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The analysis of algorithms can be considered from several 
points of view, namely, 1) the detailed mathematical 
analysis of particular algorithms; 2) the overall com
plexity analysis of groups of algorithms for a particular 
problem; and 3) an empirical analysis of algorithms 
u s ing an instruction frequency count. Examples of some 
typical analyses are presented. The technique s u sed are 
relevant to the sort of mathematics that should be taught 
to computer science students. 
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1. Introduction 

Professor Knuth began by explaining t hat t he title 'The Analysis 

of Algorithms' described the work he tries to do in Computer Science. In 

fact this title had originally be en intended for hi s series of books (Knuth 

(1968), Knuth (1969)) but the publi sh ers t hought 'The Art of Computer Pro

gramming' would see l better . 

2. The theoretical analysis of algorithms is divided into two types: 

Type A. Analysing a particular algorithm from the quantitative 

point of view, in order to see how good it is. For example, it 

is possibl e to predict t he execution time of various algorithms 

·for sorting. 

Type B. 'Complexity' - the study of classes of algorithms. 

Given a particular task a study is conducted, seeking the best 

possible way of doing it. For example, under certain as sump-

tions the sorting problem can be examined and decisions about 

the 'best ' po ss ible algorithms made. 

2.1 Type A 

2.1.1 Analysis of algorithm for finding the minimum 

An algorithm for finding the minimum of N elements (X ,X ... XN} = 
1 2 

X , N ~ 1, will be analysed. This example, which i s similar to the 
k 

analysis of the algorithm for finding the maximum in Knuth (1968), 

Volume 1, pp. 95-102, will show the kind of mathematical techniques 

needed for this work. 

An algorithm is 

MIN:= XlN]; k:= N; 

for j: = N-1 step -1 until 1 do 

if X[j] < MIN then 

begin MIN:= X[j]; k: = j; 

end; 

It will be assumed that the algorithm is · correct (thi s is 

reasonably self-evident in this simple case) . The analysis of how 

good it is can be done by a count of the number ·of times each line is 

performed. The first two lines are performed once, the third line 

N-1 times and the fourth line a variable number of times, say T. The 

question now is what is the value of T? The value of T is seen to b e 
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dependent on the data, and t he worst case, the best cas e and the average 

case are examined. 

Worst case: max T = N-1 when data i s in st rictly increasing order. 

Best case: min T = 0 when X[N] is the minimum. 

Average case: The mean value for T and the variance are of interest, 

assuming that the X's are distinct and in random order. (Other assump

tions about the input di stribution could also be made; choic e of the 

input assumptions is often an ,important cons ideration.) 

Consider the case N = 3. Let the X's be 1, 2, 3. There are six 

possible orderings of these numbers and these are given below together 

with the appropriate T value. 

Permutation T 

CD ® 3 2 ) 

CD 3 2 1 
) 
) 

2 CD 3 ) 
ave rage value of 

2 3 1 0 
) 5 
) T = '6 

3 <D 2 1 ) 

3 2 1 0 
) 
) 

2-
In the permutations circles have been put around each number that causes 

the fourth line in the algorithm to be obeyed, i.e., that increased T 

by 1. The result may now be generalised to the case of N elements. 

Two methods are shown for doing this . 

Method 1. This depends on a trick in that the permutations are examined 

and a note made of how many numbers are circled in each column. Working 

from right to left there are no numbers circled in the last column, 

whilst in the second last column every other number is circled. This 

is because the number in column N - 1 is less than that in column Nand 

this happens half the time. In the next column the numbers are less 

than those in the two previous columns one third of the time. Similarly 

for the other columns, and for the first column the value is ~~ . 
Thus Average T N~ N~ +-+-+ 3 4 

=t+r+t+ ... 

