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In ty()du Ct l on 

'The efforts of in st rucLion a r e seldom of muc h efficacy , except 

in those ha ppy disposi t i on s wherP. t hey are a lmo st superfl uous '. 

Gibho n: 'Dec line and Fall of Roman Empi re '. 

'T,a plus ue.!l e r use du Diable est de fl OU S persuad e I' qu ' i1 

n I C'xi:-;te pas I • 

Baud elai re. 

Before embarking on this subj ect it is useful to make a short 

]"~t of misunderstanding s . Such misunderstandings are fo st e red by 

adv e rtisements, by programming courses and by instruction manual s . 

1 • Pr ogramming i s easy if a programmer know s how to get hi s 

underlinings and semi- colon s i n t he right place or how to write 

fluently in capital lette r s . 

2. All a programmer needs to know is how to use a f low 

charting stencil properly . 

3 . All a programmer needs to know is how to writ e format 

statements and job control cards. 

4. Programming i s easy if your machine is big enough. 

5 . A "programmer need on ly l earn not to make mi stakes . 

The las t two mi sunde rstandings are more subtl e tha n the fir s t three . 

Contrary to these misunderstandings , programming i s potential ly ve ry, very 

difficu lt . Analysing the task of programming l eads to t he conc lus ion 

t hat programming is a gigantic i ntellectual chall enge without any precedent 

i n the hi story of mankind. It is one of the mo st difficult branches of 

mathematics. During the pas t 15 years or s o, mac hines have become over a 

t h ou sand times more powerful , appl ications have become more ambitious and 

hance the s cope of the programm er's duty has exploded. On the other hand 

t he mathemati ca l basis for p rogramming i s very simple c ompared with some 

othe r areas of mathematics. The chall enge is to combine thes e two things, 

on the one hand to be ab le to build highly sophisticated programs and yet 

intellectually t o control the whol e activity as compl et e l y as i s dictated 

by it s s impl e mathematical basis . Thi s is t he giganti c intellectua l 

challenge . 
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This is a lecture in four movements: 

1 . Why do we need nicely structured programs? 

2. What makes programs nicely st ructured? 

3. How do we build nicely structured programs? 

4. How do we teach how to build nicely structur·ed programs? 

1. On our inability to do much 

For practical reasons demonstration programs must be many times 

smaller than 'life-size programs'. In practice we are faced with large 

(1,000 page) programs and it would be pleasant if the structuring which we 

may demonstrate in small programs carried over directly to these larger 

programs. This is not the case. One of t he major sources of difficulty 

in programming is that a factor of one thousand is so large that if any

thing is a thousand times as large, as fast, or as difficult as something 

else, then this difference is so tremendous that the result strikes us as 

something entirely different. The only way to overcome this is to draw 

attention to the effects of size explicitly, to point out to the student s 

that 'a thousand times' i s a few orders of magnitude beyond their imagina-

tion. They do not believe this to begin with and the only recourse is to 

demonstrate it with metaphors. In a small village, to scan a few columns 

of a telephone directly in order to find that name corresponding to a 

particular number is not difficult, but to do the same in a l arge city 

would be a major data processing task. 

The misunderstanding that programming is easy provided you make 

no mistakes, suggests that programs are sometimes wrong . . Of course, it 

is not difficult to write a program of the size of a smal l booklet as long 

as it does not need to work. The requirement that it should. work is what 

makes programming such a great intellectual challenge. 

2. On the reliability of mechanisms 

If we have a program constructed from N components each with a 

probability of correctness p t hen the probability that the program is 

correct is P, where 

P ,; pN 

As N will probably be very large, p should be very, very close to 1 if we 

desi r e P to differ significantly from zero. The s heer size of programs, 

t herefore, focuses attention on the correctness problem and thus requires 

a mu ch larger confidenc e level in the individual components. 

basis then can we increase this confidence level? 
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As an exampl e of how not to do it let us consider a multiplier 

for two 21-bit integers . Since machines are so fast let us perform all 

possible multiplications. This, howeve r, involves 227 x ze7 different 

multiplications, and even assuming our machine is capable of 214 multi

plications per second this will take longer than 30 ,000 years to complete. 

Although the total number of multiplications which will ever be performed 

during the lifetime of the computer will be a negligible fraction of those 

of which it is capable, we still require it to perform these correctly. 

