FORMAL AND ON-THE=JOB TRAINING FOR APPLICATIONS
SYSTEMS PROGRAMMERS

Mr. J. D. Aron

Federal Systems Center,
I.B.M. Corporation,
18100 Frederick Pike,
Gaithersburg,
Maryland 20760, U.S.A.

Abstract:

After a discussion of the current methods of producing
large software systems, more appropriate forms of

organizing and training programming personnel are
suggested.

Rapporteurs:

Mr. J. S. Clowes
Mr. I. Mitrani

35

s
PLAST Y a1 paa R BAE favad s b iy " . 11 _’\ FOEATTY
Cge Ao . e i o | i | h ! JRGET Y ™
& el : -)
el L RO Maldhy
- P
b
s A b

Jradas’) amedsye lazohol
oo idaragEel) JMOA
yolEY Aoszrebos® OO0FHI
saxaileaaft o

A2 0 OaN0E Funlvasld 7
2
14 vavdadA
S\f:j’ ""h'j"iq T~ shntlrnia leaTvit edt Yo falss=uszibh A ﬂln\"!" |
Tu E:-:‘Ir'l"] "|-+J:|1'_lq_‘_'g!'_n_"_g_| il iy ‘ﬂl‘r:-».j‘?_(‘g . m.,.'.‘h-. Vil :]J
otn I nbetwmy Ja ey ypntelard biee gulsinagyo !
-badeuypua ;
i
2L .ii' N

The growing requirement for very big programs gives rise to problems
connected with the efficienlt organization and management of the large teams of
programmers needed to produce them. Techniques which have been successful in
the past, when programs and teams were smaller, have proved inadequate for the
largest present-day projects. In his lecture Mr. Aron analysed the reasons
for the inadequacy of current practice and put forward suggestions for the

more appropriate organization and training of programming personnel.

In order to provide a context for his later remarks Mr. Aron com-
menced by describing the nature of the business and the type of person employed

at his institution.

The IBM Corporation's Federal Systems Center is, in effect, a large
software house whose business consists in writing applications programs for
its customers, chiefly the Federal Government. The programs are predominantly
non-scientific and non-experimental, that is, they are required to perform
well-defined tasks and will be run on a routine basis. An important factor
is that most of the users have limited technical knowledge of computing and
the programs must be designed so that they can be easily and reliably used by
such people.

The size of programs produced has varied from 10,000 to 6,000,000
steps (i.e. macroassembler or high-level language statements). Programs of
10,000 steps would be classified as 'small', those with 30,000 to 500,000 steps
as 'medium' and those with over 500,000 steps as 'large'. This paper is con-
cerned with programs in the 'large' category of which about 12 have been attemp-

ted.

Most of the programmers are graduates, the majority of them in their
first job. Very few are Computing Science specialists, the national output
of such being comparatively small. College graduates are selected primarily
because of the belief that they are more likely to succeed in intellectual work
than non-graduates. On the whole, they do not have, and do not acquire, a
professional attitude towards computing. Programming is regarded just as a
job and most are unwilling to deepen their understanding of the subject through
spare-time study. The 10-20% who do study tend to advance more rapidly. (It
should be noted that even 10-20% of a population of several thousand is a very

respectable cadre of software engineers.)

37

In general, one may distinguish between training, which consists
in teaching facts, and education, which consists in explaining concepts.
Since the cost of training and education increases the price of the product, =
instruction in industry tends to concentrate on training which is more
immediately useful. Even so, the time which may be devoted to training is
very limited and employees at the Federal Systems Center receive only the
equivalent of one week's training per annum on average. The employees are
expected to supplement the training with graduate level education courses

and technical society activities on their own initiative.

Training in some particular subject is, obviously, best provided
immediately before an individual is assigned to a project involving the sub-
ject. In practice this is usually impossible because courses are scheduled
to take place at fixed times. Conversely, it is often impossible to release
an individual from his current project at the time when a course is running.
The result is that the only training a programmer can be certain of is his
initial training consisting of nine weeks programming plus on-the-job instruc-
tion. It is through on-the~job training that most advanced techniques are

taught.

In I.B.M. team managers are not only responsible for the success
of their projects but also for the progress and growth of the team members.
It is essentially a leadership job and team managers are team oriented. A
large portion of the present managers were trained as engineers and have been
at the center for up to ten years. Because of the pressure of day to day
work they have had little time to study the development of computing techniques.
Aware of the overriding necessity to finish projects on time and within budget
they tend to be conservative in their choice of methods and to prefer modifiable,
easily understood and egsentially simple programs. Trainees on the other hand
are self-oriented, interested in experiment and in developing their own ideas.
They prefer to seek elegant solutions to problems. This divergence of outlook
tends to produce conflict and one of the aims of training must be to resolve
this conflict. In order to do this it is necessary to train the programmers
to work in a team and the managers to be more receptive to new techniques. At
the same time, the training program must be designed to accommodate the existing

manager-employee relationships.