N~\..L 
... + "NINT 
1 
N "logeN 

This series occurs so often 
1 

in algorithmic analysis it is denoted 

by ~ where ~ = 1 + t + t + ... N 
N.B. for N = 10000, T is about B.B. 
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Method 2. This method i s a more systematic technique which will be 

appli cable in the analyses of other algo rithms. It also has the 

advantage of giving more information about T, not just the average . 

Let A~ = number of permutations of N elements with T = k, 

e . g. A = 2, A = 3, A = 1. 
30 31 32 

The technique is to write down a recurrence relation for 

A and then solve it. 
N+l, k 

To do this the extension of each permutation from N to N+1 is 

considered, for exampl e a permutation may be extended from N to N+1 by 

making N+1 copies of each permutation of N marks and letting N+1 be 

placed in eve ry position. 

c.g. the permutation 3 2 would lead to 

4 (f) 3 2 

G) 4 3 2 

CD 3 4 2 

CD 3 ® 4 

the circled elements are unchanged except that one more element i s 

circled when N+1 falls into the final position. 

An alternative way to go from N to N+1 would extend 1 3 2 as 

follows: 

CD CD 4 3 

2 CD 4 3 

3 <D 4 2 

4 (j) 3 2 

where after the first column the remaining marks are in the o·rde r 

1 3 2. Again exactly one new permutation has T increased by 1. 

Examining either of these constructions gives the recurrence relation 

A = NA + A (1 ) 
N+l)k Nk Nk -1 , 

The initial conditions are 

if N = 1, A = 5 and A = 0 if k < 0 
lk Ok Nk 

Thus, the following table for A can be developed. 
Nk 
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k 
0 2 3 N 

0 

1 

2 

3 2 3 

4 6 11 6 1 

(These are, in fact, Stirling Numbers of the first kind.) 

Further investigation of A can be done if the following generating 
Ni< 

function (G.F.) is set up 

~(x) = I ANi< i' . 
k 

The recurrence relation (1) can now be converted to a relation on 

the G.F. , 
= ) (N A" + A ) i' 

L ". N ,k -1 
k , 

= N , AY! 

= 

L Nk 
k , 

N L ANi< i' 
k 

, 
+ ) A i' 

L N k-1 
k ' 

,-
+ x ) A xJ 

L NJ 
J 

A (x) = (x + N)A_(x) 
N+l -~ 

This relation between G.E.s can be solved as follows 

A (x) = (x + N)(x + N -1)A (x) 
N+1 N-1 

A (x) = (x + N) (x + N -1) (x + N -2) ... (x + 1) 
N+l 

Consider now the probabilities where P = probability that a random 
Nk 

permutation of N elements has T = k. 

P = A I N! 
Nk Nk 

,-
PN(x) = L P

Nk 
i' 

_ ~(x) _ (x+N-1) 
- N! - N 

k 

(x+N-2) 
N-1 
~ . . . 2.1 ( 2) 

The mean and variance can be derived from the above G.F. by looking at 

the G.F. whose coefficients are probabiliti e s 
,-

p(x) = L P
k 
i' 
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where P is the probability that something spec ified is equal to k. 
k , 

p( 1) = I. P
k 

= 1 

, 
P' (x) = L kPk x" _1 

k 

mean (P) = P'( 1) " = L kPk = mean valu e 

k 

var (P) = P"(1) + P' (1) (p'(1)) 2 = variance 

for a product of two G.F. ' s 

p(x) = Q(x) R(x} Q(l) = R( 1 ) = 1 

mean (P) = mean (Q) + mean (R) 

var (p) = var ( Q) + var (R) . 

Applying these general results to the probabilistic G.F . (2) 

mean (PN) = mean (X+~-1 ) + mean (X;~~2) + ... + mean (X~1 ) 

1 1 =-+--+ ... 
N N-1 

= (-N
1 1) ( 1 - N2 + N-1 - + . •. + (~- ~2) + 0 

= HN - (1 + ;2 + ... 