The moral of this story is t hat if you consider a mechanism as a black 

box then the only way of convincing oneself of the correctness of this 

mechanism is by exhaustive testing, and this is out of the question for 

practical reasons. It is unsatisfactory from a theoretical point of view 

also, because we cannot be convinced that the mechanism has been put 

through all its internal states . We must, therefore, find other ways of 

convincing ourselves that a program work s . As a corollary we see that 

program testing can be u sed to show the presence of bug s , but never to 

show their absence. We conclude that it is nec essary to take the struc-

ture of the mechanism into account. 

Rather than trying to find proof techniques to establish the 

correctness of arbitrary programs let us try to find those elementary 

structures for programs such that the intellectual effort needed to prove 

the correctness does not explode. 

3. On our mental aids 

What patterns of reasoning we do have at our disposal, how do 

we apply them and what are the consequences? 

our disposal are: 

1. Enumerative reasoning. 

2. Mathematical induction. 

3. Abstraction. 

4. Intuitive stroke of genius. 

Only the first three will be considered here. 

3.1 Enumeration 

Among the mental aids at 

Given a specification of the ne t effect of the execution of 

statements S , S , ..... , SN' to convince oneself of the net effect at 
1 2 

the time sequence of execut ion of these statements 
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S ; S ; .... ; SN 
1 2 

may be called an appeal to enumerative reasonong. This requires N steps 

of reasoning. 

statement: 

Another case of enum e rative reas oning is the conditional 

if B then SeIse S 
-- 1 2 

which requires two st eps of reasoning. 

3.2 Mathematical induction 

We u se this tool to tackle the problem of programs which include 

loops. An alternative to the direct application of mathematical induction 

to programs is to appeal to one of the following two theorems, which are 

stated without proof. 

Linear Search Theo r em: 

Given i) d = D 
0 

ii) d = F(d ) 0 
1 1- 1 

iii) non prop(d ) 0 
-- 1 

iv) prop (d ) 
k 

consider t he following pi ece of program: 

d:= D; 

< i ,;; k 

,;; i < k 

while ~ prop (d) do d: = F(d) 

This program terminates with d equal to d . 
k 

[ A proof is given in Dijkstra (1970) . Professor Dijkstra r emarked that he 

had be en appalled by the length of this proof. ] 

Let PfS} Q 
denote the following re lationship between a program statement S and asser

tions P and Q: 'If P is true before initiation of S t h en Q will be true on 

its completion'. [ This notation is introduc ed in Hoare (1969) J. 

Invariance theorem: 

If ~ P"B{S}P then l- P{while B do S) ---. B"P provided the loop 

terminates. 

These two theorems themselves are provided by mathemat i ca l induc

tion and onc e proved we can appeal to these theorems without furthe r direct 

appli cation of mathematical induction . 

3.3 Abstract ion 

The ma in purpo se of abstraction i s to reduce the appeal we have 

to make to enumerative reasoning. For exampl e, a variabl e is an abstraction 
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from its value. In addition we may appeal to either operational or rep-

resentational abstraction. The number of steps of reasoning in the follow-

ing example is reduced by operationa l ab straction. Consider the program: 

if B 
- 1 

if B 
a 

then 

then 

S 
11 

S 
al 

else 

else 

S 
l a 

S 
a2 

if BN then SeIs e S 
-- Nl N2 

It requires 2N steps of reasoning to reduce this program to the form: 

S . , 
1 

..... ; SN 

where 

S _ if B then SeIse S 
11 1 2 

In addition we require a further N steps to understand this. This gives a 

total of 3N steps which is linear in N (a measure of program length). Alter

natively, if we do not introduce the abstract statements S then we must con

sider 2N possible paths through the program, each path con~aining N statements. 
N This gives a total of N x 2 steps of reasoning which is incomparably large. 

A simple example of operational abstraction is given by the replace

ment of the statement: 

if x < 0 then x: = -x 

by the (abstract) statement 

x:= abs(x) . 

The object is to find, as quickly as possible, a description applicable to 

a conditional clause in which the fact that it was controlled by a conditional 

clause has disappeared. A similar consideration applies to a piece of pro-

gram controlled by a while clause. 

lowing example. 

