
Abstract:

THE ANALYSIS OF ALGORITHMS

Professor D. E. Knuth

Department of Computer Science,
Stanford University,

Stanford,
California, 94305, U.S.A.

The analysis of algorithms can be considered from several
points of view, namely, 1) the detailed mathematical
analysis of particular algorithms; 2) the overall com
plexity analysis of groups of algorithms for a particular
problem; and 3) an empirical analysis of algorithms
u s ing an instruction frequency count. Examples of some
typical analyses are presented. The technique s u sed are
relevant to the sort of mathematics that should be taught
to computer science students.

Rapporteurs:

Mr. L. B. Wilson
Mr. L. Wall er

49

l
I
I
I

1. Introduction

Professor Knuth began by explaining t hat t he title 'The Analysis

of Algorithms' described the work he tries to do in Computer Science. In

fact this title had originally be en intended for hi s series of books (Knuth

(1968), Knuth (1969)) but the publi sh ers t hought 'The Art of Computer Pro

gramming' would see l better .

2. The theoretical analysis of algorithms is divided into two types:

Type A. Analysing a particular algorithm from the quantitative

point of view, in order to see how good it is. For example, it

is possibl e to predict t he execution time of various algorithms

·for sorting.

Type B. 'Complexity' - the study of classes of algorithms.

Given a particular task a study is conducted, seeking the best

possible way of doing it. For example, under certain as sump-

tions the sorting problem can be examined and decisions about

the 'best ' po ss ible algorithms made.

2.1 Type A

2.1.1 Analysis of algorithm for finding the minimum

An algorithm for finding the minimum of N elements (X ,X ... XN} =
1 2

X , N ~ 1, will be analysed. This example, which i s similar to the
k

analysis of the algorithm for finding the maximum in Knuth (1968),

Volume 1, pp. 95-102, will show the kind of mathematical techniques

needed for this work.

An algorithm is

MIN:= XlN]; k:= N;

for j: = N-1 step -1 until 1 do

if X[j] < MIN then

begin MIN:= X[j]; k: = j;

end;

It will be assumed that the algorithm is · correct (thi s is

reasonably self-evident in this simple case) . The analysis of how

good it is can be done by a count of the number ·of times each line is

performed. The first two lines are performed once, the third line

N-1 times and the fourth line a variable number of times, say T. The

question now is what is the value of T? The value of T is seen to b e

51

dependent on the data, and t he worst case, the best cas e and the average

case are examined.

Worst case: max T = N-1 when data i s in st rictly increasing order.

Best case: min T = 0 when X[N] is the minimum.

Average case: The mean value for T and the variance are of interest,

assuming that the X's are distinct and in random order. (Other assump

tions about the input di stribution could also be made; choic e of the

input assumptions is often an ,important cons ideration.)

Consider the case N = 3. Let the X's be 1, 2, 3. There are six

possible orderings of these numbers and these are given below together

with the appropriate T value.

Permutation T

CD ® 3 2)

CD 3 2 1
)
)

2 CD 3)
ave rage value of

2 3 1 0
) 5
) T = '6

3 <D 2 1)

3 2 1 0
)
)

2-
In the permutations circles have been put around each number that causes

the fourth line in the algorithm to be obeyed, i.e., that increased T

by 1. The result may now be generalised to the case of N elements.

Two methods are shown for doing this .

Method 1. This depends on a trick in that the permutations are examined

and a note made of how many numbers are circled in each column. Working

from right to left there are no numbers circled in the last column,

whilst in the second last column every other number is circled. This

is because the number in column N - 1 is less than that in column Nand

this happens half the time. In the next column the numbers are less

than those in the two previous columns one third of the time. Similarly

for the other columns, and for the first column the value is ~~ .
Thus Average T N~ N~ +-+-+ 3 4

=t+r+t+ ...