This exampl e illustrates mo st of the techniques used in this 

type of algorithm analysis. In fact, the same recurrence relation 

occurs in other problems such as reservoir sampling techniques 

where the problem i s to sample a large f ile; and the number of cycles 

in a random permutation. 

2.1.2 Analysis of an Information Retrieval Algorithm 

The method of information retri eval using a binary tree is 

fairly well known (e.g. Hibbard 1962). Given a list of keys the 

tree is constructed so that first item is the root and a subsequent 

item is placed on the left if its k ey is less than the key of the 

current node, on the right if it is greater . 

the first unoccupied node. 

The item is placed at 

Example : The following two digit keys were derived randomly using 

two dice. 
11 , 31, 66, 14, 56, 46, 64, 44 
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The binary search tree for these keys, entered in thi s order, is: 

6 

o 
46 64 

4 0 [1 Cl 
o tJ 

Below every node where there is a vacant place a square box i s 

drawn. If There are n node s there are n+1 square boxes ; this can 

be seen by induction since it is true for n = 1 and every time a new 

node is added a square box is r eplaced by a node and two square boxes. 

The search and insertion algorithm simply starts at the root 

testing the key against the key of the current node. If it is greater 

go to right, if it is less go to left, if it i s t he same the search is 

ended. If an unoccupied node is reached the new key is inserted . An 

algorithm for this might be as follows, where each node has a key, a 

left link, and a right link: 

NOT FOUND : 

key [ OJ:= - '" 

q:= 0; p:= right [OJ; 

whil e p;o1o do 

begin if x = key [PJ then goto FOUND; 

q:= p; 

end· --' 

if x < key [qJ then p := left [qJ 

else p:= right [qJ 

n: = n+1; left [nJ:= right [nJ:= 0; 

if x < key [ qJ then left [qJ : = n else right [qJ:= n; 

FOUND: 

The algorithm is to be analysed with respect to the amount of 

time r equired to retrieve an i tem in the binary tree. Thi s is 

proportional to t he distance from the root to the particular node. 
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For the above tree 

Average number of tests = 1 + 2 + 3 + 3 + 4 + 5 + 5 + 6 
8 

This is equivalent to analysing the number of tests required 

to insert the item in the first place. 

Consider a tree of n node s . 

Let A = number of permutations of 1 to n where the last 

element takes k comparisons to insert. 
nk 

e.g. 3142. 

It requires two comparisons 

to insert the final element 2. 

In any binary search tree each square box is an equal.ly likely 

node for the n"xt item to be inserted, if we assume that the inputs 

are in random order. When a further nod.e is inserted one square 

box is replaced by two square boxes at one l.evel further down the 

tree. 

Therefore, the recurrence relation is 

A = (n - 2}A + 2A (3) 
n k n -,k n -l,k -1 

It can be seen that this is the correct formula since (n - 2) 

of the square boxes are the same as in the n - 1 case and the 

other two have increased by one. 

As in the minimum algorithm analysis the recurrence relation (3) 

is solved using a generating function 

Similarly, 

.-
A (x) = L A i' = (n-2+2x) (n-3+2x) •.. (O+2x), n~2 . 

n n k 
k 

mean (~!) = mean (n-~+2X) (n-3+2x\ + mean ) + ... n-1 

var 

2 
n 

2 + -- + n-1 

= 2(H 1) 
n 

(~) = 2H 
n 
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The variance is an interesting result in this example since it shows 

the method is fairly stable about the mean. This information is 

useful since the worst case analysis is not very promising. 

Another example which has an instructive analysis i s the 

algori thm for the addition of numbers in base b arithmetic.· (See 

Knuth (1969) Vol.II, pp.242-243). 

2.2 TYpe B 

A second type of algorithmic analysis considers all the possible 

algorithms for doing a particular thing, looking for the best. Unfor-

tunately, such analyses do not so lve the problem once and for all since 

one of our fundamental premises may change (e.g. from serial to paral lel 

operation) . 

