
Abstract:

THE TRAINING NEEDS OF A SOFTWARE HOUSE

Mr. A. d'Agapeyeff

Computer Analysts and Programmers Limited,
CAP House ,

14-15 Great James Street ,
London, W.C.1.

The context in which t he young graduate can expect to
work as a professi onal programmer in a British software
house is de scribed . The in-hou se t raining methods and
the attitudes inculcated are inimitably d i scussed for a
particular organisati on .

Rapporteurs:

Mr. D. Appleton
Dr . H. I. Scoins

2 1

The Chairman (Professor E. S. Page) in introducing the speaker

referred to the fact that Mr. d ' Agapeyeff was President elect of the

British Computer Society, but said that one could not expect t hat this

would in any way restrict the force with which controversial arguments

would be presented. The speaker was not sure if he would be constrained,

but suggested that age mellowed one a little.

speaking for himself alone.

1. A dissent

In any event, he was

Mr. d'Agapeyeff commenced by expressing hi s dissent on behalf of

professional programmers from some of Professor Dijkstra's views express ed

earlier in the day. Notwithstanding Professor Dijkstra's unsurpassed con-

tributions to the art which were continually being exploited by the profes­

sionals, they could not regard programming as a branch of Mathematics or of

anything else, except pe rhaps Communications Engineering. Moreover, the

emphasis on puritanical correctness offended the speaker's own puritanism

which insisted that, as professionals, they were the servants of the public.

It was not particularly helpful to learn that a certain process took 3N as

opposed to 2N operations if N were 100,000. Programmers were nowadays

liable to be' dealing with problems which no individual a l one could be

expected to understand and solve, owing to the large number of people in-

volved in an essentially dynamic situation. Neverth eless, the programming

work must be done and neither elegance, beauty nor correctness were vital,

only necessity. Computing Systems ought to be buil t more like engineered

constructs, such as the telephone system, so that they never fail completely

but admit a certain fallibility and t herefore include effective recovery

processes to maintain a service, despite the fact that not every piece of

logic is perfect. If t he consumer can be led to expect a sustained service

from a computer system the job is well done, but if we have to wait until it

can be done with absolute correctness , then, in many appli cations, it might

never be done at all!

2 . Software houses and their clients

In the United Kingdom, according to the Ministry of Technology,

there are about 290 software houses with an average of ten 'people, but t here

are four large houses with over 200 staff each. Although . expanding rapid l y,

t hey are miniscule relative to t heir American counterparts .

23

.
I

Broadly, they can be divided into those that are attempting to be

truly professional technologists, those who act like a secretarial agency

and those who trade, in that they tend to provide specific and possibly

restricted services.

The larges t users of computers and of software hou ses are commer­

cial organisations. For example, the London branch banks are investing

£30-40 million each on their computer systems with 2,000-3,500 terminals to

be attached. Some software houses specialise in small coding jobs while

others are involved with the design and implementation of such very large

systems.

The computer manufacturers were traditional clients of software

houses, r equi.ring compilers for particular languages on particular families

of computers. Similar clients now include terminal manufacturers and tele-

communications companies, while the areas of application have grown to

include the preparation of packages for dedicated systems (where the stan­

dard software was not sufficiently flexible) and the implementation of

commercial and light engineering programs even for computer manufacturers!

The nationalised boards require programming for both industrial

and for commercial work. The airlines are the second largest category of

computer user in this country and have very large and successful systems

which are the living proof of large systems that no-one fully understands

but which work most of the time. However, the loss of a potential airline

passenger owing to a program failure does not cause the same fuss as an

error in an individual's pay packet!

Industry is not as big a customer as one might expect. Indus-

trial automation, such as production control, is particularly difficult

because these systems can currently only be partial, and must interface

with a great variety of people, not all of whom are sympathetic to, or

understand, computing. Such a system cannot be organised afresh, but

must adapt to the existing organisation.

Scientific establishments bring in work varying from the process

control of laboratory .equipment to quite large systems such as the fashion­

able multi-access systems which remain technically onerous. Finally,

central government, with minor exceptions, know too much about computers

to patronise software houses!

