
FORMAL AND ON-THE-JOB TRAINING FOR APPLICATIONS
SYSTEMS PROGRAMMERS

Abstract:

Mr. J. D. Aron

Federal Systems Center,
l.B.M. Corporation,

18100 Frederick Pike,
Gaithersburg,

Maryland 20760, U.S.A.

After a discussion of the current methods of producing
large software systems, more appropriate forms of
organizing and training programming personnel are
suggested .

Rapporteurs:

Mr. J. S . Clowes
Mr. 1. Mi trani

35

I
!.

-"

I
I "

I
I

I
I

The growing r equirement for very big programs gives rise to problems

connected with t he effic i en t organizat i on and management of the large teams of

programm ers needed to produce them. 'l'ec hniques which have been successful i n

t he past, when programs and teams were smaller, have proved inadequate for t he

largest present-day proj ects . In hi s lecture Mr. Aron analysed the reasons

for the inadequacy of current practice and put forward suggestions for the

more appropriate organization a nd training of programming personnel.

In order to provide a context for his l ate r r emarks Mr. Aron com­

menced by describing the nature of the bus iness and the type of person employed

at h is institution.

The IBM Co rporation ' s Federal Systems Cent er is, in effect, a large

softwar e house whose business consists in wri ting applications programs fo r

its customers, chiefly the Federal Government. The programs are predominantly

non- s cientifi c and non-experimental, t hat i s , t hey are required to perform

well-d efi ned tasks and will be run on a routine basis. An important factor

is that most of the users have limited technical knowledge of computing and

the programs must be designed so t hat they can be easily and reliably us ed by

such people.

The size of programs produ ced has varied from 10 ,000 to 6 ,000,000

steps (i.e. macroassembler or high-l evel language statements). Programs of

10,000 steps would be classifi ed as ' small', those with 30 ,000 to 500 ,000 steps

as 'm edium' and those with over 500,000 steps as 'large ' . This paper is con-

cerned with programs in t he 'large' category of whi ch about 12 have be en attemp­

ted.

Most of the programmers are graduat es, the ma jority of them in their

first job. Ve ry few are Computing Science s peciali sts, the national output

of such being comparatively small. College graduates are se l ected primarily

because of the beli ef that they are more likely to succeed in intellectual work

than non-graduat es . On the whol e, t hey do not have, and do not acquire, a

professional attitude towards computing. Programming is regarded just as a

job and most are unwill ing to deepen their understanding of t he subj ect t hrough

spare-time study. The 10-20% who do study tend to advance mo re rapidly. (I t

should be noted that even 10-20% of a populat ion of several t h ousand is a very

respectable cadre of software engineers .)

37

In general, one may dist i nguish between training, which consists

in teaching facts, and education, whi ch consists in explaini ng concepts.

Since the cost of training and education increases the price of the product,

instruction in industry t ends to conc entrat e on training which is more

immediate ly useful. Even so, the time which may be devoted to training is

very limited and employees at the Federal Systems Center rec eive only the

equivalent of one week's training per annum on average. The employees a re

expected to supplement the training wi th graduate level education courses

and technical society activitie s on their own initiative.

Training in ·some particular subject is, obviously, best provided

immediately before an individual is assigned t o a proj ec t involving the sub­

ject. In practice this is usually impossibl e because courses are scheduled

to take place at fixed times. Conversely, it is often impossible to release

an individual from hi s current proje ct at the time when a course is running.

The result i s that the only training a programmer can be ce rtain of is his

initial tra ining consisting of nine weeks programming plus on-the-job instruc­

tion. It i s through on-the-job training that most advanced techniques are

taught.

In I.B.M. team managers are not only responsible for the success

of their projects but al so for the progress and growth of the t eam members.

It is essentially a leadership job and team managers are team oriented. A

large portion of the pre sent managers were trained as engineers and have be en

at the center for up to ten years . Because of the pressure of day to day

work they have had little time to s tudy the deve lopment of computing techniques.

Aware of the overriding necessity to fini sh project s on time and within budget

they tend to be conservative in their choice of methods and to prefer modifiable,

easily understood and essentially s imple programs . Trainees on the other hand

are self-oriented, interested in experiment and in deve loping their own ideas.