N~\..L
... + "NINT
1
N "logeN

This series occurs so often
1

in algorithmic analysis it is denoted

by ~ where ~ = 1 + t + t + ... N
N.B. for N = 10000, T is about B.B.

52

Method 2. This method i s a more systematic technique which will be

appli cable in the analyses of other algo rithms. It also has the

advantage of giving more information about T, not just the average .

Let A~ = number of permutations of N elements with T = k,

e . g. A = 2, A = 3, A = 1.
30 31 32

The technique is to write down a recurrence relation for

A and then solve it.
N+l, k

To do this the extension of each permutation from N to N+1 is

considered, for exampl e a permutation may be extended from N to N+1 by

making N+1 copies of each permutation of N marks and letting N+1 be

placed in eve ry position.

c.g. the permutation 3 2 would lead to

4 (f) 3 2

G) 4 3 2

CD 3 4 2

CD 3 ® 4

the circled elements are unchanged except that one more element i s

circled when N+1 falls into the final position.

An alternative way to go from N to N+1 would extend 1 3 2 as

follows:

CD CD 4 3

2 CD 4 3

3 <D 4 2

4 (j) 3 2

where after the first column the remaining marks are in the o·rde r

1 3 2. Again exactly one new permutation has T increased by 1.

Examining either of these constructions gives the recurrence relation

A = NA + A (1)
N+l)k Nk Nk -1 ,

The initial conditions are

if N = 1, A = 5 and A = 0 if k < 0
lk Ok Nk

Thus, the following table for A can be developed.
Nk

53

k
0 2 3 N

0

1

2

3 2 3

4 6 11 6 1

(These are, in fact, Stirling Numbers of the first kind.)

Further investigation of A can be done if the following generating
Ni<

function (G.F.) is set up

~(x) = I ANi< i' .
k

The recurrence relation (1) can now be converted to a relation on

the G.F. ,
=) (N A" + A) i'

L ". N ,k -1
k ,

= N , AY!

=

L Nk
k ,

N L ANi< i'
k

,
+) A i'

L N k-1
k '

,-
+ x) A xJ

L NJ
J

A (x) = (x + N)A_(x)
N+l -~

This relation between G.E.s can be solved as follows

A (x) = (x + N)(x + N -1)A (x)
N+1 N-1

A (x) = (x + N) (x + N -1) (x + N -2) ... (x + 1)
N+l

Consider now the probabilities where P = probability that a random
Nk

permutation of N elements has T = k.

P = A I N!
Nk Nk

,-
PN(x) = L P

Nk
i'

_ ~(x) _ (x+N-1)
- N! - N

k

(x+N-2)
N-1
~ . . . 2.1 (2)

The mean and variance can be derived from the above G.F. by looking at

the G.F. whose coefficients are probabiliti e s
,-

p(x) = L P
k
i'

54

,.

where P is the probability that something spec ified is equal to k.
k ,

p(1) = I. P
k

= 1

,
P' (x) = L kPk x" _1

k

mean (P) = P'(1) " = L kPk = mean valu e

k

var (P) = P"(1) + P' (1) (p'(1)) 2 = variance

for a product of two G.F. ' s

p(x) = Q(x) R(x} Q(l) = R(1) = 1

mean (P) = mean (Q) + mean (R)

var (p) = var (Q) + var (R) .

Applying these general results to the probabilistic G.F . (2)

mean (PN) = mean (X+~-1) + mean (X;~~2) + ... + mean (X~1)

1 1 =-+--+ ...
N N-1

= (-N
1 1) (1 - N2 + N-1 - + . •. + (~- ~2) + 0

= HN - (1 + ;2 + ...

This exampl e illustrates mo st of the techniques used in this

type of algorithm analysis. In fact, the same recurrence relation

occurs in other problems such as reservoir sampling techniques

where the problem i s to sample a large f ile; and the number of cycles

in a random permutation.