All these tools are applied in the fol-

Example 1. For integer At B, x, y and z, where 

A ;;, 1, B ;;, 0 

prove that, after execution of the following program section, we shall have 
B 

z = A • 

x:= A; y:= B; z:= 1; 

while y cl 0 do 

begin if odd(y) then begin y:= y-1; z:= z*x end; 

y:= y/2; x:= xt2 
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In order to apply t he i nvariance theorem we need to set up an 

assertion P which remains invariant (and to prove termination). One of 

the e lements of P will be that y remains integer valued and not l ess than 

zero: 

integer y ;;, ° 
This is certainly true to start with and the statement qualifi ed by the 

while clause is executed only if y f 0, and so y will be positive. The 

abstract effect of: 

if odd(y) ~ begin y: = y-1j z: = z*x end 

on y, i s to 'make th e value of y even without increasing it'. Then since 

y> 0, after this statement is executed we have y ;;, 0, and y is still 

integer valued and even. 

of 

Executing y:= y/2 therefore retains the invariance 

int eger y ;;, ° . 
Termination follows since the suc c es sive operations , 'make y even without 

increasing it' and 'halve y' have the net effect of decreasing the value of 

y, keeping it integer valued and since y ;;, 0, y must eventually reach zero. 

The other element of the invariance relation is: 

AB = z*,f! and integer x > ° 
Again, this is true to start with. Whenever y is decreased by 1, z is 

multiplied by x to compensate and whenever y is halved x is squared. Since 

x is originally integer and greater than zero then it remains greater than 

zero. P asserts that: 

integer y ;;, ° and AB = z*,f! and integer x > ° . 
The statements 

if odd(y) do begin y:= y-1j z:= z*x end 

and, y:= y/2j x:= x*x 

each leave P invariant, and hence their succession leaves P invariant. 

The Invariance Theorem allows us to state, therefore, that the whole while 

clause leaves P invariant. 

these results we have: 

Also, we have that ~ y f 0, and combining 

z = A 
B 

If we replaced the condition y f ° by y > ° then this does not 

affect the program, but the conclu s ion that y = ° does not immediately 

follow. The invariant assertion P contains the element y ;;, ° which com-

bines with non y > ° to give y = 0. It is interesting that a seemingly 

trivial change requires different reasoning. 
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The total effect of our analysis of example 1 is to replac e the 

whole repetition clause by an a bstract statement which no 

the repet ition. This statement says 'make y = 0 and z = 

longer refl ects 

AB and leave 

x> 0' and the fact that it i s a loop is no longer relevant. 

Example 2.(sketch only) If 0 < b < 1 then the program: 

a:= b; c:= 1-b; 

while c > eps do 

begin a:= a x (1+0.5 xc); 

c:= c t 2*(.25*c + .75) 

end 

will approximate Jb (a = Jb) if eps is sufficiently small. 

One of the simplest ways of showing this is to establish the 

invariance of the relation: 

a2 = b(1-c) 

This combines with c ,; eps to establish the required approximation . 

relation also establ ished termination. 

Thi s 

In reasoning about nicely structured programs the next step is 

to r ealise that we should regard programs as designs o£ large classes of 

comput a t ions . A program is never a goal in itself. The real subject 

matter of the programming activity is the possible computations that may be 

evoked by one ' s programs. As soon as we realise that all assertions 

about programs are always in terms of the computations they can evoke, 

while the program text is the last tangible thing we can lay our hands on, 

then we realise that it is worthwhile to shorten the conc eptual gap between 

a static program text and these computations as they evolve. One of the 

ways to do this is never to use goto statements but to have our sequencing 

controlled by more orderly things such as conditional and repetition 

clauses . 

Given a certain task to be programmed we can construct alter

native programs for it and the question i s to what extent can they be 

mapped upon each other, to what extent are t hey further refinements of the 

same concept. Thi s means that a program is not r egarded as an isolated 

object to be composed once, all by itself; i t means that we consider our 

program as a member of a whole class of similar programs and when we are in 

the process of constructing the program, say half way, the class of all 
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programs of whi ch our final program will. be a member i s the class of all 

forms our program st ill can take. Consequently, we should pay much more 

attention to the sequencing of a program than was previously the case. As 

an example of this consider the following problem. 

Example 3. (due to Niklaus Wirth) 

Construct a program generating non- empty sequenc es of O's, 1 ' s 

and 2 ' s without non-empty, element-wise, equal, adjoining sub-sequences, 

generating these sequences in alphabetical order until a sequence of length 

100 has been generated. (Such a sequence i s known to exist). 

To do this we generate a ll sequences of O's, 1 's and 2'8 in alpha

betical order and test for valid sequences. If it is valid the sequence is 

printed and extended by adding a 0 at t he right; if the sequence is invalid 

we 'increase the final digit by one' after 'removing terminal sequence of 2's '. 