They prefer to seek elegant solutions to problems . This divergence of outlook

tends to produce conflict and one of the aims of training must be to resolve

this conflict. In order to do thi s it is necessary to train the programmers

to work in a team and the managers to be more receptive to new techniques. At

the same time, the training program must be des igned to accommodate the existing

manager-employee relationships.

Mr. Aron designated three stages in the hi storical development of

commercial computing which have shaped the content of training programs.

38

..

During t he first s tage t he computers , and consequently t he problems,

we r e smal l enough for on e programmer to cope with. The man responsible for

the application could grasp and und e rs tand the problem and he kn ew all about

the tools available to him -- such as assemblers, library of subroutines and

Basic Input- Output Control System (s ee Figure 1). Th e programme r communicated

di rectly with t he computer and was ab l e to take advantage of its peculiarities.

With t he advent of t h e second generat ion computers l arger and more

complicated problems could be tackled. These were handl ed by a smal l team of

programmers and although the whole team would contribute to t h e formulation of

t he problem, the actual programming would be divided into independent tasks .

More tools were made available to facilitate the pro cess of programming (see

Figure 2); however, the team could equali ze the training load by assigning

each member a limit ed number of topics to spec iali ze in . The prol iferation of

system programs and t he increasing speed of computers necess itated t he d eve lop­

ment of Operating Systems which, in t hi s stage, r elieved t he programmer of

repetitive chores.

The third stage cover s the late 1960s and the present days. In t he

big and fast third generation computers the system program began to assume a

more and more dominant rol e . I t b ecame so big and compl ex t hat the individual

programmer could no longer know everything about it (Figure 3) . Hardware

developments (removable disks , communication attachments, manual input devices,

etc .) and new tools and techniques made possibl e the solut ion of very big

problems and ve ry big teams of progr amm ers were needed to do it. (Figure 4).

The size of t he projects implied that individual programmers cou ld not under­

stand the whol e probl em. They would make technical decisions which we r e

logical at the programm er ' s level but illogical and pe rhaps catastrophi c at t he

project l eve l. The increase in t he number of programmers engaged on t h e pro-

j ect l ed to a faster increase in t he number of non-programming pe r sonnel with

expon entially more compl ex interactions wi t hin the proj ect.

At present, the number and var i ety of tools and techniques t hat

programmers use are such that they present a conside rabl e intellectual burden.

No singl e programmer can effect ively master them. There is a g r owing ne ed for

s implif i cation of the programming process so t hat it again becomes feasibl e to

train each man to be an effective programmer.

As one way of accomplishing this, managers of big team s concentrated

mainly on be ing able to cont rol the development of the p r oj ect . This, in a

39

standard pyramidal organizat i on i nvolve s the sub-division of the problem into

independent units small enough for an individual to handle. These units are

carefully isolated from the rest of the system and it is the system manage-

ment team's responsibility to reassemble them (Figure 5). This method is

called 'The System Management Approach' . It superimpose s t he system manage-

ment umbrella on the organization without relieving the programmers of the

need to know all the tools and techniques.

The system management approach benefits from the greater capability

of new employees who have had computer education in school before joining the

project. In addition, new development support tools, a blend of technical

and managerial procedures, have been introduced to reduce the workload on

individual programmers. Some of the tools are shown on Figure 6, where the

abbreviations are as fo l lows:

1 . TSS - Time Sharing System - used mainly for interactive code

editing and debugging and for fast computer turnaround.

2. JCS - Job Control System - used to collect, store, retrieve

and link programs as they are released for testing and, eventually,

operational use.

3. TSO - Time Shared Operations - used to merge the features of

TSS and JCS to enable programmers to work on line from initial pro­

gram construction through final test.

4. APADS - Automatic Program Analysis and Documentation - used

to force the programmer to explain and comment on the program being

developed.

5. Modelling and simulation of a system - used to make accurate

predictions about system performance and to measure actual results.

6. PPL - Program Production Library - used for storing design

information about the system as well as assisting in the collection,

debugging, integration, and test of programs in process.