2.1.2 Analysis of an Information Retrieval Algorithm

The method of information retri eval using a binary tree is

fairly well known (e.g. Hibbard 1962). Given a list of keys the

tree is constructed so that first item is the root and a subsequent

item is placed on the left if its k ey is less than the key of the

current node, on the right if it is greater .

the first unoccupied node.

The item is placed at

Example : The following two digit keys were derived randomly using

two dice.
11 , 31, 66, 14, 56, 46, 64, 44

55

The binary search tree for these keys, entered in thi s order, is:

6

o
46 64

4 0 [1 Cl
o tJ

Below every node where there is a vacant place a square box i s

drawn. If There are n node s there are n+1 square boxes ; this can

be seen by induction since it is true for n = 1 and every time a new

node is added a square box is r eplaced by a node and two square boxes.

The search and insertion algorithm simply starts at the root

testing the key against the key of the current node. If it is greater

go to right, if it is less go to left, if it i s t he same the search is

ended. If an unoccupied node is reached the new key is inserted . An

algorithm for this might be as follows, where each node has a key, a

left link, and a right link:

NOT FOUND :

key [OJ:= - '"

q:= 0; p:= right [OJ;

whil e p;o1o do

begin if x = key [PJ then goto FOUND;

q:= p;

end· --'

if x < key [qJ then p := left [qJ

else p:= right [qJ

n: = n+1; left [nJ:= right [nJ:= 0;

if x < key [qJ then left [qJ : = n else right [qJ:= n;

FOUND:

The algorithm is to be analysed with respect to the amount of

time r equired to retrieve an i tem in the binary tree. Thi s is

proportional to t he distance from the root to the particular node.

56

For the above tree

Average number of tests = 1 + 2 + 3 + 3 + 4 + 5 + 5 + 6
8

This is equivalent to analysing the number of tests required

to insert the item in the first place.

Consider a tree of n node s .

Let A = number of permutations of 1 to n where the last

element takes k comparisons to insert.
nk

e.g. 3142.

It requires two comparisons

to insert the final element 2.

In any binary search tree each square box is an equal.ly likely

node for the n"xt item to be inserted, if we assume that the inputs

are in random order. When a further nod.e is inserted one square

box is replaced by two square boxes at one l.evel further down the

tree.

Therefore, the recurrence relation is

A = (n - 2}A + 2A (3)
n k n -,k n -l,k -1

It can be seen that this is the correct formula since (n - 2)

of the square boxes are the same as in the n - 1 case and the

other two have increased by one.

As in the minimum algorithm analysis the recurrence relation (3)

is solved using a generating function

Similarly,

.-
A (x) = L A i' = (n-2+2x) (n-3+2x) •.. (O+2x), n~2 .

n n k
k

mean (~!) = mean (n-~+2X) (n-3+2x\ + mean) + ... n-1

var

2
n

2 + -- + n-1

= 2(H 1)
n

(~) = 2H
n

57

+ mean

2 +-
2

(21X)

The variance is an interesting result in this example since it shows

the method is fairly stable about the mean. This information is

useful since the worst case analysis is not very promising.

Another example which has an instructive analysis i s the

algori thm for the addition of numbers in base b arithmetic.· (See

Knuth (1969) Vol.II, pp.242-243).

2.2 TYpe B

A second type of algorithmic analysis considers all the possible

algorithms for doing a particular thing, looking for the best. Unfor-

tunately, such analyses do not so lve the problem once and for all since

one of our fundamental premises may change (e.g. from serial to paral lel

operation) .

2.2 .1 Internal sorting

It seems reasonable in this case to base the analysis on the

number of comparisons made by each method. Since there are n!

possible outcomes and each comparison can at most reduce this by a

factor of two then the minimum number of compari sons is log n! fo r
2

sorting n elements.

However, the relation

min (x,y)

needs no formal comparisons.

= x + Y - Ix-yl
2

It is possible to sort n numbers

without making a single conditional jump instruction in the program.