24

The Chairman (Professor E. S. Page) in introducing the speaker

referred to the fact that Mr. d'Agapeyeff was President e l ect of the

British Computer Society, but said that one could not expect that this

would in any way restrict the force with which controversial arguments

would be presented. The speaker was not sure if he would be constrained ,

but suggested that age mellowed one a little.

speaking for himself alone.

1. A dissent

In any event, he was

Mr. d'Agapeyeff commenced by expressing his dissent on behalf of

professional programmers from some of Professor Dijkstra's views expressed

earlier in the day. Notwithstanding Professor Dijkstra's unsurpassed con-

tributions to the art which were continually being exploited by the profes­

sionals, they could not regard programming as a branch of Mathematics or of
•

anything else, except perhaps Communications Engineering. Moreover, the

emphasi s on puritanical correctn ess offended the speaker 's own puritanism

which insisted that, as professionals, t hey were the servants of the public.

It was not particularly helpful to learn that a certain process took 3N as

opposed to 2N operations if N were 100 ,000. Programmers were nowadays

liable to be dealing with problems which no individual alone could be

expected to understand and solve, owing to the large number of people in-

volved in an essentially dynamic s i tuation. Nevertheless, the programming

work mu st be done and neither eleganc e, beauty nor correctness were vital,

only necessity. Computing Systems ought to be built more like engineered

constructs, such as the telephone system, so that they never fail compl etely

but admit a certain fallibility and therefore include effective recovery

processes to maintain a service, despite t he fact that not every piece of

logic is perfect. If the consumer can be led to expect a sustained servi ce

from a computer system the job is well done, but if we have to wait until it

can be done with absolute co rrectness, then, in many applications, it might

n eve r be done at all!

2. Software houses and their clients

In the United Kingdom, according to the Ministry of Technology,

there are about 290 software houses with an average of ten ·people, but there

are four large houses with over 200 staff each. Although expanding rapidly,

they are miniscule relative to t heir American counterparts.

23

•

Broadly, they can be divided into those that are attempting to be

truly professional technologists, those who act like a secretarial agency

and those who trade, in that they tend to provide spec ific and possibly

restricted services.

The largest users of computers and of software houses are commer­

cial organisations. For example, the London branch banks are investing

£30-40 million each on their computer systems with 2,000-3,500 terminals to

be attached. Some software houses specialise in small coding jobs while

others are involved with the design and impl ementation of such very large

systems.

The computer manufacturers were traditional clients of software

houses, requi.ring compilers for particular languages on particular families

of computers. Similar clients now include terminal manufacturers and tele-

communications c ompanies, whil e the areas of application have grown to

include the preparation of package s for dedicated systems (where the stan­

dard software was not sufficiently flexible) and the implementation of

commercial and light engineering programs even for computer manufacturers!

The nationalised boards require programming for both industrial

and for commercial work. The airlines are the second largest category of

computer user in this country and have very large and successful systems

which are the living proof of large systems that no-one fully understands

but which work most of the time. However, the loss of a potential airline

passenger owing to a program failure does not cause the same fuss as an

error in an individual's pay packet!

Industry is not as big a customer as one might expect. Indus-

trial automation, such as production ' control, is particularly difficult

because these systems can currently only be partial, and must interface

with a great variety of people, not all of whom are sympathetic to, or

understand, computing. Such a system cannot be organised afresh, but

must adapt to the existing organisation.

Scientific establishments bring in work varying from the process

control of laboratory ,equipment to quite large systems such as the fashion­

able multi-access systems which remain technically onerous. Finally,

central government, with minor exceptions, know too much about computers

to patronise software houses!

24

3. Programming -- a definition

To avoid confusion, it is appropriate to define programming, and

so distinguish between what is meant herein by a 'programmer', the unidenti-

fiable ' systems analyst', and the almost mechanical ' coder'. Although the

definition of Duncan and d'Agapeyeff was given in 1967, it is still valid to

say:

Programming is all the work directly involved

in the implementation of an identified appli­

cation together with advice on the exploitation

of available computing facilities .