Assuming proper l y educated programmers and appropriate tools, an

alternative approach has been proposed by Dr. Harlan D. Mills - 'The Chief

Programmer Approach' . The chief programmer is a highly qualified individual

able to take responsibility for defining, programming, testing and delivering

a large system. Available to him are expert specialists who know all there

is to know about a narrow field and who are able to answer questions and solve

specific problems in this field. A team organized on these lines (Figure 7),

40

doe s no t normally exceed ten people and will usually expect to accomplish

t he same result s as a standard organization two to five times as large . Of

course, some systems are too big for a. chi ef programmer team to impl ement

and they will still have to be handl ed with t he system management approach.

In its future development, programming will consist of tasks, each

of wh ich is suited to a man who is best qualified to do it . Th e system

management approach - which fits t he probl em to t he man - can be employed in

exi sting environment s with proper training. The chi ef programmer approa.ch

whi ch fits t h e man to the problem - probably requires an educat ion base in

addition to job oriented training .

41

APPLICATION
PROBLEM

D-·f One man responsible
for the whole application ..

Assembler
Library of Subroutines

Basic IOCS

Magnetic Tape
On·line Storage

-i
m
(")
:1:-

-i ;2
0 IDEAS FOR .0 0 EFFICIENT r- e
en SOLUTION m en

' . . .
COMPUTER

~--~~ ~----~

Drum On·line U)_---'
Storage ... _'--__ -".

.Answers

PROGRAMMING - FIRST STAGE

Figure 1

Mathematics
Boolean Algebra
Trander Vectors, Loops, etc.

Punched Card
Off-line Storage

•

APPLICATION
OR

SYSTEM PROGRAM
PROBLEM

--
y Programs l.ibrar

Compi
IOCS
Debugg

lers

ing Aids

TOOLS

Operating System

Q) I 0

ANSWERS

/
I

I /
I /

I /
/ /

/ /
/ /

I /

I /

;,/
IDEAS FOR
EFFICI ENT TECHNIOUES
SOLUTION .

I

COMPUTER,

\
PROGRAMS

SECOND STAGE

. Figure 2

Small team divides
responsibi l ity for
whole job_ One man
has major subsystem
responsibility _

Multiprogramming
,Macro processing

-Disk On~line
Storage

1955

1961

I 1968

I PROBLEM I = I COMPUTER I

PROBLEM = COMPUTER

OP
SYS

-i '
o o
r­
Cl)

d o
r­
C/),

TOOLS

CHANGING NATURE OF PROGRAMMING

Figure 3

~-i om
IDEAS C (") m:I:

Cl) ,

IDEAS TECHNIQUES

IDEAS TECHNIQUES

OPERATING SYSTEM ,

~

APPLICATION
OR

SYSTEM PROGRAM
PROBLEM

-

ry Catalogued Libra
Development Sup
Flow Charting
Languages
On·line terminals

port TOOLS

/

6/

IDEAS FOR
EFFICIENT
SOLUTION

/
I /

,/
/

/
/

/
/

.

TECHNIQUES

--
-

Large organizations
responsible for
whole job. One
man has very
limited responsibility.

Multipr ocessing .
Timesli cing, roll·in, roll·out

me processi ng . Real t i
...

OPERATING SYSTEM

Removable Disk
On·line Storage

o)
I
;

-j8.8281

-
-@ COMPUTER

I....-.-. rPf/

.

ANSWERS . PROGRAMS

"PROGRAMMING - THIRD STAGE

Figure 4

Keyboard
Input .

Graphic
Input/Output .

Communication
Lines

PROBLEM x
C/lo <m
~S!1
mCl
s:: Z

SYSTEM
MANAGEMENT

SYSTEM
MANAGEMENT

ANSWERS PROGRAMS

• !;

FITTING THE PROBLEM TO THE MAN

Figure 5

DESIGN · IMPLEMENT TEST USE =

TSS

JCS

TSO:

APADS

MODELLING & SIMULATION :

DEVELOPMENT SUPPORT SYSTEMS

Figure 6

f .CAPACITY -

STATE ' OF. THE ART =

I TECHNOLOGY, PROCEDURE, ORGANIZ·I

Chief
Programmer

Expert
Specialists

("1 IDEAS ~'------i OPERATING SYSTEMS)v'~

L. , Auto· ('
mated Y

& 1-
Manual
&ipport,

1...-____ Procedures

I .\ . 1 1-
ANSWERS' PROGRAMS

FITTING THE MAN TO THE PROBLEM

Flgu're 7

TECHNIQUES

TOOLS

PROGRAMS

""I

I \

=