Radix methods do the sorting with no comparisons. So there are

difficulties in setting up the problem in such a way that methods

can be compared by this • complexity' analysis.

Another difficulty is finding exact values, and this is also

well illustrated by internal sorting.

Consider the classical method of internal sorting known as

binary insertion (H. Steinhaus (1950)). If the k-1 elements

x x ••• x have been already sorted then the next element x
1 2 k -1 k

be inserted in the correct position in the list by the use of

binary search.

Number of compari sons to insert kth element = jlog k1
2

n

" Total number of comparisons = L [log)ZI = B(n)
k =1

58

may

(5)

Let S(n) be the minimum number of comparisons achievable by any

algorithm; then

B(n) ~ S(n) ~ log n!
2

k =1

log k
2

(6)

There is, therefore, only a small difference betwe en the

theoretical minimum and what can be a chieved by binary insertion.

However, this analysis is deceiving bec ause the difficulty with

binary insertion is that in order to insert the n ew element x

elements have to be moved in storage. This is
k

often much more

important than the time taken to do comparisons. There are

methods that achieve the r esults in equation (5) without the extra

penalty of moving elements, e.g. Merging.

The problem of obtaining the exact minimum value for the

number of comparisons is now examined.

Consider n = 5. Using equations (5) and (6)

B(5) = 8

S(5) ~ 7.

There is a tricky construction which prove s that S(5) = 7, due to

Ford and Johnson (1959). They showed, in fact, that S(n) =
[log.nT! for n s 11, n = 20, 21. M. Wells (1965) showed S(12) =
[log 12T] + 1. In general, the method of Ford and Johnson requires

• n

F(n) = L TlOg
a
tkl

k =1

compari sons, and so far this is the best result known.

Summing up this 'complexity' analysis of algorithms,

(i) There are great difficultie s in formulating the problem.

(ii) The basic assumptions of the formulation can change and thus

invalidate the whole analysis.

(iii) Exact solutions to most of the problems are not known and

are difficult to find.

3. Instruction Frequency Counts

Detailed theoretical analyses of the types just discussed are only

worthwhile if the algorithm is important, which means either frequently

used or occupying a central place in computer science.

algorithms an empirical approach may be adopted.

59

For other

The idea of this analysis is to provide the algorithm designer

with a count of the number of times various parts of his algorithms are

passed. In detail this usually means providing him with a count of the

number of times each independent statement in the algorithm is passed.

This is much more helpful than the practice of many people today which is

to supply running times for particular machines. Such times can be very

compiler and machine dependent. Ideally, these instruction frequency

counts should be supplied automatically by the compiler or software system

and also there should be the facility for turning them off when not re-

quired. Professor Knuth gave an example of the use of frequency counts

in which he, had written a compiler and was running it on a simulator to

find the bottlenecks. The early tests showed that 45% of the frequency

counts were zero. Thus, quite a large part of compiler was untested and

could still contain errors. Also the parts where the frequency counts

were high showed where the computational effort was being employed and

this was used to optimise the compiler. Therefore, both large frequency

counts and zero counts provide valuable information. A related debugging

method is to trace each instruction the first n times it is obeyed (typi-

cally n = 2). This selective trace technique has been used by Knuth for

many years with interpreters, and it has recently been developed at

Stanford by Satterthwaite for an Algol compiler. The u se of instruction

frequency counts is an excellent way of training computer scientists to

write efficient algorithms . In fact, even experienced programmers are

often surprised at the frequency count results. It seems, therefore,

that such frequency counts should be a standard feature of compilers and

operating systems.

4. The Role of Mathematics in Computer Science Teaching

Several sections of mathematics such as numerical analysis,

mathematical logic and the theory of languages (including automata theory)

have obvious relevance in the teaching of computer science students.

However, there are other parts such as Combinatorial and Discrete

Mathematics which have disappeared for many years from the mathematical

syllabus but have much relevance to Computer Science. The analysis of

algorithms has revealed the importance of such topics as permutation

properties, counting, recurrence relations and generating functions.