2.2 .1 Internal sorting 

It seems reasonable in this case to base the analysis on the 

number of comparisons made by each method. Since there are n! 

possible outcomes and each comparison can at most reduce this by a 

factor of two then the minimum number of compari sons is log n! fo r 
2 

sorting n elements. 

However, the relation 

min (x,y) 

needs no formal comparisons. 

= x + Y - Ix-yl 
2 

It is possible to sort n numbers 

without making a single conditional jump instruction in the program. 

Radix methods do the sorting with no comparisons. So there are 

difficulties in setting up the problem in such a way that methods 

can be compared by this • complexity' analysis. 

Another difficulty is finding exact values, and this is also 

well illustrated by internal sorting. 

Consider the classical method of internal sorting known as 

binary insertion (H. Steinhaus (1950)). If the k-1 elements 

x x ••• x have been already sorted then the next element x 
1 2 k -1 k 

be inserted in the correct position in the list by the use of 

binary search. 

Number of compari sons to insert kth element = jlog k1 
2 

n 

" Total number of comparisons = L [log)ZI = B(n) 
k =1 
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Let S(n) be the minimum number of comparisons achievable by any 

algorithm; then 

B(n) ~ S(n) ~ log n! 
2 

k =1 

log k 
2 

(6) 

There is, therefore, only a small difference betwe en the 

theoretical minimum and what can be a chieved by binary insertion. 

However, this analysis is deceiving bec ause the difficulty with 

binary insertion is that in order to insert the n ew element x 

elements have to be moved in storage. This is 
k 

often much more 

important than the time taken to do comparisons. There are 

methods that achieve the r esults in equation (5) without the extra 

penalty of moving elements, e.g. Merging. 

The problem of obtaining the exact minimum value for the 

number of comparisons is now examined. 

Consider n = 5. Using equations (5) and (6) 

B(5) = 8 

S(5) ~ 7. 

There is a tricky construction which prove s that S(5) = 7, due to 

Ford and Johnson (1959). They showed, in fact, that S(n) = 
[log.nT! for n s 11, n = 20, 21. M. Wells (1965) showed S(12) = 
[log 12T] + 1. In general, the method of Ford and Johnson requires 

• n 

F(n) = L TlOg
a 
tkl 

k =1 

compari sons, and so far this is the best result known. 

Summing up this 'complexity' analysis of algorithms, 

(i) There are great difficultie s in formulating the problem. 

(ii) The basic assumptions of the formulation can change and thus 

invalidate the whole analysis. 

(iii) Exact solutions to most of the problems are not known and 

are difficult to find. 

3. Instruction Frequency Counts 

Detailed theoretical analyses of the types just discussed are only 

worthwhile if the algorithm is important, which means either frequently 

used or occupying a central place in computer science. 

algorithms an empirical approach may be adopted. 
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The idea of this analysis is to provide the algorithm designer 

with a count of the number of times various parts of his algorithms are 

passed. In detail this usually means providing him with a count of the 

number of times each independent statement in the algorithm is passed. 

This is much more helpful than the practice of many people today which is 

to supply running times for particular machines. Such times can be very 

compiler and machine dependent. Ideally, these instruction frequency 

counts should be supplied automatically by the compiler or software system 

and also there should be the facility for turning them off when not re-

quired. Professor Knuth gave an example of the use of frequency counts 

in which he, had written a compiler and was running it on a simulator to 

find the bottlenecks. The early tests showed that 45% of the frequency 

counts were zero. Thus, quite a large part of compiler was untested and 

could still contain errors. Also the parts where the frequency counts 

were high showed where the computational effort was being employed and 

this was used to optimise the compiler. Therefore, both large frequency 

counts and zero counts provide valuable information. A related debugging 

method is to trace each instruction the first n times it is obeyed (typi-

cally n = 2). This selective trace technique has been used by Knuth for 

many years with interpreters, and it has recently been developed at 

Stanford by Satterthwaite for an Algol compiler. The u se of instruction 

frequency counts is an excellent way of training computer scientists to 

write efficient algorithms . In fact, even experienced programmers are 

often surprised at the frequency count results. It seems, therefore, 

that such frequency counts should be a standard feature of compilers and 

operating systems. 