Thus, the professional programmer necessarily combines a knowledge of the

possible with that of the desirable to produce the essential compromise

which is contained in the best advice.

The professional is necessarily involved to a greater or less

extent with the two broad categories of technical and managerial activities.

The personnel also range from the back-room boys, who should never meet a

client, through the few who claim to cover the two facets, to the profes­

sional managers without whom no profits can be made.

4. Technical activities

Both business and scientific problems need analysis. The young

graduate is liable to be over-confident and will often imply that he knows

better than the client how to run the latter ' s business. It i s vital to

understand the instructing client and his business; how he thinks, what

pressures he is under, what hi s aims are. Business people are often much

more tolerant of, and patient with, bright young men than are scientists;

but the programmer must be prepared to go outside his own field and immerse

himself in seeing someone else's problems from that other person's point of

view.

Al though working with scientists is always. exciting, it can be a

struggle, particularly when they have themselves learnt. say, Fortran and

think they know it all but don't quite understand why they have fouled up

their project. There are now a number of establishments where programmers

from software houses are attached to specific research groups, supervising

the programming and the assoc iated computer runs.

25

Design is rather difficult compar ed wi t h analysis, for . one i s

only too aware of t he incomplete spec i fic ation of what i s to b e done, and

yet the job must be done. There are different ways of organising the work

of design such as u sing separate design teams or us ing part-t imer s as

s ounding boards. It . is clear that one cannot afford to design in an itera-

tive manner down to the coding level , but must first correct ly fix the over­

all st r ategy. It i s not clear how thi s should best be done.

A distinction can usefully be made between th e software for a

batch processing proj ect , and that appropriate to the organisation of a

large system of programs and machines which must never fail completely (i. e.

an on-going computing service). The traditional approach in operating

systems assumes that a queue of independent programs i s waiting to be run

on a computer , and if an error occurs the proper action i s to terminate the

current program.

However , such an attitude is inappropriate in a large on-line

business system u s ing a network of inter-dependent programs. In this case,

programs must not be automatically thrown off the computer; only the data

which caused t he fault. Such proj e cts may well require special scheduling

software and s pecial recovery moni tors.

The activities of the implementation and the coding of smaller

jobs are less interest ing, and naturally fall to the newcomers. It is

important hackwork where mistakes can only be minimi sed by careful discip­

l ines and good project control.

Software facilitie s or tools are worthy of special consideration

and are liabl e to be ignored by young graduates. They may be general tools

such as compilers, editing facilities or information retri eval systems; or

specific tools which have to be developed to assist in the programming and

coding of a particular project. Recently the speaker had been involved

with a facility in which a file was ma i ntained on the computer giving a

complete description of the software system being developed. Retrieval

facilities allowed the consequences of any change in spec ification (e . g . to

a data e l ement) to be rigorously followed t hrough to every relevant module

and subroutine 0

26

5. Managerial activities

At CAP, young graduates are given some training in the management

techniques of marketing and selling by specialists in those areas, including

some from outside the company. The general approach is that it is no good

being an inarticulate and frustrated back-room boy unable to sell his ideas

or techniques to clients or colleagues. Selling techniques have been well

received in general although some trainees felt them to be unfair to the

unsuspecting customer.

Proposals and reports, however, tend to be very poor. An

incredible amount of senior management time is spent in trying to get the

young men to express their ideas sensibly, logically, clearly and with some

sense of the priorities of importance.

this very worrying problem.

There seems to be no solution to

Project management is of increasing importance. It may not be

obvious at University that, even in this country, teams of up to 100 people

may be working on one implementation and medium-sized groups of 10-20 people

are quite common. A professional programmer must be prepared to work as a .
member of a team and there is no room for the complete individualist in a

software house.

In personnel matters it is relatively easy to take account of the

immediate requirements of juniors but new managers seem to find it difficult

to appreciate the necessity of worrying about the long-term needs of career

development in their staff.

standing.