Mr. Aron designated three stages in the historical development of

commercial computing which have shaped the content of training programs.

38

During the first stage the computers, and consequently the problems,
were small enough for one programmer to cope with. The man responsible for
the application could grasp and understand the problem and he knew all about
the tools available to him — such as assemblers, library of subroutines and
Basic Input-Output Control System (see Figure 1). The programmer communicated

directly with the computer and was able to take advantage of its peculiarities.

With the advent of the second generation computers larger and more
complicated problems could be tackled. These were handled by a small team of
programmers and although the whole team would contribute to the formulation of
the problem, the actual programming would be divided into independent tasks.
More tools were made available to facilitate the process of programming (see
Figure 2); however, the team could equalize the training load by assigning
cach member a limited number of topics to specialize in. The proliferation of
system programs and the increasing speed of computers necessitated the develop-
ment of Operating Systems which, in this stage, relieved the programmer of

repetitive chores.

The third stage covers the late 1960s and the present days. In the
big and fast third generation computers the system program began to assume a
more and more dominant role. It became so big and complex that the individual
programmer could no longer know everything about it (Figure 3). Hardware
developments (removable disks, communication attachments, manual input devices,
etc.) and new tools and techniques made possible the solution of very big
problems and very big teams of programmers were needed to do it. (Figure 4).
The size of the projects implied that individual programmers could not under-
stand the whole problem. They would make technical decisions which were
logical at the programmer's level but illogical and perhaps catastrophic at the
project level. The increase in the number of programmers engaged on the pro-
ject led to a faster increase in the number of non-programming personnel with

exponentially more complex interactions within the project.

At present, the number and variety of tools and techniques that
programmers use are such that they present a considerable intellectual burden.
No single programmer can effectively master them. There is a growing need for
simplification of the programming process so that it again becomes feasible to

train each man to be an effective programmer.

As one way of accomplishing this, managers of big teams concentrated

mainly on being able to control the development of the project. This, in a

39

standard pyramidal organization involves the sub-division of the problem into
independent units small enough for an individual to handle. These units are
carefully isolated from the rest of the system and it is the system manage-
ment team's responsibility to reassemble them (Figure 5). This method is
called 'The System Management Approach'. It superimposes the system manage-
ment umbrella on the organization without relieving the programmers of the

need to know all the tools and techniques.

The system management approach benefits from the greater capability
of new employees who have had computer education in school before joining the
project. In addition, new development support tools, a blend of technical
and managerial procedures, have been introduced to reduce the workload on
individual programmers. Some of the tools are shown on Figure 6, where the
abbreviations are as follows:

K TSS - Time Sharing System - used mainly for interactive code

editing and debugging and for fast computer turnaround.

2. JCS - Job Control System - used to collect, store, retrieve

and link programs as they are released for testing and, eventually,

operational use.

3. TS0 ~ Time Shared Operations — used to merge the features of

TSS and JCS to enable programmers to work on line from initial pro-

gram construction through final test.

4. APADS - Automatic Program Analysis and Documentation - used

to force the programmer to explain and comment on the program being

developed.

5. Modelling and simulation of a system - used to make accurate

predictions about system performance and to measure actual results.

6. PPL - Program Production Library - used for storing design

information about the system as well as assisting in the collection,

debugging, integration, and test of programs in process.

Assuming properly educated programmers and appropriate tools, an
alternative approach has been proposed by Dr. Harlan D. Mills - 'The Chief
Programmer Approach'. The chief programmer is a highly qualified individual
able to take responsibility for defining, programming, testing and delivering
a large system. Available to him are expert specialists who know all there
is to know about a narrow field and who are able to answer questions and solve

specific problems in this field. A team organized on these lines (Figure 7)

40

does not normally exceed ten people and will usually expect to accomplish
the same results as a standard organization two to five times as large. Of
course, some systems are too big for a chief programmer team to implement

and they will still have to be handled with the system management approach.

In its future development, programming will consist of tasks, cach
of which is suited to a man who is best qualified to do it. The system
management approach - which fits the problem to the man - can be employed in
existing environments with proper training. The chiefl programmer approach —
which fits the man to the problem - probably requires an education base in

addition to job oriented training.