4. The Role of Mathematics in Computer Science Teaching 

Several sections of mathematics such as numerical analysis, 

mathematical logic and the theory of languages (including automata theory) 

have obvious relevance in the teaching of computer science students. 

However, there are other parts such as Combinatorial and Discrete 

Mathematics which have disappeared for many years from the mathematical 

syllabus but have much relevance to Computer Science. The analysis of 

algorithms has revealed the importance of such topics as permutation 

properties, counting, recurrence relations and generating functions. 

Partial ordering and tree structures are also important but not all of 
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classical graph theory is useful. Anothe r point in the mathematical 

teaching of computer sc ient i sts is that t h e emphasi s should be more on 

methods and less on theorems. 

5. Discu ss ion 

Professor Randel l asked if t h e type of empirical frequ ency count 

could not be obtained more easily by interrupting the program periodically 

and examining it s position. Professor Knuth replied that this approach 

is also being fruitfully applied at Stanford and elsewhere. Unfo rtunately, 

such an interrupt often occurs in the logarithm rout ine or the I/O package 

and so the information derived is not quite so useful . In high leve l 

languages it is al so difficult to relate the interrupt location to the 

po s ition in the original program. 

In r eply to a question by Professor Perlis about getting infor

mation on the path followed by a program Professor Knuth said it was hi s 

personal opinion that it would not produce the spectacular payoffs that 

the initial provision of frequency counts had. In fact, he doubted if 

the extra information would be worth the difficulty of obtaining it. 

Professor Knuth agreed with a remark of Professor Wirth that 

many programmers did not give any thought to the idea .of frequency counts 

when writing their programs and consequently they would be surprised by 

the frequency count s obtained. However, he had pe r sonally been surprised 

by the frequency counts he had obtained even though he had considered 

efficiency in writing his own programs. 

Professor Randell asked about the size and complexity of the 

programs on which the frequency count t echnique had been employed and 

Professor Knuth stated that programs of up to four to five thousand cards 

had been tackled. 

Professor Michaelson po sed the question that s ince compilers 

optimise uniformly would not frequency counts suggest that hand optimi

sation in the areas of the program with large frequency count i s a more 

worthwhil e technique. Professor Knuth agreed and said it would appear 

reasonable to develop a compiler which would optimise over the inner loop 

of a program. In typical programs the running time i s governed by only 

a small pe rcentage of the code. Howeve r, in pract ice it was found that 

the inner loops of programs were not inf r equently rather large, and this 

makes th e optimisation much more difficult. 
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Professor Hoare pointed out that the zeros of the frequency 

counts would appear to be of some advantage with respect to slave store 

techniques, in which backup storage would be used mainly for t he part s of 

programs that were used very infrequently. Professor Knuth replied that 

unfortunately the distribution of ze ros in the frequency counts was not 

usually uniform and it would be difficult to use t hem in the way suggested. 

In reply to Professor King the speaker agreed that the probabi

lity distribution of the data could greatly affect the performance of an 

algorithm and therefore should if possible be included in the analysis. 

He quoted the exampl e of a payroll program which would behave very diffe-

rently at the end of the month than at any other time. The distribution 

of the data should be considered in the choice of a particular algorithm. 

Professor Perlis asked the speru{er how much of the analysis of 

algorithms he thought should be taught to engineers and physicists. 

Professor Knuth replied that they should be exposed to a few theoretical 

analyses, although most of the mathematical analysis would not be approp

riate for such students. Frequency counts are a good way of introducing 

them to the idea of writing efficient programs. 
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