Partial ordering and tree structures are also important but not all of

60

..

classical graph theory is useful. Anothe r point in the mathematical

teaching of computer sc ient i sts is that t h e emphasi s should be more on

methods and less on theorems.

5. Discu ss ion

Professor Randel l asked if t h e type of empirical frequ ency count

could not be obtained more easily by interrupting the program periodically

and examining it s position. Professor Knuth replied that this approach

is also being fruitfully applied at Stanford and elsewhere. Unfo rtunately,

such an interrupt often occurs in the logarithm rout ine or the I/O package

and so the information derived is not quite so useful . In high leve l

languages it is al so difficult to relate the interrupt location to the

po s ition in the original program.

In r eply to a question by Professor Perlis about getting infor

mation on the path followed by a program Professor Knuth said it was hi s

personal opinion that it would not produce the spectacular payoffs that

the initial provision of frequency counts had. In fact, he doubted if

the extra information would be worth the difficulty of obtaining it.

Professor Knuth agreed with a remark of Professor Wirth that

many programmers did not give any thought to the idea .of frequency counts

when writing their programs and consequently they would be surprised by

the frequency count s obtained. However, he had pe r sonally been surprised

by the frequency counts he had obtained even though he had considered

efficiency in writing his own programs.

Professor Randell asked about the size and complexity of the

programs on which the frequency count t echnique had been employed and

Professor Knuth stated that programs of up to four to five thousand cards

had been tackled.

Professor Michaelson po sed the question that s ince compilers

optimise uniformly would not frequency counts suggest that hand optimi

sation in the areas of the program with large frequency count i s a more

worthwhil e technique. Professor Knuth agreed and said it would appear

reasonable to develop a compiler which would optimise over the inner loop

of a program. In typical programs the running time i s governed by only

a small pe rcentage of the code. Howeve r, in pract ice it was found that

the inner loops of programs were not inf r equently rather large, and this

makes th e optimisation much more difficult.

61

Professor Hoare pointed out that the zeros of the frequency

counts would appear to be of some advantage with respect to slave store

techniques, in which backup storage would be used mainly for t he part s of

programs that were used very infrequently. Professor Knuth replied that

unfortunately the distribution of ze ros in the frequency counts was not

usually uniform and it would be difficult to use t hem in the way suggested.

In reply to Professor King the speaker agreed that the probabi

lity distribution of the data could greatly affect the performance of an

algorithm and therefore should if possible be included in the analysis.

He quoted the exampl e of a payroll program which would behave very diffe-

rently at the end of the month than at any other time. The distribution

of the data should be considered in the choice of a particular algorithm.

Professor Perlis asked the speru{er how much of the analysis of

algorithms he thought should be taught to engineers and physicists.

Professor Knuth replied that they should be exposed to a few theoretical

analyses, although most of the mathematical analysis would not be approp

riate for such students. Frequency counts are a good way of introducing

them to the idea of writing efficient programs.

6. References

Ford, L.R., Jr. and Johnson, S.M. (1959) 'A Tournament Problem'. Amer.

Math. Monthly 66 (May 1959)., pp.387ff.

Hibbard, T.N. (1962) ' Some Combinatorial Properties of Certain Trees

with Applications to Searching and Sorting'. JACM 2 (1962), pp.13-28 .

Knuth, D.E. (1968) 'The Art of Computer Programming' Vol. I 'Fundamental

Algorithms'. Addison-Wesley.

Knuth, D.E. (1969) Vol. 11 'Semi-numerical Algorithms'. Addison-Wesley.

Steinhaus, H. (1950) 'Mathematical Snapshots'. Oxford University Press.

pp.36ff.

Well s, M.B. (1965) 'Applications of a Language for Computing in

Combinatorics'. Procs. of IFIP Congress 1965, Vol. 2, pp. 497-498.

62

I ,

