomic 
alternative of Ll sets them ' a l l to false, the atomic statements L2j 
will reset t hem to true one at a time. 

In contrast to the variables y 
to all components - which is expressed 
variables"-, each variable si is 

and h, which are accessible 
by calling them " global 
only accessible to its 
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corresponding component cpnti - which is expressed by calling the 
variable si "local" to component cpnti. 

Local variables give rise to so-called "local assertions" . 
Local assertions are most conveniently written in the program text 
of the individual components at the place corresponding to their 
truth: they state a truth between preceding and succeeding 
statements in exactly the same way as is usual in annotating or 
verifying sequential programs. If a local assertion contains only 
local variables, it can be justified on account of the text of the 
corresponding component only. 

In the following. annotated version of cpnti we have 
inserted local assertions between braces . In order to understand 
the local assertions about si it suffices to remember that si is 
local to cpnti. The local assertion {Ri} in the second atomic 
alternative of L 1 is justified by the guard y[ il)"fiC y) in 
conjunction with (8). We have further incorporated ln our 
annotation the consequence of (12) and the fact that the execution 
of a second alternative will never caus e an Rj to become fal se: a 
true Ri can only become false by ·virtue of the execution of the 
fir.st . . alternative of L1 by c.pntLitself! Hence, Ri is true all 
through tbe execution of the second. alternat i ve of cpnti. 

cpn ti : 
LO: do «Ej:h[j]»'" {(Aj:si[j])} 
L1 : <if y[i]=fi(yH h[i]:=false>{Aj:si[j]) 

[] y [ il )"f i ( y) ... 
(Ri}y[ il : =fiCy) ; 
(Aj:si[j]:=fal se»{Ri and (Aj:non si[j])}; 

L2j: (Aj : {Ri and non si!j]}<h[j]:=true; 
sic j]: =true» 

fi {(Aj:si[j])} 
od 

On account o f (11) Rj will be true upon completion of L2j. But the 
second atomic alternative of L1 should already have made Rj true, 
and it should remain so until L2j is executed . The precondition of 
L2j, as given in the anno tation, he nc e tells us the "other reason 
besid es 

(11) (Aj:non h[j] or Rj ) 

why an Rj should be defined to be true": 

(1 3 ) (A i,j:non Ri or si[j] or Rj). 

.' Because it is our aim eventually to get all the RJ's false, we 
define the Rj' s as the minimal solution of (11) and (13), minimal in 
the sense of: as few Rj' s true as possible . 

The existence of a uni que minimal solution of (11) and 
(13) follows from the foll owing construction. Start with all Rj's 
false - all equations of (13) are then satisfied on account of the 
term " non Ri " . If all equations of (11) are satisfied as well, we 
are ready - no true Rj's at all-; otherwise (11) is satisfied by 
setting Rj to true for all j-val ues for which h[ j] holds. Now all 
equations of (11) are satisfied, but some of the equations of (13) 
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need no longer be satisfied: as long as an (i,j)-pair can be found 
for which the equation of (13) is not satisfied, satisfy it by 
setting that Rj to true: as this cannot cause violation of (11) we 
end up with the Rj' s being a solution of (11) and (13). But it is 
also the minimal solution, because any Rj true in this solution must 
be true in any solution. 

For a value of i, for which 

(14) (Aj:si[j]) 

holds, the above construction tells us that the truth of Ri forces 
no further true Rj's via (13); consequently, when such an Ri becomes 
false, no other Rj-values are then affected. This, and the fact 
that the first atomic alternative of L1 is executed under the truth 
of (14) tells us, that with our definition of the Rj' s as the 
minimal solution of (11) and (13) , requirement (12) is, indeed, met . 

We have proved the universal truth of (8) by defining the 
Rj's as the minimal solution of ( 11) and (13). The universal truth 
of (7), however, is now obvio us. If the left-hand term of (7) is 
false, we have 

(Aj:non h[j]), 

and (11) and (13) have as minimal solution all Rj' s false, i.e. 

(Aj :non Rj) 

which is the second term of (7). From the universal truth of (7) 
and (8), the univer sal truth of (6) follows, and our proof is 
completed. 

Concluding Remarks 

This note has been written with many purposes in mind: 

1) To give a wider publicity to an unusual problem and the 
mathematics involved in its solution. 

2) To present 
propagated 
proofs for 
obvious. 

a counterexample contradicting the much-
and hence commonly held belief that correctness 

programs are only laboriously belabouring the 

3) To present a counterexample to the much-propagated and hence 
commonly held belief that there is an antagonism between 
rigoUl' and formality on the one hand and "understandability" 
on the other. 

4) To present an example of a correctness proof in which the 
first-order pr edicate calculus is used as what seems an 
indispensable tool. 
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5) To present an example of a correctness proof in which the 
first-order predicate calculus is a fully adequate tool. 

6) To show how fairly general - almost "syntactic" -

7) 

considerations about the formal manipulations involved can 
provide valuable guidance for the discovery of a surprising 
and surprisingly effective argument, thus showing how a 
formal disc ipl ine can assi st "creativ i ty" in stead of - as is 
sometimes suggested - hampering it . 

To show how also in 
of separation of 
helpful - one. 

such formal considerations the principle 
concerns can be recognised as a very 

I leave it to my readers to form their opinion whether 
with the above I have served these purposes well. 
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Discussion 

Professor Pyle asked whether it was necessary to prove the 
existence of the Rj' s or wh e ther it was obvious . Professor 
Dijkstra repl ied that the proof of existence had been done in the 
paper he was presenting . He then went on to make a more genera l 
point concerning the discovery of an analytical calculus for 
geometry by Rene Descartes. Prior t o the existence of analytical 
proofs, an 'elusive form of invention' was required to find 
auxiliary construction lines . Descartes made an error of judgement 
in thinking that his method eliminated intuition . We have since 
found that in order to keep proofs wi thin managable proportions it 
is often necessary to invent auxiliary variables. Although his 
method offers strong heuristic s for this, the power of invention is 
still required . Professor Pyle pointed out that one of the causes 
of fallacious geometric arguments was the use of non-existen t 
construction lines. 

Mr. Shelness referred to an incident at the University of 
Edinburgh whereby examination students were given a program and 
asked to generate a proof of correctness; finally they were asked 
why their proof was better than testing the program . The question 
was answered by all but one member of the class who pointed out that 
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the program was incorrect. The reasoning which generated the 
incorrect program also generated the incorrect proof. Mr. Shelness 
said that he thought we should ask ourselves whether understanding 
the proof was simpler than understanding the program. Professor 
Dijkstra replied that he had done his best to reduce the length of 
the proof of his second example and that it now required only five 
li nes. The proof had not played a role in the process of 
programming although this was his 'beloved way of program 
constr uc tion' 