This generates solutions in the order: 

o 
* 00 

01 

010 

* 0100 

* 0 101 

0102 

01020 

* 0 10200 

0 10201 

0102010 

* 0 1020100 

* 0 1020101 

* 01020102 

* 0102011 

0102012 

where * indicates an invalid sub-sequence. 

The basic operations on a sequence are INCREASE and EXTEND . 

sider, as a first attempt at a program, the following: 
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INITIALISE SEQUENCE TO SINGLE ZERO; 

r epeat if GOOD ~ (PRI NT; EXTEND} 

else INCREASE 

~ length = 101 

The principal objection is the to rtuous r ea s oning required to establish the 

correctness of the stopping criterion. 

does not apply is: 

INITIALISE SEQUENCE EMPTY; 

repeat EXTEND; 

while non GOOD do INCREASE; 

PRINT 

until l ength = 100 

A solution to which this objection 

The r eason that this is a much more beautiful program i s because t h e sequence _ 

of operations : 

EXTEND; 

while non GOOD do INCREASE; 

is simply the operator: 

TRANSFORM SEQUENCE INTO NEXT SOLUTION 

The first program forces us to understand the program in terms of all trial 

sequences , whereas the second program allows us, at a certain l evel of 

detail, to understand it in terms of solutions only. It is a matter of 

later concern t hat each solution must be understood in terms of a series of 

trial sequences. This i s precisely what is meant by operational abstrac-

tion . If there is an alternative way of implementing the operator TRANSFORM 

SEQUENCE TO NEXT SOLUTION, t hi s doesn't matter because at this leve l t h ey are 

the same thing. This is also an example of a family of related programs. 

There seems no way of convincing ourselves that these two programs 

are out put equival ent. We can do it in this spec i fic instance but we have 

no systematic way of doing it, so it i s preferable t o regard two such pro-

grams as incomparabl e . There is not a certain degree of abstraction where 

we can distinguish the same pattern of sequencing except for the fact that 

they both solve the whol e problem . This incomparability in turn makes one 

more conscious of the sequencing rules one chooses and this i s close l y 

r elated to the fact that one considers a program not so much as a product 

in itself but as a desi gn of a set of computations. 
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The two programs a r e output equival ent. However, the interest 

does not lie in establishing the equival ence of two given programs. This 

is the irrelevant aspect. We only have t he problem, we must 'make' pro-

grams to solve it. If we have two programs t hen it is more valuable to 

see them as possible alternative children or grandchildren of the same 

conception. We should think of programming as the judicious postponement 

of commitments. The reason for giving these two examples is not because 

they are equivalent but because the second program is nicer in that we 

consider it in terms of solutions only. 

The program to solve the problem of example 3 is not yet complete 

to the level of detail prescribed for any programming language. We still 

have many decisions to make, for instance how t o represent sequences and 

how to do the operations EXTEND and GOOD. The representational abstrac-

tion of the variable SEQUENCE allows us to consider the control sequencing 

first. We would consider such a program ni cely structured because we have 

not had to go down to too detailed a level. 

4. On trading storage space for computation speed 

A standard technique of constructing different programs out of 

the same abstract program is a mechanism for trading storage space for com-

putation time. We have two versions A and B of a program: 

A B 

arg:= arg:= ... ; fun:= FUN(arg); 

FUN(arg) ... . .. fun ••. 

In version A, 'FUN(arg)' is evaluated every time it is required. In version 

B an extra variable 'fun' is used, which is updated whenever 'arg' i s changed, 

to maintain the relat i on: 

fun = FUN(arg) . 

Another reason why this transformation may be attractive is when updating 

'Fun ' does not require evaluating 'FUN(arg) , , but some simpler expression. 

We should bear this in mind when looking for data representations for 

'nicely' structured programs. 

5. The probl em of the eight gueens 

We want to teach students how t o solve problems, not t o give ready 

made solutions, to teach them not thoughts but how to think. We shall con

sider the steps of reasoning required to construct a solution to a well-known 
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problem . The solution should lead the student to the discovery of the 

method of backtracking. 

Example 4. Generate all configurations of eight queens on an 8*8 chess 

board such that no queen can take any of the others . A queen may take any 

other on the same row, co lumn or diagonal. 

The answer is a set A of configurations of the chess board. A 

standard t echnigue is to look for a set B of which A i s a true subset. We 

can generate all elements of B in some order and select the elements which 

are members of A. For this approach to work there are three conditions 

which must be satisfied . 