Again, an outside lecturer can help under-

Business policy has to be impressed on new staff, and old, from

time to time. A charitable tendency will be detrimental to their own

bonuses, and to that of top management!

6. General attitudes

The foregoing sets out in crude form the context in which a young

professional programmer can expect to work. An understanding of the service

aspect is of prime importance and the idea of strategic design is next.

The preparation of strategic documents before one gets down to

flowcharts is too frequently ignored, to the detriment of the final product.

The crucial part of a design may be how a large file or data base and the

records within it are partitioned and how this fits in with a sensible access

27

"

system which may have to be developed independently as the standard I/O

sys tem i s possibly quite inappropriate and t ime-consuming. Often the mini-

misation of the corruption of information, after a machine fault, is of

vital importance. It is in this kind of context that strategic designs

must be produced, and must be examined at the start and not half way through

the project.

Along with teamwork goe s supervi s ion , control and a proper sense

of professional responsibility . In t oo many installations, today, the

unchecked ideas of a single individual are implemented without adequate

supervision.

In CAP no one is allowed to go too far on hi s own and it is taken

as natural and essential that strategies are discus sed and reviewed.

Inte llectual honesty is the foremo st of professional values. Making de­

ba ting points in dis cussion may make you unpopular, but the capital crime

is to fail to admit you don't know, when appropriate, or to attempt to cover

up a doubt f ul situation. This last , knowingly to omit to report a danger

or weakness is the fastest way to ge t yourself fired.

7. The initial training course

When the graduate first arrives at CAP, he is put on a course

which appears to be primarily concerned with some programming language,

often COBOL. The overt r eason for this is to make him a useful member of

the company as soon as possible; a comparatively short course in the lan­

guage allows him to join project teams as a coder .

However, the course is r eally a vehicle to enable the company to

inform him about the company itself, its practices in computing and indeed,

to some extent, about computing generally. If you like, it is a kind of

gentle brainwashing. The graduate frequently has a very false idea as to

the nature of computing . It may come as a surprise to him to learn that

it is not primarily concerned with calculation but with administration and

management communication, mostly applied to the business area . He may be

startled to learn that some of the most advanced software d evelopments are

taking place in such organisations as banks and airlines.

The initial course also prepa res the graduate and cushions him

from certain other shocks. Project discipline may be something new.

Instead of a gentle university tutor, who is i nterested in the student's

ideas and vi ewpoints, he is likely to encounte r an overworked, short

28

tempered project manager who requires a specific piece of work to be done

and who may not be too sympathetic to the graduate's idea of how the whol e

project should be re-designed!

Once a man gets on to projects, the criteria for hi s subsequent

success in CAP is fair but a little brutal. Group managers and team

leaders have a certain freedom of choice in the membership of their team s .

The best men are, therefore those in constant demand while their weaker

brethren are to be found sitting around the office with nothing to do. To

be excluded from a given team once may not be significant, as personalities

still count for a lot in a business in which dealing with people is so

important. Yet, to be excluded two or three times could well imply that

the man should re-consider his professional career, for ability to cooperate

with others as one of a team is or prime importance.

8. Other training features

The young graduate is regarded as an apprentice, for although a

limited amount can be taught by exercise in the classroom, it is only by

sitting alongside experienced people actually engaged on a job that des ign

aspects and the practica l problems which arise on projects can be learnt.

Every member of a team tends to be involved in two types of me eting.

There are project meetings, usually 'in-house ' on a weekly basis in which any

difficulties arising on the project, technical snags and so forth can be

ironed out. These meetings are also used to ensure that every man on the

team understands the nature of the project and the part he is playing in it.