41

'.i,lil‘].nh 5K ! ‘Ij'\f*.' i \("{f'll!udllt Iia% “nadf '}l'[1f| tirmd by ey '.\'l.lﬂlhj‘l_-.‘l J it u."-‘.lh

R s agual we o wpoud T o iT opd et Seadas lntkgee brbbopdE b ge pelugig seue add

oo, l‘,hl el mE o] yampa s e s o mpd ot wyy S lE Yy, e o fi
1
LAVRET O E J smseEe Tt Bee T b Al te it Pirseel sva sd weed 1H20s THdw tiil kit
fnpy L xalenl G Fulswe "Hew wodimme goasny deeurpe faealy ot 531 ol
SRR o vd sk wd e Ve Peep tesd ax opev pam @ g bedars e duate o

i Begelgrm & BB ~ Nham oidld 0t meldoegg edid Ad BT duiile - tosgtgea botrap s
= docriyyn TommEtRo T Laidh odT aniaistd yegorq doiv sdpemaoaivits grddeixo
ne aead metdpouhe gy 2eniwpey gldsdotg =~ melderg adf ot nen ol md 0l dodde

' Meiatsr) bedascio dep of moibibbe

B4l

APPLICATION

One man responsible
for the whole application..

Mathematics
Boolean Algebra
Transfer Vectors, Loops, etc.

Punched Card

PROBLEM
-
m
i 2
-] =
_ Assembler o IDEAS FOR o)
Library of Subroutines o} EFFICIENT c
Basic 10CS o SOLUTION |
r'-y
Magnetic Tape COMPUTER
On-line Storage - = i yi
Drum On-line
Storage D
 J
Answers

Off-line Storage

PROGRAMMING — FIRST STAGE

Figure 1

APPLICATION
OR
SYSTEM PROGRAM
PROBLEM

|y

Small team divides
responsibility for
whole job. One man
has major subsystem
responsibility.

Library Programs | TOOLS

Compilers

IDEAS FOR
EFFICIENT
SOLUTION .

TECHNIQUES| Multiprogramming

‘Macro processing

I0CS
Debugging Aids

Operating System

—

y

-+

S

'COMPUTER,

Disk On-line
Storage

—{

o—

ANSWERS

PRQGRAMS

PROGRAMMING — SECOND STAGE

* Figure 2

- E-l
o en
© | IDEAS |CF
" m s
5 w w
PROBLEM | = |COMPUTER
3
OP ' & | IDEAS TECHNIQUES
sys| :
| PROBLEM | = |COMPUTER
1961 |
. IDEAS [TECHNIQUES
‘ 1968 PROBLEM = COMPUTER TOOLS

OPERATING SYSTEM

CHANGING NATURE OF PROGRAMMING

Figure 3

SR

Large organizations
APPLICATION % & responsible for

OR whole job. One
SYSTEM PROGRAM o R man has very
PROBLEM I limited responsibility.
o’
7/
/
v i
/
e
— 7
— o
- V4
gatallogued Lig:lary e IDEAS Eon' s
evelopment Support EFFICIENT | TECHNIQUES Multi ;
i - ultiprocessing n
EL?,";@S&"’"“ FRLUTION Time slicing, roll-in, roll-out
“On-line terminals ‘ Real time processing

OPERATING SYSTEM |
il Keyboard
@ | Input

. Graphic
8 COMPUTER [@ Input/Output
Removable Disk g
On-line Storage £ Communication

Lines
O -—

ANSWERS PROGRAMS

"PROGRAMN‘IING — THIRD STAGE

Figure 4

PROBLEM

pd
W3 LSAS
NDIS3d
—~ W3I1SASENS

e — —— —

2
SYSTEM
MANAGEMENT
[i Y r
SYSTEM
MANAGEMENT
ANSWERS ~ PROGRAMS'

FITTING THE PROBLEM TO THE 'MAN

Figure 5

DEVELOPMENT SUPPORT SYSTEMS

Figur_e 6

DESIGN IMPLEMENT TEST USE
~=g T
TSS
H
Jcs
<l =
TSO.
[-
APADS
MODELLING & SIMULATION: >|
PPL
% >|

CAPACITY =

STATE OF THE ART =—

TECHNOLOGY, PROCEDURE, ORGANIZ,

Chlaf” - Expert
Programmer m S Specialists
Y o g'm \
S 2732
| &1 B a-l
IDEAS |2 | € | B3 OPERATING SYSTEMS
| v |l 6o ‘
1 1 L Autoo&
" TECHNIQUES
Manual
Support.
Procedures -
| I_ TOOLS

ANSWERS' PROGRAMS

1

PROGRAMS

'IFITTING THE MAN TO THE PROBLEM

Figure 7

i — e

! _ i

D

o= YTIoAsAn Y
'S

F %

R

SINABAD 38UGBI0RY YEOJOMHSET

"3
..

™)
' .ixﬂq SMATAY2 DMTARIIO «5

== THA 3HT 30 ITATE

&
&

g 9

-
TARINO

N

- 2IUDINHOIT

r——

o
ans

=

BENET RS

> 1 . |
" ¢ 23UDWMIHIAT s 4 |
r’l\j - isonstt [_ J

FMnHLORY

(7 LAM SMT DS T

SN g

e} FAGOT [
-
=

|
\

aHIWE AN