1. Set B should not be too large. 

2 . The criterion for exclusion from A should be cheaper the 

larger B is. 

3. It should be possible to generate elements of B and easier 

than generating elements of A. 

The second condition is interesting in that we are not too worried about 

the cost of not excluding those members which are in A, because in general 

A is much smaller than B. If generation of the elements of set B presents 

difficulty then this can in turn be embedded in a still larger set C and 

the same approach applied again . 

Notice also that we need to know a bound for the number of 

members of B. 

The assumption is that we can invent a suitable set B. One way 

of finding candidates for set B is to make a list of the independent 

criteria that are satisfied by elements of set A and just remove one of 

them. In the case of the queen's problem we have: 

1. There are 8 que ens on the board. 

2. No two of any N queens can take each other. 

Omitting e ither of t hese gives for set B the alternatives: 

B1: All configurations of N queens so that no two can take 

each other. 

B2: All configurations of 8 queens. 

Under the circum stances this is too crude, since both sets are far too large 

and this shows that the approach may not always work. 
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The undergraduate must be able to see that B2 is huge. He can 

also conclude that Bl is large by considering the case of N = 2. 

Since we are still looking for a suitabl e set B let us list all 

obvious properties of set A. You do s o in the hope that you might find a 

clue, but you should not spend much time proving a complex property wh en 

you are not s ure if you can use it. In our case obvious properties include: 

no two queens may occupy the same row, column, upward diagonal or downward 

diagonal. Thus, we have at most one queen in each row, column or diagonal 

and exactly eight queens on the board. Henc e , we have "exactly one queen 

in each row and each column; eight of the 15 upward diagonals will contain 

one queen and similarly for the downward diagonals. Another us eful property 

is obtained by considering set Bl . Removing a single que en from any noo-

empty configuration from set Bl yields a configuration which is also in Bl. 

Conve"rsely, one can conclude that each non-empty configuration of Bl can be 

obtained by extending some other configuration from Bl by one queen. This 

extension property does not hold for B2. 

useful when generating sets. 

Such an extension property is 

Turning now to consider the order in which we shall generate 

elements of set A this might give us a clue to the mysterious set B. How 

do we characterise an element of set A? An obvious way to r epresent a con-

figuration, which follows from the property that each row contains one que en , 

is as an array x[a:7 ] such that 

[ . ] b f 1 " db' th x 1 = num er 0 co umn occuple y que en on 1 row. 

The only r easonable order is an alphabetic one, which in turn suggests a 

set B: 

B = set of all configurations of N queens occupying the first N 

rows, such that no two can take each other. 

As a consequence, we open the way to algorithms in which rows and 

columns are treated differently. At fi rst sight this is surprising, 

because the original problem is completely symmetrical in rows and columns . 

We want the e lements of set A in alphabetic order and s o the best 

way is to generate the elements of set B in alphabetic order also. First, 

we have to generate all solutions with x[a] = a, then all with x[a] = 1 etc .; 

of the solutions with x[a] = a we generate first those with x[ l ] = 0 (if 

any), then those with x[1] =1(if any) , etc. ane way to program this is to 
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use the abstract operator GENERATE NEXT ELEMENT OF B: 

INITIALIZE EMPTY BOARD; 

repeat GENERATE NEXT ELEMENT OF B; 

if BOARD FULL then PRINT 

until B EXHAUSTED ---
However, GENERATE NEXT ELEMENT OF B i s not an attra ctive operator to con

struct. This is indicated by the fact that the operator will sometimes 

increase, sometimes decrease and sometimes leave unchanged the number of 

queens in a configuration. Additionally, it is not easy t o see how to test 

for B EXHAUSTED. 

If we insist on t hinking of the elements of set B as a single 

sequence the only corresponding program st ructure is a single loop as above. 

If we are not attracted by this then we may order the e lements of B as a 

sequence of subsequences and one way we can do this is to group the e l ements 

of B by position of queen zero: 

h:= 0; 

repeat SET QUEEN 0 ON COLUMN h; 

GENERATE ALL CONFIGURATIONS WITH QUEEN 0 FIXED; 

REMOVE QUEEN 0; 

h:= h + 1 

until h = 8 

Considering how we might make the operator GENERATE ALL CONFIGURATIONS WITH 

QUEEN 0 FIXED we can repeat this program structure again for QUEEN 1. This 

operator is then: 

h1:= 0; 

repeat l! COLUMN h1 FREE do 

begin SET QUEEN 1 ON COLUMN h1 ; 

end' --' 