The other type of meeting is normally held monthly with the client manage­

'ment, and deals with progress, bottlenecks over machine time and the like,

and all the other considerations which affect the delivery date. For junior

members this tends to focus attention on the object of the exercise - a

working system which somebody is actually going to use. It i s in these

meetings that the graduate learns the importance of business administration

and accounting on the average job. Even on so-called 'scientific projects '

he finds that although numerical analysis may be a crucial item it is often

only a small part in the data handling and the treatment of output. There

are, of course, many other types of meeting held internally on an irregular

basis. There are those designed to create a proposal to a client for the

carrying out of some impl ementation. Here the emphasis is on est imating,

on anticipating the latent ambiguities in a specification and on forecasting

29

the inevitabl e foul-ups which are a lways likely to occur somewhere, probably

in the least expected place. Here, a ny tendency towards brash over-

confidence in what an individual can actually achieve is briskly corrected .

The apprentices l earn caution and t he hallmark of a professional : promise

only what you can be sure that you will deliver .

There are also special s tudies to consider some new development

in computing or software. One of the happy advantages of a reputable soft­

ware house i s that it can often persuade a c l ient to pay for it to learn

a bout some new advance, on the premise that, with it s experience, its staff

will be quicke r in gaining a proper understanding than those of the cl i ent.

Here the graduate is on more level terms with senior members, but he may be

surpri sed at t he effort they are prepared to put in, over weekend and other-

wi se , to digest a new manual quickly and thoroughly. Finally, there are

seminars. These a r e used to tackl e some n ew probl em or to reach a decision

on s ome que stion who se solution i s not known . They are a form of brain-

storming, usually under some very senior chairman to keep overall control.

The aim i s to f ocus experienc e fr om different backgrounds and different

proj ects on to s ome particular proj ect . Junior members are encouraged to

attend in order to gain experi en ce, but it also he lps them to display their

ideas . Talking for the sake of hearing one's own voice or to make super­

ficial debating points may be roughly treated .

9. Problem areas

The r e are many problems which arise ove r training in a software

house. Some of whi ch have, as yet, no satisfactory conclus ion. These

include:

1. Sec ond-year despondency.

2. The ' not invented here ' factor (NIH factor) .

3. Over-optimism.

4 . Rotation on long projects.

5. Design compromises.

6 . Packaging.

9. 1 Se cond-year despondency

Many companies have a high rate of turnover of graduates who have

been with them for about two years. This restlessness arises from a des-

pondency over the length of time it takes to be c ome a real professional in

programming, a desire to be regarded as a more complete expert enjoying the

30

status of a title - like Systems Analyst - and, of course, the po ss ibili-

ties of greater financial rewards elsewhere. Although working in a com-

puter user's installation may be less appealing, as there is little formal

training and only a limit ed type of work, this disadvantage is often off­

set by salaries which are excessively high f or half-trained people.

9.2 NIH factor

Thi s term refers to the tendency to re-invent techniques already

well established. To some extent, life in a university seems to encourage

working over old ground and it is very difficult to persuade graduates to

accept strategies and methods which are popular with management simply

because they are known to work. It i s also a r eal problem for the pro­

fessional to keep abreast of developments in this rapidly changing field.

9.3 Over-optimism

This is the Achill es ' heel of all computing. Users may ruin

valid applications by excess ive ambition. Programmers tend to feel that

they can readily knock off s ome program on the assumption that everything

will turn out right. In a sensibl e software hous e there is little pressure

to persuade people into promi s ing early dates. On the contrary, management

tends to add safety factors and provisos. On the other hand, when a man

has promised a date, enormous pressures may be applied ·to ensure he keeps to

it. A constant flow of slippages is an invitation to managerial severity.

9.4 Rotati on of long projects

Large-scale projects are tending to take longer and longer to

implement. This may not be too bad for the senior staff who will become

personally involved in the project suc cess, but the junior teams may not

have a sufficient understanding of the aims and importance of the proj ect to

share that involvement. They may feel themselves to be tiny cogs when 30

or 40 people are engaged in a project. It may al so be difficult to give

them fresh things to learn, parti cularly during long-drawn-out debugging

phases. Thus, it b ec omes important to rotate staff, which is never easy

owing to the time required for familiarisation and spec ial training in the

details of a new implementation .

9.5 Design compromises

These have been discussed earlier, but it is worth repeating that

compromise is t he essence of design and an inevitable part of the work, since

no design will ever be perfect. It will often be better. to produce a slightly

31

inadequate program on time than to wait upon further refinements and polish­

ing. A more subtle difficulty arises from the realisation that when a user

department puts some work on a computer, the options open thereafter, in

terms of possible changes, may be substantially reduced. The programmer

must, therefore, attempt to anticipate the constraints which may only be

implied by the user, and he must try to construct a framework of generality

in which the design is embedded.

9.6 Packaging

In addition to the need to make the finished produce. look good to

the user, it is essential to create software components as packaged entities

which could ultimately be transferred from one computer system to another, be

maintained by other people and, preferably, be exploited in new situations.

It is all very well writing beautiful binary programs but they are usually

non-portable and rapidly become useless. An inducement to better packaging

and proper documentation can come from an insistence that any member of the

team should be able to understand most of the component parts.

10. Conclusion

The speaker felt sure that a number of those in the audience would

have bricks to throw, but emphasised that, although he was occasionally upset

by what students were not taught, and might suggest additional material,

there was no doubt that first class people were coming out of the universities.

It was pleasant to record that despite all the alleged troubles of the younger

generation, the present graduates were nearly all well balanced people and had

the additional merit of being very, very bright.

11. Discussion

Professor Perlis began the discussion by suggesting that the kind

of trainee Mr. d'Agapeyeff wanted in his Company was, in fact, one who had

been taught by Professor Dijkstra.

Mr. d'Agapeyeff agreed that anyone whom Dijkstra had taught would

have learned much of what he himself regarded as important, and that he would

welcome such people because they would have learned appropriate tools and an

excellent approach to programming; because indeed they were "taught programm-

ing and not numerical analysis for instance. He intimated that, while he

could only speak for the European software houses, he believed that some of

his requirements were shared by other people.

32

I .

Professor Baue r emphasised t he importance of training young people

in such a way t hat they can be expected to us e their own initiative to keep

up with t he development of their field for 30 years. Thi s meant that they

shou ld l earn the scientifi c aspect even if they were not going to work as

sc i entists and that to give them only t he present statu s was in sufficient .

Mr. d'Agapeyeff agreed that it was the general method which is

important, but said that this was best given by examples in actual practice .

Professor Hoare felt that t he training costs implied by what CAP

did with their trainees could not be compared with t h e fees paid by University

students. Professor Page quickly intervened to point out t hat the average

cost per student in advanced educat ion in the United Kingdom i s about £1,200

per student-year plus about £500 for his maintenance.

Professor Michaelson suggested that what the s oftware h ou ses them­

se l ves were doing was merely short-term training and t hat t hey were providing

no basis for the future, but Mr. d'Agapeyeff disagreed. It was hi s view

t hat they were encouraging and teaching their trainees to think .

Professor Mi chaelson t hen asked why the softwar e houses r ec ruited

only graduates, to which Mr. d ' Agapeyeff r epli ed that it was t he best way to

ensure a reasonable proportion of successfu l trainees. He po int ed out,

however, that after a year in the software house the degree taken by the

trainee was immaterial.

Dr. Hartl ey asked whether Mr. d ' Agapeyeff agreed with th e idea of

giving all undergraduat es a course in computing sc ience.

Mr. d'Agapeyeff deplored t h e impossibility of obtaining a degree

in computing science without having studied a significant amount of numerical

analysis.

cours es.

The real necessity was to teach programming and bu siness studies

Professor Perlis suggested t hat the time was now past when numerical

analysis was a n ecessary part of a university computing course , and Pr ofessor

Michaelson pointed out that the British Computer Society professional examina­

t ions still r equired a knowl edge of numerical analysis.

Mr. d'Agapeyeff blamed the latter position on the fact that t he set­

ting up of t he examinations had been large ly carried out by academi cs . He

anti cipated some changes in t he near future.

Reference

Duncan, F. G. and d'Agapeyeff, A. Computer Journal , Vol . 9, p.229, 1966-67 .

33

I