GENERATE ALL CONFIGURATIONS WITH QUEENS 0 AND 1 FIXED; 

REMOVE QUEEN 1 

h1:= h1 + 1; 

until h1 = 8 ---
Again the operator GENERATES ALL CONFIGURATIONS WITH QUEENS 0 AND 1 FIXED 

can be made by a similar piece of program. In the complete program the 

outermost loop will diffe r only trivially from the general structure. The 

innermost is exceptional in the sense that it i s made by just u s ing the 

operator PRINT. This nest of similar loops suggests a r ecurs ive procedure: 
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procedure gener ate; 

begin integer h; h: = 0; 

repeat if COLUMN h FREE do 

begin SET QUEEN ON CO LUMN h; 

if BOARD FULL then PRINT 

end 

~; REMOVE QUEEN 

h: = h + 1 

until h = 8 

else generate ; 

With t he aid of this procedure t he ma i n program is constructed as : 

INITIALISE EMPTY BOARD; 

generate 

As far as the queen ' s problem is concerned what remains is an analysis of 

how to represent the conf i gurations on t he board so that our remaining 

operator s can be easi l y const ruc ted. So fa r we have only used the simple 

structure x[0:7] whi ch is not easy to test . The analysis of the section 

on t rading sto r age space for computation time suggests that we might look 

for suitabl e additional tabulative material to simplify our operators. I t 

turns out that one of the s impl es t ways i s to keep a r ec ord of the occupancy 

of co lumns and diagonals. We shall no t go into t his here . 

6 . Conclus i on 

One starts with a problem and deals with it minute step after 

minute step . One makes a list of al l considerations and information avail-

abl e . If you lo se patience or get tired and are forced to hurry then you 

will do a lousy job. If y ou take more time and pay more attention to the 

effort of desc ribing how you find solutions then this leads to t he dis-

covery of new so lutions itself. 

ology works . 

7. Di scus sion 

Thi s suggests that this so rt of method-

Professor Wirth point ed out that t he invariance theorem had been 

considered by Hoare as an axiom rather than a t heo r em and he himself would 

prefer to call the invariance theorem the definition of a while clause. 

Then the linear search theorem could be proved using mathematical induction . 

Professor Knuth interrupted saying he did not see how t hi s could be done, to 
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which Professor Dijkstra replied that he thought one had to use an explicit 

count for the number of assignments made. Professor Michaelson asked for 

a definition of a while clause which Professor Dijkstra gave as 

while B do S = if B do (Sj while B do S) 

Professor Michaelson then said that he did not think t hat the Invariance 

Theorem alone could be used to prove the Linear Search Theorem as there was 

nothing to spec ify an order of execution. 

Some discussion centred around the probl em of efficiency in terms 

of computation time with r egard to the sets A and B in the queens problem. 

Professor Dijkstra ended this by saying that he was prepared to take into 

account the size of the sets, but not the relative speeds of primitive 

opera,tions. 

Finally, some questions were asked concerning the complexity of 

the queens problem and what benefits might be expected from t he approach 

that had been given. 

Professor Wirth felt that the problem was too large to present at 

any early stage of programming. It belonged to a course on advanced pro-

gramming techniques although the ideas on how to represent the information 

ought to be taught earlier. 

Professor Perlis was concerned that students might feel disturbed 

at having to write so much non-performable code. He also wondered whether 

one could layout these algorithms independently of the' programming language 

in which they would ultimately be written. Professor Dijkstra thought that, 

to a considerable extent, lectures in programming could be given which were 

language independent. 

Professor Michaelson said that he believed that the object of the 

exer cise was to teach students to write programs in a comprehensible way, 

programs in which they had solved the given problem, in a way that enabled 

them to modify their programs as their understanding of the problem changed. 

Students should be convinced that it was worth putting some effort into 

this. He thought t hat Professor Dijkstra had given a rather inelegant 

solution to a rather pointless problem and wondered why this problem had 

been chosen in preference to a more practical one which might have more 

attraction for the students. 
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In repJy Professor Di.jkstra said that the problem was a difficult 

onc wi 1.h the charm Lhat it was easy to formulate . Another point was t hat 

onn ha.d a cl0.ar visual terminology in terms of whi ch t o describe "the states . 

Professor Perlis put what he thought was a stronger case in that the prob

lem had a great deal of carry over, teaching t he students about enumeration, 

about generating sequenc es and about making sure that all solutions were 

round . 
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